JPH0394740A - Ultrasonic wave measuring instrument for ophthalmology - Google Patents

Ultrasonic wave measuring instrument for ophthalmology

Info

Publication number
JPH0394740A
JPH0394740A JP1233955A JP23395589A JPH0394740A JP H0394740 A JPH0394740 A JP H0394740A JP 1233955 A JP1233955 A JP 1233955A JP 23395589 A JP23395589 A JP 23395589A JP H0394740 A JPH0394740 A JP H0394740A
Authority
JP
Japan
Prior art keywords
cornea
eye
ultrasonic
signal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1233955A
Other languages
Japanese (ja)
Inventor
Yukitsugu Nakamura
中村 行告
Kazunobu Kobayashi
小林 萬伸
Shigeo Maruyama
茂男 丸山
Yoshimasa Hamano
好正 濱野
Isao Matsumura
勲 松村
Takashi Masuda
増田 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1233955A priority Critical patent/JPH0394740A/en
Publication of JPH0394740A publication Critical patent/JPH0394740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To obtain a precise measuring value by reducing an error due to irregularity on the surface of a cornea by providing a storage means to store a measuring signal obtained with a measuring means which detects length between parts in an eye-ball, and a selection means which finds the measuring value when the amount of deformation of the cornea due to the contact of an ultrasonic probe is minimized. CONSTITUTION:A transmitter/receiver 7a of the ultrasonic probe 7 emits an ultrasonic wave to the eye-ball of the eye E to be inspected, and also, receives ultrasonic reflection signals S1, S2, S3, and S4 generated due to the interface of a medium in the eye-ball, and stores them in a memory circuit part 24. At this time, since the cornea Ec becomes hollow a little, the axial length of eye i.e., a distance from S1 to S4 is reduced a little by pressing the ultrasonic probe 7. However, by depressing a push-button switch 19, the ultrasonic probe 7 is separated from the surface of the cornea Ec, and the ultrasonic reflection signal is switched to an interface signal S0 with the air. By detecting such switching, the ultrasonic reflection signals S1-S4 just before switching i.e., at a state where the minimum quantity of hollow of the cornea Ec can be obtained. Therefore, the measuring value between the parts in the eye-ball not including the error can be obtained by reading out and calculating the measuring signal at that time from the memory circuit part 24.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被検眼の角膜に超音波探触子を接触させて超
音波信号を発射し、その反射信号によって被検眼の部位
間の長さを測定する眼科用超音波測定装置に関するもの
である. [従来の技術J 例えば、超音波眼軸長計によって被検眼の眼軸長を測定
する場合には、被検眼を点眼薬で知覚麻痺させた後に、
角膜表面に超音波探触子の先端を押し当て、この状態で
眼球内に超音波信号を発射し、その超音波反射信号を検
出することにより角膜表面から網膜までの長さである眼
軸長を計測している.この場合に、眼球内に超音波信号
を安定して伝播させるためには、超音波探触子を角膜表
面に所定の圧力で押し付けることが必要である.しかし
,この押し付けによって角膜表面は若干凹むため,従来
の超音波眼軸長計ではこの凹みが計測値に誤差を介入す
る原因になっている.[発明が解決しようとする課題] この超音波探触子の押し付けによって生ずる角膜表面の
凹み量は、たとえ押し付け圧力を一定にしても眼圧等の
個人差によって異なるために、角膜表面の凹みによる計
測値の誤差は単純に一定の補正値では補正できない. 更に、信頼度の高い眼軸長計測を実行しようとすれば、
超音波探触子の手動操作に関して検者の熟練を要すると
いう問題もある. 本発明の目的は、このような従来例の問題点を改善し、
凹んだ角膜が元の球面形状にほぼ復帰した時点での超音
波反射信号を検出することによって、角膜表面の凹みに
よる誤差を減少し正確な計測値を得ることを可能とする
眼科用超音波測定装置を提供することにある. [課題を解決するための手段] 上記の目的を達或するために、本発明に係る眼科用超音
波測定装置においては、被検眼の角膜に超音波探触子を
接触し後退させながら眼球内の超音波反射信号を基に眼
球内の部位間の長さを繰り返して検出する計測手段と、
該計測手段により得られた測定信号を記憶する記憶手段
と、該記憶手段に記憶した測定信号から最長の測定信号
を選択することにより前記超音波探触子の接触による角
膜変形量が最小のときの計測値を求める選択手段とを備
えたことを特徴とするものである.[作用] 上述の構戒を有する眼科用超音波測定装置は、超音波探
触子を被検眼の角膜に接触させた後に、超音波反射信号
波形を検出し続けながら超音波探触子を視軸方向に角膜
から後退勤させる.この際、逐次にその測定信号を記憶
し,記憶された測定信号のうちの探触子の接触による角
膜変形量が最小のときの測定信号を選択して眼球内の部
位間の計測値を得る. [実施例] 本発明を図示の実施例に基づいて詳細に説明する. 第1図は本発明に係る眼科用超音波測定装置の一実施例
を示すものである.基台1上には可動台2が載置され、
可動台2は操作桿3を操作することによって前後左右に
移動可能であり,基台1の内部には後述する電気回路部
が収納されており、基台lの前面には図示しないプリン
タ等が配置されている.また、可動台2には操作桿3の
基部のハンドル4を廻すことによって上下動される戴物
台5が備えられ、この載物台5には摺動案内林6を介し
て超音波探触子7を保持しているホルダ8が取り付けら
れている.ホルダ8は第2図に示すようにストロークベ
アリング等の摺動部材9により極めて小さな摩擦力で前
後方向に移動できるように支持されており、スプリング
10による微弱な所定圧力で前方に押圧されている.こ
のような機構で保持された超音波探触子7は被検眼Eに
軽く押し当てられ、被検眼Eの眼軸長測定信号が検出ざ
れると、ホルダ8はモータ11及びこれと連結した大ブ
ーり12,小ブーり13、14,ワイヤベル}15等か
ら或る駆動機構によって後退するようになっている. 更に、第2図に示すようにワイヤベルトl5はホルダ8
の軽い動きを妨げないように、通常はホルダ8に接触し
ない状態となっているが、眼軸長測定信号が検出されて
モータ11が駆動する際には、ワイヤベルト15は電磁
チャック16に挟まれて、ホルダ8を後方の所定位置、
例えばマイクロスイッチ17が検知する位置まで移動す
るようになっている。また、基台1に1±被検者の顔F
を固定するための顔固定台l8が設けられ、操作桿3の
頂部には押釦スイッチ19が取り付けられ,更に基台1
の前面には測定信号波形や測定値を表示する表示器20
が設けられている. 第3図は電気回路部のブロック回路構或図を示し、超音
波探触子7には超音波送受信回路部21が接続され、送
受信回路部2lには測定スイッチ22及び信号処理回路
部23が接続されている。
Detailed Description of the Invention [Industrial Application Field] The present invention emits an ultrasonic signal by bringing an ultrasound probe into contact with the cornea of the eye to be examined, and uses the reflected signal to determine the distance between the parts of the eye to be examined. This article relates to an ophthalmological ultrasonic measurement device that measures eye health. [Prior art J] For example, when measuring the axial length of an eye to be examined using an ultrasonic axial length meter, after numbing the eye to be examined with eye drops,
The tip of the ultrasound probe is pressed against the corneal surface, and in this state an ultrasound signal is emitted into the eyeball, and the axial length, which is the length from the corneal surface to the retina, is determined by detecting the ultrasound reflected signal. is being measured. In this case, in order to stably propagate the ultrasound signal into the eyeball, it is necessary to press the ultrasound probe against the corneal surface with a predetermined pressure. However, due to this pressure, the corneal surface is slightly concave, and with conventional ultrasonic axial length meters, this concavity causes errors in the measured values. [Problems to be Solved by the Invention] The amount of dent on the corneal surface caused by pressing the ultrasound probe varies depending on individual differences such as intraocular pressure even if the pressing pressure is constant. Errors in measurement values cannot be corrected simply with a fixed correction value. Furthermore, if you want to perform highly reliable axial length measurement,
There is also the problem that the examiner needs to be skilled in manual operation of the ultrasound probe. The purpose of the present invention is to improve the problems of such conventional examples,
Ultrasonic measurement for ophthalmology that reduces errors caused by corneal surface dents and makes it possible to obtain accurate measurement values by detecting ultrasound reflected signals when the cornea has almost returned to its original spherical shape. The goal is to provide equipment. [Means for Solving the Problems] In order to achieve the above object, in the ophthalmological ultrasound measuring device according to the present invention, an ultrasound probe is brought into contact with the cornea of the eye to be examined, and while being retracted, the ultrasound probe is moved inside the eyeball. a measuring means for repeatedly detecting the length between parts within the eyeball based on the ultrasound reflected signal;
a storage means for storing measurement signals obtained by the measurement means; and when the amount of corneal deformation due to contact with the ultrasound probe is minimized by selecting the longest measurement signal from the measurement signals stored in the storage means; The present invention is characterized by comprising a selection means for determining the measured value of. [Function] The ophthalmological ultrasound measuring device having the above-mentioned configuration, after bringing the ultrasound probe into contact with the cornea of the eye to be examined, continues to detect the ultrasound reflected signal waveform while viewing the ultrasound probe. Retract from the cornea in the axial direction. At this time, the measurement signals are stored sequentially, and the measurement signal when the amount of corneal deformation due to contact with the probe is the smallest is selected from among the stored measurement signals to obtain the measurement value between the parts within the eyeball. .. [Example] The present invention will be explained in detail based on the illustrated example. FIG. 1 shows an embodiment of the ophthalmological ultrasonic measuring device according to the present invention. A movable table 2 is placed on the base 1,
The movable base 2 can be moved forward, backward, left, and right by operating the operating rod 3. An electric circuit unit, which will be described later, is housed inside the base 1, and a printer, etc. (not shown) is mounted on the front of the base 1. It is located. Furthermore, the movable table 2 is equipped with a table 5 that can be moved up and down by turning a handle 4 at the base of the operating rod 3. A holder 8 holding a child 7 is attached. As shown in FIG. 2, the holder 8 is supported by a sliding member 9 such as a stroke bearing so that it can move forward and backward with extremely small frictional force, and is pressed forward by a weak predetermined pressure by a spring 10. .. The ultrasonic probe 7 held by such a mechanism is lightly pressed against the eye E to be examined, and when the axial length measurement signal of the eye E to be examined is not detected, the holder 8 is moved to the motor 11 and the large body connected thereto. It is designed to be retracted by a certain drive mechanism from the boom 12, small boots 13, 14, wire bell} 15, etc. Furthermore, as shown in FIG. 2, the wire belt l5 is attached to the holder 8.
Normally, the wire belt 15 does not come into contact with the holder 8 so as not to interfere with the light movement of the wire belt 15, but when the axial length measurement signal is detected and the motor 11 is driven, the wire belt 15 is caught between the electromagnetic chucks 16. holder 8 to a predetermined position at the rear.
For example, the microswitch 17 is configured to move to a detection position. In addition, 1 ± the subject's face F is placed on the base 1.
A face fixing stand l8 is provided for fixing the face, a push button switch 19 is attached to the top of the operation stick 3, and a face fixing stand l8 is provided for fixing the face.
On the front side, there is a display 20 that displays measurement signal waveforms and measured values.
is provided. FIG. 3 shows a block circuit diagram of the electric circuit section, in which an ultrasonic transmitter/receiver circuit section 21 is connected to the ultrasonic probe 7, and a measurement switch 22 and a signal processing circuit section 23 are connected to the transmitter/receiver circuit section 2l. It is connected.

信号処理回路部23の出力はメモリ回路部24と波形判
断回路部25に接続され,更にメモリ回路部24の出力
は演算処理回路部26と表示器20に接続されている.
押釦スイッチ19は電磁チャック●モータ制御回路部2
7に接続され、この電磁チャックモータ制御回路部27
の出力は電磁チャック17及びモータ11にそれぞれ接
続されている. この実施例の操作手順を説明すると,第1図に示すよう
に被検者の顔Fを顔固定台l8に固定した後に,可動台
2を動かして大略の位置合わせを行い、次に操作桿3の
傾動とハンドル4の回動操作により、超音波探触子7の
先端が被検眼Eの視軸と合致するように微調位置合わせ
を行う。その後に、操作桿3を前方に傾けて超音波探触
子7の先端を被検眼Eの角膜Ecに押し付けぎみに接触
させる.すると、超音波探触子7のホルダ8は若干後方
に戻されるが,スプリング10によって所定圧力で押し
付けられているため、角膜Ecの表面は若干凹まされた
状態になるが、超音波探触子7の先端は角膜Ecの表面
に空気層を介在させることなく確実に接触される。
The output of the signal processing circuit section 23 is connected to a memory circuit section 24 and a waveform judgment circuit section 25, and the output of the memory circuit section 24 is further connected to an arithmetic processing circuit section 26 and a display 20.
The push button switch 19 is an electromagnetic chuck ●Motor control circuit section 2
7, this electromagnetic chuck motor control circuit section 27
The outputs of are connected to the electromagnetic chuck 17 and the motor 11, respectively. To explain the operating procedure of this embodiment, as shown in FIG. By tilting 3 and rotating the handle 4, fine positioning is performed so that the tip of the ultrasound probe 7 coincides with the visual axis of the eye E to be examined. Thereafter, the operating rod 3 is tilted forward to force the tip of the ultrasound probe 7 into contact with the cornea Ec of the eye E to be examined. Then, the holder 8 of the ultrasound probe 7 is returned slightly to the rear, but since it is pressed with a predetermined pressure by the spring 10, the surface of the cornea Ec is slightly depressed, but the ultrasound probe 7 The tip of No. 7 is securely brought into contact with the surface of the cornea Ec without an intervening air layer.

電気回路部では,測定スイッチ22からの指令により超
音波送受信回路部2lは、超音波探触子7内の超音波送
受信子7aに対して所定周期で超音波駆動信号を送信す
る.すると、超音波送受信子7aは被検眼Eの眼球内に
超音波を発射すると共に,眼球内の媒質の界面によって
生ずる超音波反射信号St. S2、S3、S4を受信
する.ここで、受信された反射信号Sl. S2、S3
、S4は超音波送受信回路部21を介して信号処理回路
部23に送られ、更にメモリ回路部24に送られ記憶さ
れる。
In the electric circuit section, the ultrasonic transmitter/receiver circuit section 2l transmits an ultrasonic drive signal to the ultrasonic transmitter/receiver 7a in the ultrasonic probe 7 at a predetermined period based on a command from the measurement switch 22. Then, the ultrasonic transmitter/receiver 7a emits ultrasonic waves into the eyeball of the subject's eye E, and transmits an ultrasonic reflection signal St. generated by the interface of the medium inside the eyeball. Receive S2, S3, and S4. Here, the received reflected signal Sl. S2, S3
, S4 are sent to the signal processing circuit section 23 via the ultrasonic transmitting/receiving circuit section 21, and further sent to the memory circuit section 24 for storage.

このとき、波形判断回路部25にも信号処理回路部23
の出力が送られ、波形判断回路部25では反射信号が超
音波探触子7と角膜Ecとが接触している状態、或いは
離れた状態の何れかの判断を行っている.演算処理回路
部26では、メモリ回路部24から読み出した超音波反
射信号を基に眼球内の各部位間の計測値を算出する.そ
の結果、得られた眼軸長計測値等を表示器20に表示し
たり、必要に応じて図示しないプリンタに出力する.な
お、表示器20にはメモリ回路部24からの波形情報も
表示され、検者が確認できる。
At this time, the signal processing circuit section 23 also applies to the waveform judgment circuit section 25.
The output of the ultrasound probe 7 and the cornea Ec are sent to the waveform judgment circuit section 25, and the reflected signal determines whether the ultrasound probe 7 and the cornea Ec are in contact with each other or are separated from each other. The arithmetic processing circuit section 26 calculates the measured values between each site within the eyeball based on the ultrasound reflection signal read out from the memory circuit section 24. As a result, the obtained axial length measurement value and the like are displayed on the display 20 or output to a printer (not shown) as necessary. Note that the waveform information from the memory circuit unit 24 is also displayed on the display 20 so that the examiner can confirm it.

第4図は被検眼Eの角膜Ecに超音波探触子7の先端を
押し当てた状態とその場合の超音波反射信号を示し、E
1は水晶体、Erは網膜であり、Slは超音波探触子7
により得られる角膜Ecの表面からの超音波反射信号,
同様にS2は水晶体E1の前面からの超音波反射信号、
S3は水晶体Elの後面からの超音波反射信号、S4は
網膜Erからの超音波反射信号をそれぞれ表している. 超音波探触子7を角膜Ecに押し付けている間は角膜E
cは少し凹んでいるため、眼軸長即ち第4図のSlから
54までの距離は若干短めになってはいるが、この測定
信号が適正であることを表示器20で確認したら押釦ス
イッチl9を押す.すると、電磁チャックl7に通電し
てワイヤベルト15を挟み付け、モータ11の駆動によ
り超音波探触子7が視軸方向に角膜Ecから後退を始め
る.同時に、超音波反射信号を検出し、逐次に測定信号
をメモリ回路24に保存してゆく.角膜Ecは固有の弾
性力によって超音波探触子7と接触したまま徐々に元の
形状に戻り始め、やがて第5図に示すように超音波探触
子7が角膜Ecの表面から離れると、超音波反射信号は
空気との界面信号SOに切換わる. このような超音波反射信号波形の切換わりを検知すれば
、切換わり直前つまり超音波探触子7が角膜から離れる
寸前の角膜Ecの凹み量が最も小さい状態での超音波反
射信号S1〜S4を検出することが可能となる.このと
きの超音波反射信号S1〜S4は角膜Ecが元の球面形
状に殆ど戻った位置での超音波反射信号なので、この測
定信号をメモリ回路部24から読み出して算出すること
によって、角膜Ecの凹みによる誤差を含まない眼球内
の部位間の測定値を得ることが可能となる.そこで本実
施例では,探触子7が後退しているときの繰り返して測
定された測定信号を一旦メモリ回路部24に保存してお
き、信号波形が切り換わったことを波形判断回路部25
で検知した時に、その直前の測定信号をメモリ回路部2
4から読み出して演算することにより、角膜Ecの凹み
が殆どない最大眼軸長が得られる. なお、前述の実施例では、超音波探触子7を角膜Ecに
所定圧力で押し当てた後に、超音波探触子7をモータ1
1の駆動によって後退させているが、これに限らず操作
桿3を手前に傾ける操作で可動板2を移動させて超音波
探触子7を後退させてもよい. また、前述の実施例では超音波探触子7を角膜Ecに接
触させた後に、押釦スイッチl9を押した指令によって
超音波探触子7を後退させてぃるが,例えば超音波探触
子7が角1iiEcに接触して適正な測定信号が得られ
たことを自動的に検知できるシステムを導入し,測定信
号が検出されたら自動的にモータ1lを駆動させて超音
波探触子7を後退させてもよい. また、超音波探触子7を手動で角膜Ecに接触させて測
定を行う場合でも,超音波探触子7を角膜Ecに適正な
位置に接触させ超音波反射信号が検出された後に、手動
で超音波探触子7を視軸方向に沿って角膜Ecから後退
させる操作を行うことも可能である.そして、超音波探
触子7が角膜Ecから離れる直前の測定信号を読み出し
てもよい.更には、メモリ回路部24には全ての測定信
号を記憶するのではなく,測定の度により正しい信号の
みを残して、他の信号を消去するようにしてもよい. [発明の効果] 以上説明したように本発明に係る眼科用超音波測定装置
は、超音波探触子を視軸方向に合致させて適正な超音波
反射信号を検出したことを確認してから、超音波探触子
を視軸方向に後退させながら反射信号を検出し、この測
定信号を逐次記憶しその中の最適値を選択しているので
、角膜が元の形状に戻った状態での測定信号が得られる
ため、超音波探触子の角膜への接触圧により生ずる凹み
の影響がなく、測定系のアライメント不良による誤差も
少ない正確な測定値が得られる.
FIG. 4 shows the state in which the tip of the ultrasound probe 7 is pressed against the cornea Ec of the eye E to be examined and the ultrasound reflected signal in that case.
1 is the lens, Er is the retina, and Sl is the ultrasound probe 7.
The ultrasound reflection signal from the surface of the cornea Ec obtained by
Similarly, S2 is an ultrasound reflected signal from the front surface of the crystalline lens E1,
S3 represents an ultrasound reflection signal from the posterior surface of the crystalline lens El, and S4 represents an ultrasound reflection signal from the retina Er. While the ultrasound probe 7 is pressed against the cornea Ec, the cornea E
c is slightly concave, so the axial length of the eye, that is, the distance from Sl to 54 in Fig. 4, is slightly shorter, but after confirming on the display 20 that this measurement signal is appropriate, press the push button switch l9. Press. Then, the electromagnetic chuck 17 is energized to clamp the wire belt 15, and the motor 11 is driven to cause the ultrasound probe 7 to begin to retreat from the cornea Ec in the visual axis direction. At the same time, ultrasonic reflection signals are detected and the measured signals are sequentially stored in the memory circuit 24. Due to its inherent elastic force, the cornea Ec gradually begins to return to its original shape while in contact with the ultrasound probe 7, and eventually, as shown in FIG. 5, when the ultrasound probe 7 separates from the surface of the cornea Ec, The ultrasonic reflection signal is switched to the air interface signal SO. If such a change in the ultrasonic reflection signal waveform is detected, the ultrasonic reflection signals S1 to S4 will be detected immediately before the change, that is, just before the ultrasonic probe 7 separates from the cornea, when the amount of depression in the cornea Ec is the smallest. It becomes possible to detect. The ultrasonic reflection signals S1 to S4 at this time are ultrasonic reflection signals at a position where the cornea Ec has almost returned to its original spherical shape. It becomes possible to obtain measurement values between parts of the eyeball that do not include errors due to concavities. Therefore, in this embodiment, the measurement signal repeatedly measured when the probe 7 is retracted is temporarily stored in the memory circuit section 24, and the waveform judgment circuit section 24 detects that the signal waveform has been switched.
When the signal is detected in the memory circuit section 2, the measurement signal immediately before that
By reading out and calculating from 4, the maximum axial length with almost no dent in the cornea Ec can be obtained. In the above embodiment, after pressing the ultrasound probe 7 against the cornea Ec with a predetermined pressure, the ultrasound probe 7 is moved by the motor 1.
Although the ultrasonic probe 7 is moved backward by the drive in step 1, the present invention is not limited to this, and the ultrasonic probe 7 may be moved backward by moving the movable plate 2 by tilting the operating stick 3 toward you. Further, in the above-described embodiment, after the ultrasound probe 7 has been brought into contact with the cornea Ec, the ultrasound probe 7 is moved back in response to a command by pressing the push button switch l9. A system is introduced that can automatically detect when the probe 7 contacts the corner 1iiEc and a proper measurement signal is obtained, and when the measurement signal is detected, the motor 1l is automatically driven to move the ultrasonic probe 7. You can move it backwards. In addition, even when measuring by manually bringing the ultrasound probe 7 into contact with the cornea Ec, it is possible to manually It is also possible to perform an operation to retreat the ultrasound probe 7 from the cornea Ec along the visual axis direction. Then, the measurement signal just before the ultrasound probe 7 leaves the cornea Ec may be read out. Furthermore, instead of storing all measurement signals in the memory circuit section 24, only correct signals may be left and other signals may be deleted each time a measurement is performed. [Effects of the Invention] As explained above, the ophthalmic ultrasonic measurement device according to the present invention can be used after confirming that an appropriate ultrasonic reflection signal is detected by aligning the ultrasonic probe with the visual axis direction. , the reflected signal is detected while the ultrasound probe is retracted in the direction of the visual axis, and this measurement signal is sequentially memorized and the optimal value is selected from among them, so that it can be detected even when the cornea has returned to its original shape. Since a measurement signal is obtained, accurate measurement values can be obtained without the influence of dents caused by the contact pressure of the ultrasound probe on the cornea, and with fewer errors due to poor alignment of the measurement system.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る眼科用超音波測定装置の一実施例を
示し、第1図は全体の構或図、第2図は電磁チャック部
の平面図、第3図は電気回路部のブロック回路構戒図,
第4図は眼軸長測定状態の説明図,第5図は超音波探触
子が角膜から離れたときの超音波反射信号の説明図であ
る.符号7は超音波探触子、8はホルダ、9は摺動部材
、10はスプリング、11はモータ、15はワイヤベル
ト、16は電磁チャック、17はマイクロスイッチ、1
9は押釦スイッチ、2lは超音波送受信回路部、22は
測定スイッチ、23は信号処理回路部,25は波形判断
回路部,24はメモリ回路部、26は演算処理回路部、
27は電磁チャック●モータ制御回路部である. 第1図
The drawings show an embodiment of the ophthalmological ultrasonic measuring device according to the present invention, in which Fig. 1 shows the overall configuration, Fig. 2 is a plan view of the electromagnetic chuck section, and Fig. 3 shows a block circuit of the electric circuit section. Composition diagram,
Fig. 4 is an explanatory diagram of the axial length measurement state, and Fig. 5 is an explanatory diagram of the ultrasound reflected signal when the ultrasound probe is separated from the cornea. 7 is an ultrasonic probe, 8 is a holder, 9 is a sliding member, 10 is a spring, 11 is a motor, 15 is a wire belt, 16 is an electromagnetic chuck, 17 is a micro switch, 1
9 is a push button switch, 2l is an ultrasonic transmitting/receiving circuit section, 22 is a measurement switch, 23 is a signal processing circuit section, 25 is a waveform judgment circuit section, 24 is a memory circuit section, 26 is an arithmetic processing circuit section,
27 is the electromagnetic chuck motor control circuit. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、被検眼の角膜に超音波探触子を接触し後退させなが
ら眼球内の超音波反射信号を基に眼球内の部位間の長さ
を繰り返して検出する計測手段と、該計測手段により得
られた測定信号を記憶する記憶手段と、該記憶手段に記
憶した測定信号から最長の測定信号を選択することによ
り前記超音波探触子の接触による角膜変形量が最小のと
きの計測値を求める選択手段とを備えたことを特徴とす
る眼科用超音波測定装置。
1. Measuring means for repeatedly detecting the length between parts within the eyeball based on ultrasound reflection signals within the eyeball while bringing an ultrasound probe into contact with the cornea of the eye to be examined and moving it back; a storage means for storing the measured measurement signals stored in the storage means; and by selecting the longest measurement signal from the measurement signals stored in the storage means, a measurement value when the amount of corneal deformation due to contact with the ultrasound probe is minimum is determined. 1. An ophthalmological ultrasonic measuring device comprising: a selection means.
JP1233955A 1989-09-08 1989-09-08 Ultrasonic wave measuring instrument for ophthalmology Pending JPH0394740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233955A JPH0394740A (en) 1989-09-08 1989-09-08 Ultrasonic wave measuring instrument for ophthalmology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233955A JPH0394740A (en) 1989-09-08 1989-09-08 Ultrasonic wave measuring instrument for ophthalmology

Publications (1)

Publication Number Publication Date
JPH0394740A true JPH0394740A (en) 1991-04-19

Family

ID=16963245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233955A Pending JPH0394740A (en) 1989-09-08 1989-09-08 Ultrasonic wave measuring instrument for ophthalmology

Country Status (1)

Country Link
JP (1) JPH0394740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154971A (en) * 2006-12-26 2008-07-10 Nidek Co Ltd Ultrasonic diagnostic apparatus for ophthalmology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154971A (en) * 2006-12-26 2008-07-10 Nidek Co Ltd Ultrasonic diagnostic apparatus for ophthalmology

Similar Documents

Publication Publication Date Title
US8016418B2 (en) Eye axial length measurement apparatus
EP2113192B1 (en) Non-contact ultrasonic tonometer
JP4349934B2 (en) Ophthalmic equipment
US5056522A (en) Supersonic ophthalmic measuring apparatus
US8092018B2 (en) Non-contact ultrasonic tonometer
JP5201852B2 (en) Ophthalmic equipment
US5822034A (en) Ophthalmologic apparatus
JP5397670B2 (en) Non-contact ultrasonic tonometer
EP1003412B1 (en) Applanating tonometers
US5325135A (en) Ophthalmologic apparatus having two measuring systems
JPH0394740A (en) Ultrasonic wave measuring instrument for ophthalmology
JPH0347242A (en) Apparatus for measuring optic axis length
US7101335B2 (en) Non-contact type tonometer
US7824036B2 (en) Ophthalmic ultrasonic measurement apparatus, and an ophthalmic measurement method
JP2021037119A (en) Tonometer
JP3986408B2 (en) Non-contact tonometer
JPH10276983A (en) Proximal distance meter
JP3504380B2 (en) Ophthalmic equipment
JPH01139043A (en) Opthalmic apparatus
JP2010082279A (en) Non-contact ultrasonic tonometer
JPH119551A (en) Ophthalmologic apparatus
JP4436914B2 (en) Eye refractive power measuring device
JPH0231731A (en) Ophthalmic diagnostic apparatus
JPH0394728A (en) Ophthalmic apparatus
JPH0191833A (en) Ophthalmic apparatus