JPH0394216A - Production of faraday rotor - Google Patents

Production of faraday rotor

Info

Publication number
JPH0394216A
JPH0394216A JP23116689A JP23116689A JPH0394216A JP H0394216 A JPH0394216 A JP H0394216A JP 23116689 A JP23116689 A JP 23116689A JP 23116689 A JP23116689 A JP 23116689A JP H0394216 A JPH0394216 A JP H0394216A
Authority
JP
Japan
Prior art keywords
flux
faraday rotor
single crystal
mol
faraday rotator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23116689A
Other languages
Japanese (ja)
Other versions
JPH0750266B2 (en
Inventor
Hiroo Numajiri
沼尻 裕夫
Katsunori Suzuki
克典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Copal Electronics Co Ltd
Original Assignee
Copal Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copal Electronics Co Ltd filed Critical Copal Electronics Co Ltd
Priority to JP1231166A priority Critical patent/JPH0750266B2/en
Publication of JPH0394216A publication Critical patent/JPH0394216A/en
Publication of JPH0750266B2 publication Critical patent/JPH0750266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obviate the generation of cracks, etc., in the Faraday rotor by taking out a single crystal which does not crack in the state in which a flux is dissolved. CONSTITUTION:The single crystal which grows and does not crack in the state in which the flux is dissolved. Raw materials and the flux are mixed in the range of 4.5 to 9.1mol% Gd2O3, 37 to 46mol% Fe2O3, 36 to 50mol% Bi2O3 and 5.5 to 23.5mol% B2O3 to grow bismuth-substd. gadolinium iron garnet. Namely, the sp. gr. of the B2O3 is lighter than the sp. gr. of the Faraday rotor and, therefore, when the mol% of the B2O3 to be used is increased, the film of the B2O3 is then formed in the upper part of the floated Faraday rotor and the Faraday rotor is kept free from direct contact with the atm. The dissipation of the heat from the Faraday rotor is prevented in this way and the growth of the Faraday rotor in the soln. is enabled. The generation of the cracks, etc., in the Faraday rotor is thus obviated.

Description

【発明の詳細な説明】 (産業上の利用分野) 木発明は光アインレータや光スイッチ等に使用するファ
ラデー回転子の製造方法に関するもので、特に回転子に
用いられる磁気光学ガーネット材料に関するものである
. (従来の技術) この種の回転子の製造方法は特開昭59−164692
号に開示されている.この先行技術のファラデー回転子
の製造方法として、原料とフラッグスとをGd203を
8  anal%以下(0 論ロl%を除< ) , 
Fe2Q3  を30〜53mol%、Bi203  
を40〜61mol%、およびフランクスとしてB2 
03とBi203 とのモル比が13203 ( mo
l%) /Bi?03(mol%)≦008となるよう
に前記原料とフラックスとを混合して融解し、徐冷しつ
つ単結晶を析出して戊長させるフラックス法において、
前記フラックスが溶融している状態で、威長した前記単
結晶を取り出す製造方法が記載されている.(発明が解
決しようとする課題) 前記先行技術のファラデー回転子製造方法においては、
製造中、比重の関係で、ファラデー回転子が浮上し、浮
上した部分より熱発散し、溶液中の温度と浮上部との温
度差が生じるのでファラデー回転子内に、割れ目が発生
する。更に割れ目の部分にフラックスが混入して、割れ
目を助長している.割れ目の発生したファラデー回転子
は、光の有効径を満足できず、光もれが生じて、完成し
たファラデー回転子として使用出来ないという問題点が
あった。従って、製造上の歩留まりが悪く製造効率の低
下をまねいていた。本発明は前述の問題点を解決するこ
とを目的として、ファラデー回転子に割れ目等の発生し
ない製造方法を提供する. (課題を解決するための手段) 本発明のファラデー回転子の製造方法は、原料とフラッ
クスを混合して融解し、徐冷しつつ単結晶を析出して或
長させるフラックス法において、前記フラックスが溶解
している状態において威長じた割れ目の生じない単結晶
を取りだすもので、前記原料と前記フラックスとをGd
203 4.5〜9,1not%、Fez03 3 7
 〜4 6 mol%、Bi20336〜50mol%
、B203 575 〜2 3.5  mat%の範囲
で混合して、ビスマス置換ガドリニウム鉄ガーネットを
育成することを4.1F’61とするものである,(作
 用) 本発明によれば、ファラデー回転子の比重よりもB20
3の比重が軽くあるので,使用するB203のmol%
量を増加することにより、浮上したファラデー回転子の
上部に8203の膜を形成する.ファラデー回転子の上
部にB?03の膜が形威されているので、ファラデー回
転子は直接大気との接触が行われない.従ってファラデ
−回転子からの熱発散を防止し、溶液中でファラデー回
転子の育或が可能である。その結果ファラデー回転子内
に割れ目等が発生しなくなる。
[Detailed Description of the Invention] (Industrial Application Field) The invention relates to a method for manufacturing a Faraday rotator used in optical inulators, optical switches, etc., and particularly relates to a magneto-optic garnet material used in the rotor. .. (Prior art) A method for manufacturing this type of rotor is disclosed in Japanese Patent Application Laid-Open No. 59-164699.
It is disclosed in the issue. As a manufacturing method of the Faraday rotator of this prior art, raw materials and flags are mixed with Gd203 of 8 anal% or less (excluding 0%),
30-53 mol% Fe2Q3, Bi203
40 to 61 mol%, and B2 as Franks
The molar ratio of 03 and Bi203 is 13203 (mo
l%) /Bi? In the flux method, the raw material and flux are mixed and melted so that 03 (mol%)≦008, and a single crystal is precipitated and elongated while slowly cooling.
A manufacturing method is described in which the elongated single crystal is extracted while the flux is molten. (Problems to be Solved by the Invention) In the prior art Faraday rotator manufacturing method,
During manufacturing, the Faraday rotator floats due to its specific gravity, and heat is dissipated from the floated part, creating a temperature difference between the temperature in the solution and the floating part, which causes cracks to occur in the Faraday rotator. Furthermore, flux is mixed into the cracks, promoting the cracks. A Faraday rotator with cracks could not satisfy the effective diameter of light, causing light leakage, and there was a problem that it could not be used as a completed Faraday rotator. Therefore, the manufacturing yield is poor, leading to a decrease in manufacturing efficiency. The present invention aims to solve the above-mentioned problems and provides a method of manufacturing a Faraday rotator that does not cause cracks or the like. (Means for Solving the Problems) The method for producing a Faraday rotator of the present invention is a flux method in which a raw material and a flux are mixed and melted, and a single crystal is precipitated and lengthened while being slowly cooled. This method extracts a single crystal that does not have any prominent cracks in the melted state, and the raw material and the flux are mixed with Gd.
203 4.5-9.1not%, Fez03 3 7
~46 mol%, Bi20336~50 mol%
, B203 575 to 23.5 mat% to grow bismuth-substituted gadolinium iron garnet at 4.1F'61. (Function) According to the present invention, Faraday rotation B20 than the child's specific gravity
Since the specific gravity of B203 is light, the mol% of B203 used is
By increasing the amount, a film of 8203 is formed on the upper part of the floating Faraday rotator. B at the top of the Faraday rotator? Since the 03 membrane is used, the Faraday rotator does not come into direct contact with the atmosphere. Therefore, it is possible to prevent heat dissipation from the Faraday rotator and to grow the Faraday rotator in a solution. As a result, cracks and the like will not occur within the Faraday rotator.

(実施例) 以下本発明の実施例を説明する. るつぼ内にフラックスと原料戒分とを入れて、炉内の温
度を上昇して前記素材を十分に混合溶融させた後、冷却
して、融液中で単結晶をI&長させる.この単結晶は、
徐冷最低温度において、るつぼよりフラッグスを分離し
て、炉内で24時間かけて室温まで下げた後に取り出す
ものである.フラックスとしては、Bi203  とB
203両方を使用し、原祠或分としてGd203  と
Fe203 を使用して、原料成分とフラックスの混合
比、原料戊分の混合比の育或条件を変えて実験を行なっ
た.本実験例においては. Gd3xBixFe50+
2の単結晶を育戒することが目的であるから、Bi20
3 はフラックスであるとともに原料或分の役目を果す
ものである.得られた単結晶についてX線回折装置を用
いて単結晶の固定を行った.また、1.31Lmの波長
におけるファラデ−回転角を測定した. 以上のような結晶育成条件および単結晶の特性値を第1
表に示す。
(Example) Examples of the present invention will be described below. Flux and raw materials are placed in a crucible, the temperature in the furnace is raised to sufficiently mix and melt the materials, and then the melt is cooled to lengthen the single crystal in the melt. This single crystal is
The flags are separated from the crucible at the lowest slow cooling temperature, cooled to room temperature in the furnace for 24 hours, and then taken out. As for flux, Bi203 and B
Experiments were conducted using both Gd203 and Fe203 as raw materials, and changing the growth conditions of the mixing ratio of raw material components and flux, and the mixing ratio of raw materials. In this experimental example. Gd3xBixFe50+
Since the purpose is to cultivate the single crystal of Bi20
3 is a flux and also serves as a raw material. The single crystal obtained was fixed using an X-ray diffraction device. Furthermore, the Faraday rotation angle at a wavelength of 1.31 Lm was measured. The above crystal growth conditions and single crystal characteristic values are
Shown in the table.

第1表において、単結晶の固定は、下記のようにして行
った.得られた単結晶を粉末状にして、X線デイフラク
トメータで回折パターンの回折角を測定し、その回折角
から面間隔を求め、ASTM (American  
Society for Testing  Mate
rials粉末や線データ( [Powdsr Dif
fraction  FileInorganic  
Volum] Joint n Commitee  
PowderDiffraction  Standa
rds  Sets  +9−20 ,P.449,P
.521,Sets 11=l5 P.503)と比較
することによって測定を行った. 第l表 第1表の成長結晶欄において、Gはガーネー7ト型単結
晶、αはα−Fe,+lhを示す。第1表の実験例1,
2,4.7,8.9に示す組或では、ガーネット型単結
晶(GdBiIG)が中心となってf&長し、実験例3
,5.6のようにB203が多い組戒,もしくはBi2
03が多い組或では、α−Fe203が中心に多く或長
じている。 この成長した結晶を研磨し、磁気光学特性
の1つであるファラデー回転角を測定したところ、22
00 (度/cm)であり、先行技術を開示した特開昭
59−164692号に記載のものとほぼ同じ回転角で
示した.さらに数10個研磨して、光の有効径を測定し
たところ、割れ目の存在しない完全な単結晶が多く得ら
れた。従って歩留まりが向上したことが明白である。
In Table 1, the single crystal was fixed as follows. The obtained single crystal is powdered, the diffraction angle of the diffraction pattern is measured using an X-ray diffractometer, and the interplanar spacing is determined from the diffraction angle.
Society for Testing Mate
Rials powder and line data ( [Powdsr Dif
fraction FileInorganic
Volume] Joint Committee
Powder Diffraction Standa
rds Sets +9-20, P. 449,P
.. 521, Sets 11=l5 P. The measurement was performed by comparing with 503). In the grown crystal column of Table 1, G indicates a garnate 7-type single crystal, and α indicates α-Fe, +lh. Experimental example 1 in Table 1,
In the combinations shown in 2, 4.7, and 8.9, the garnet type single crystal (GdBiIG) is centered and has a length of f&, and Experimental Example 3
, Kumikai with many B203 like 5.6, or Bi2
In a group with a large amount of 03, α-Fe203 has a large amount of α-Fe203 in the center. When this grown crystal was polished and the Faraday rotation angle, which is one of the magneto-optical properties, was measured, it was found to be 22
00 (degrees/cm), and is shown at almost the same rotation angle as that described in JP-A-59-164692, which discloses the prior art. When several dozen pieces were further polished and the effective diameter of light was measured, many perfect single crystals with no cracks were obtained. Therefore, it is clear that the yield has improved.

(発明の効果) 本発明によれば、B203を5.5  mat%以上組
或比を変化させても、ガーネット型単結晶(Gd3−x
BixFe50+z)を育成することが出来、さらにB
203が比重の関係で掖上面に存在することにより、ガ
ーネット型単結晶が浮上することなくして、液中で育成
することが出来る。従って単結晶の熱放散による割れ目
の形戊が減少し、光の有効径を満足したファラデー回転
子を効率的に得ることができる等の効果がある.
(Effects of the Invention) According to the present invention, even if the composition ratio of B203 is changed by 5.5 mat% or more, the garnet type single crystal (Gd3-x
BixFe50+z) can be cultivated, and B
Since 203 is present on the top surface of the scoop due to its specific gravity, the garnet type single crystal can be grown in the liquid without floating. Therefore, the formation of cracks due to heat dissipation in the single crystal is reduced, and a Faraday rotator that satisfies the effective diameter of light can be efficiently obtained.

Claims (1)

【特許請求の範囲】 1、原料とフラックスとを混合して融解し、徐冷しつつ
単結晶を析出して成長させるフラックス法において、前
記フラックスが溶融している状態において、割れ目の発
生しない単結晶を取り出すことを特徴とするファラデー
回転子の製造方法。 2、前記原料と前記フラックスとをGd_2O_34.
5〜9.1mol%、Fe_2O337〜46mol%
、Bi_2O_336〜50mol%、B_2O_35
.5〜18.4mol%とを前記mol%の範囲で混合
し、ビスマス置換ガドリニウム鉄ガーネットを育成する
ことを特徴とする請求項1記載のファラ デー回転子の製造方法。
[Scope of Claims] 1. In a flux method in which a raw material and a flux are mixed and melted, and a single crystal is precipitated and grown while being slowly cooled, a single crystal that does not generate cracks while the flux is molten. A method for producing a Faraday rotator, characterized by taking out a crystal. 2. The raw material and the flux were mixed with Gd_2O_34.
5-9.1 mol%, Fe_2O337-46 mol%
, Bi_2O_336-50mol%, B_2O_35
.. The method for manufacturing a Faraday rotator according to claim 1, characterized in that bismuth-substituted gadolinium iron garnet is grown by mixing 5 to 18.4 mol% in the above mol% range.
JP1231166A 1989-09-06 1989-09-06 Faraday rotator manufacturing method Expired - Lifetime JPH0750266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1231166A JPH0750266B2 (en) 1989-09-06 1989-09-06 Faraday rotator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1231166A JPH0750266B2 (en) 1989-09-06 1989-09-06 Faraday rotator manufacturing method

Publications (2)

Publication Number Publication Date
JPH0394216A true JPH0394216A (en) 1991-04-19
JPH0750266B2 JPH0750266B2 (en) 1995-05-31

Family

ID=16919351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1231166A Expired - Lifetime JPH0750266B2 (en) 1989-09-06 1989-09-06 Faraday rotator manufacturing method

Country Status (1)

Country Link
JP (1) JPH0750266B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627631A (en) * 1985-06-29 1987-01-14 Toshiba Corp Magneto-optical element
JPS62208022A (en) * 1986-03-06 1987-09-12 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Magnetooptic optical switch element and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627631A (en) * 1985-06-29 1987-01-14 Toshiba Corp Magneto-optical element
JPS62208022A (en) * 1986-03-06 1987-09-12 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Magnetooptic optical switch element and manufacture thereof

Also Published As

Publication number Publication date
JPH0750266B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
Matusita et al. Rate of homogeneous nucleation in alkali disilicate glasses
Francis et al. Glass-ceramics from mixtures of coal ash and soda-lime glass by the petrurgic method
US2957827A (en) Method of making single crystal garnets
Segnit The System CaO‐ZnO‐SiO2
US3935020A (en) Faraday rotation glasses
CN101255602A (en) Non-crucible growing method for magneto-optic rear earth ferrite crystal
Barbieri et al. Nucleation and crystallization of new glasses from fly ash originating from thermal power plants
JPH0394216A (en) Production of faraday rotor
Abe et al. Effect of Al2O3 additives on the formation of superconducting whiskers (2212 phase) in melt-quenched BiSrCaCu2Ox
Plumat New sulfide and selenide glasses: preparation, structure, and properties
JPS6479099A (en) Production of superconductive material
US6165263A (en) Method for growing single crystal
JPS61242928A (en) Semiconductor coating glass
CN108538532A (en) A kind of composite magnetic and preparation method thereof
Fujimoto et al. Transparent surface and bulk crystallized glasses with lanthanide tellurite nanocrystals
Muramatsu et al. Flux growth of Bi2WO6 single crystal below the transformation temperature
JPH05117095A (en) Production of bismuth-substituted rare earth iron garnet
US3492237A (en) Glass composition containing lithium ferrite crystals
JPS5680106A (en) (110) garnet liquid phase epitaxial film
CN111719183A (en) Magneto-optical crystal and preparation method and application thereof
JPH01119599A (en) Production of bismuth substituted magnetic garnet single crystal
JPH0232238B2 (en) GADORINIUMUTETSUGAANETSUTOTANKETSUSHONOSEIZOHOHO
JPS58194800A (en) Molten material for growth of barium plumbate bismuthate single crystal
CN114182339A (en) Method for growing rare earth doped yttrium iron garnet single crystal material
JPS58217449A (en) Production of highly transparent glass fiber