JPH0393753A - Production of alpha-amino acid - Google Patents

Production of alpha-amino acid

Info

Publication number
JPH0393753A
JPH0393753A JP1229725A JP22972589A JPH0393753A JP H0393753 A JPH0393753 A JP H0393753A JP 1229725 A JP1229725 A JP 1229725A JP 22972589 A JP22972589 A JP 22972589A JP H0393753 A JPH0393753 A JP H0393753A
Authority
JP
Japan
Prior art keywords
water
amino acid
group
aminoacetamide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1229725A
Other languages
Japanese (ja)
Inventor
Tadashi Mizuno
正 水野
Nobuaki Tabei
伸昭 田部井
Haruki Okamura
春樹 岡村
Hiroshi Sato
洋 佐藤
Motomasa Osu
大須 基正
Yasuhiko Too
東尾 保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP1229725A priority Critical patent/JPH0393753A/en
Publication of JPH0393753A publication Critical patent/JPH0393753A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To advantageously obtain the subject compound useful as a food, feed, medicine and intermediate for polymers without using a water-soluble acid or alkali by bringing an alpha-amino acid amide as a raw material in the liquid phase into contact with water in the presence of a specific metal oxide and hydrolyzing the aforementioned compound. CONSTITUTION:An alpha-amino acid amide (e.g. aminoacetamide) expressed by the formula (R1 and R2 are H, lower alkyl, substituted lower alkyl, cyclohexyl, phenyl or substituted phenyl) in the liquid phase is brought into contact with water in the presence of at least one metal oxide selected from the group consisting of zirconium oxide, titanium oxide and niobium oxide and hydrolyzed to afford the objective compound. The reaction is preferably carried out at a temperature within the range of 100-200 deg.C. The equiv. amount of the water is preferably about >=10 times based on the compound expressed by the formula. The metal oxide is used in a molar amount within the range of about 0.01-5 times based on the compound expressed by the formula.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はα−アミノ酸アミドを加水分解して対応するα
−アミノ酸を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to hydrolyzing an α-amino acid amide to obtain the corresponding α-amino acid amide.
-Relating to a method for producing amino acids.

本発明の方法で得られるα−アミノ酸は食品、飼料およ
び医薬品として、また農薬、医薬、高分子の中間体とし
ても有用である。
The α-amino acids obtained by the method of the present invention are useful as foods, feeds, and medicines, and also as intermediates for agricultural chemicals, medicines, and polymers.

(従来の技術) α−アミノ酸の製造方法としては、 (1)シアン化ナトリウム、重炭酸アンモニウムおよび
アルデヒドまたはケトン化合物とからヒダントインを合
或し、このヒダントインをアルカリによって加水分解し
てα−アミノ酸を得る方法、 (2)アルデヒドまたはケトン化合物、シアン化水素、
およびアンモニアとからα−アミノニトリルを合或し、
このα−アミノニトリルをアルカリによって加水分解し
てα−アミノ酸を得る方法、 (3)α−アミノニトリルをα−アミノ酸アミドまで加
水分解し、さらにアンモニアにより加水分解してα−ア
ミノ酸を得る方法(特開昭60−3 3 7号公報)、 などが知られている。
(Prior art) As a method for producing α-amino acids, (1) hydantoin is synthesized from sodium cyanide, ammonium bicarbonate, and an aldehyde or ketone compound, and this hydantoin is hydrolyzed with an alkali to produce α-amino acids. (2) aldehyde or ketone compound, hydrogen cyanide,
and ammonia to form α-aminonitrile,
A method of hydrolyzing this α-aminonitrile with an alkali to obtain an α-amino acid; (3) A method of hydrolyzing α-aminonitrile to an α-amino acid amide and further hydrolyzing it with ammonia to obtain an α-amino acid ( JP-A-60-337), etc. are known.

(発明が解決しようとする課題) しかしながら、上記(1)および(2)の方法では加水
分解工程で回収不能なアルカリを必要とするために原料
コストが高く、かつ高価な耐食材料製の装置が必要であ
り、しかもα−アミノ酸を得るにはイオン交換樹脂処理
または強酸で中和した後、分別晶析するなどの繁雑な脱
塩工程を必要とするなどの欠点を有しており、工業的に
は満足できるものではない。
(Problems to be Solved by the Invention) However, methods (1) and (2) above require alkali that cannot be recovered in the hydrolysis process, resulting in high raw material costs and equipment made of expensive corrosion-resistant materials. Moreover, it has the disadvantage of requiring a complicated desalting process such as treatment with an ion exchange resin or neutralization with a strong acid, followed by fractional crystallization to obtain α-amino acids, making it difficult to obtain industrially. is not satisfactory.

また(3)の方法では大過剰のアンモニアを使用する為
、反応容器からパージされるアンモニアをほとんど損失
することなく回収するために大規模なアンモニア回収装
置が必要であるなどの欠点を有しており、工業的には満
足できるものではない。
In addition, since method (3) uses a large excess of ammonia, it has drawbacks such as the need for a large-scale ammonia recovery equipment in order to recover the ammonia purged from the reaction vessel with almost no loss. Therefore, it is not industrially satisfactory.

かかる事情に鑑み、本発明者らはこれらの問題点を解決
するため、鋭意検討を行った結果、酸化ジルコニウム、
酸化チタンおよび酸化二オブがα−アミノ酸アミドの加
水分解に対して極めて高い活性を有することを見いだし
、本発明を完成させるに至った。
In view of these circumstances, the present inventors conducted intensive studies to solve these problems and found that zirconium oxide,
It was discovered that titanium oxide and niobium oxide have extremely high activity for hydrolyzing α-amino acid amides, and the present invention was completed.

(課題を解決するための手段) すなわち、本発明は、一般式(1〉 NH2 R  −C−CONH2     (1)R2 (式中、R1およびR2はそれぞれ同一または異なって
、水素原子、低級アルキル基、置換低級アルキル基、シ
クロヘキシル基、フェニル基および置換フェニル基を示
す。〉で表されるα−アミノ酸アミドを酸化ジルコニウ
ム、酸化チタンおよび酸化二オブからなる群より選ばれ
た少なくとも一種の金属酸化物の存在下に、液相で水と
接触させて加水分解することを特徴とするα−アミノ酸
の製造方法である。
(Means for Solving the Problems) That is, the present invention solves the problem according to the general formula: , a substituted lower alkyl group, a cyclohexyl group, a phenyl group, and a substituted phenyl group. This is a method for producing an α-amino acid, which comprises hydrolyzing it by contacting it with water in a liquid phase in the presence of an α-amino acid.

本発明の方法は水または有機溶媒にα−アミ/酸アミド
を溶解した後、酸化ジルコニウム、酸化チタンおよび酸
化二オブからなる群より選ばれた少なくとも一種の金属
酸化物を加え、更に水を加えて加熱し、α−アミノ酸ア
ミドを加水分解して行う。
The method of the present invention is to dissolve α-amino acid/acid amide in water or an organic solvent, add at least one metal oxide selected from the group consisting of zirconium oxide, titanium oxide, and niobium oxide, and then add water. The α-amino acid amide is hydrolyzed by heating.

これらの金属酸化物は粉体または成形物で用いることが
できる。
These metal oxides can be used in powder or molded form.

本発明の方法で用いられるα−アミノ酸アミドは前記の
一般式(1)で表されるものであり、この一般式におい
て低級アルキル基とは、例えばメチル基、エチル基、プ
ロビル基、ブチル基、イソブチル基およびSeC.ブチ
ル基などのC1〜C4の直鎖または分岐したアルキル基
である。
The α-amino acid amide used in the method of the present invention is represented by the above general formula (1), and in this general formula, the lower alkyl group is, for example, a methyl group, an ethyl group, a proyl group, a butyl group, Isobutyl group and SeC. It is a C1-C4 straight chain or branched alkyl group such as a butyl group.

また、この一般式における置換基は、例えばヒドロキシ
基、メトキシ基、メルカプト基、メチルメルカプト基、
アミノ基、カルポキシル基、フェニル基、ヒドロキシフ
ェニル基およびグアニジル基などである。
In addition, substituents in this general formula include, for example, a hydroxy group, a methoxy group, a mercapto group, a methylmercapto group,
These include amino group, carpoxyl group, phenyl group, hydroxyphenyl group, and guanidyl group.

この一般式で示されるα−アミノ酸アミドの例としては
、アミノアセトアミド、l−メチルーアミノアセトアミ
ド、1−エチルーアミノアセトアミド、1−プロピルー
アミノアセトアミド、1−インプロピルーアミノアセト
アミド、1−プチルーアミノアセトアミド、■−イソブ
チルーアミノアセトアミド、L−sec.プチルーアミ
ノアセトアミド、1−フェニルーアミノアセトアミド、
l−シクロヘキシルーアミノアセトアミド、1−ペンジ
ルーアミノアセトアミド、1−カルボキシメチルーアミ
ノアセトアミド、l−アミノメチルーアミノアセトアミ
ド、l−メトキシメチルーアミノアセトアミド、1−メ
ルカブトメチルーアミノアセトアミド、1−ヒドロキシ
メチルーアミノアセトアミド、  1−(β一カルポキ
シエチル)一アミノアセトアミド、l−《β−メチルチ
オエチル〉−アミノアセトアミド、l−(α−ヒドロキ
シエチル)アミノアセトアミド、1−(β−アミノエチ
ル〉ーアミノアセトアミド、1−(T−カルボキシプロ
ビル〉−アミノアセトアミド、1−(ω一グアニジノブ
ロビル)−アミノアセトアミド、1−(ω−アミノブチ
ル)一アミノアセトアミド、  1−(r−ヒドロキシ
ーω−アミノブチル)一アミノアセトアミド、1−(4
−ヒドロキシベンジル)一アミノアセトアミド、1.1
ージメチル〜アミノアセトアミドおよび1−メチル−1
−7ェニルーアミノアセトアミドなどが挙げられる。
Examples of the α-amino acid amide represented by this general formula include aminoacetamide, 1-methyl-aminoacetamide, 1-ethyl-aminoacetamide, 1-propylaminoacetamide, 1-inpropylaminoacetamide, and 1-butyl-aminoacetamide. -isobutyl-aminoacetamide, L-sec. petyl-aminoacetamide, 1-phenyl-aminoacetamide,
l-cyclohexylaminoacetamide, 1-pendylaminoacetamide, 1-carboxymethyl-aminoacetamide, l-aminomethyl-aminoacetamide, l-methoxymethyl-aminoacetamide, 1-merkabutomethyl-aminoacetamide, 1-hydroxy Methyl-aminoacetamide, 1-(β-carpoxyethyl)-aminoacetamide, l-<<β-methylthioethyl>-aminoacetamide, l-(α-hydroxyethyl)aminoacetamide, 1-(β-aminoethyl>-aminoacetamide) , 1-(T-carboxyprobyl>-aminoacetamide, 1-(ω-guanidinobrovir)-aminoacetamide, 1-(ω-aminobutyl)-aminoacetamide, 1-(r-hydroxy-ω-aminobutyl) monoaminoacetamide, 1-(4
-hydroxybenzyl) monoaminoacetamide, 1.1
-dimethyl-aminoacetamide and 1-methyl-1
Examples include -7 phenyl-aminoacetamide.

α−アミノ酸アミドは水に溶解して用いるが、水に溶解
し難いものは、反応に不活性な有機溶媒と水の混合系で
実施することもできる。
The α-amino acid amide is used after being dissolved in water, but if the α-amino acid amide is difficult to dissolve in water, the reaction may be carried out in a mixed system of an inert organic solvent and water.

酸化ジルコニウム、酸化チタンおよび酸化二オブからな
る群より選ばれた少なくとも一種の金属酸化物の量はα
−アミノ酸アミドに対し約0.01〜5倍モルの範囲で
使用される。
The amount of at least one metal oxide selected from the group consisting of zirconium oxide, titanium oxide, and niobium oxide is α
-Used in an amount of about 0.01 to 5 times the molar amount of the amino acid amide.

反応に用いる水の量はα−アミノ酸アミドに対し等量以
上あればよいが、好ましくは約10倍等量以上である。
The amount of water used in the reaction may be equal to or more than the amount of α-amino acid amide, preferably about 10 times the equivalent or more.

反応は約50〜220℃、好ましくは100〜200℃
で行われる。
The reaction is carried out at about 50-220°C, preferably 100-200°C.
It will be held in

反応時間は反応の温度、触媒量、水の量等によって異な
るが、通常は約5分〜5時間である。
The reaction time varies depending on the reaction temperature, amount of catalyst, amount of water, etc., but is usually about 5 minutes to 5 hours.

反応は回分法または連続法で行われる。The reaction is carried out batchwise or continuously.

反応圧力は通常反応に用いられる水、有機溶媒および反
応により発生するアンモニア等の自生圧下で行われる。
The reaction pressure is usually carried out under the autogenous pressure of water, organic solvent, ammonia, etc. generated by the reaction used in the reaction.

この発生アンモニアは必要に応じて適宜抜きながら反応
させることも可能であり、反応系を液相に保つよう系内
圧を調節してもよい。
The generated ammonia may be removed as necessary during the reaction, and the internal pressure of the reaction system may be adjusted to maintain the reaction system in a liquid phase.

生或したα−アミノ酸は、加水分解終了液から濾過等に
より不溶解物を除去した後、アンモニアを留出除去して
、晶析を行うか、一部の残存するアンモニアを中和した
後に晶析を行うか、必要に応じてイオン交換樹脂処理し
た後、濃縮、晶析する等の方法によって単離される。
The produced α-amino acid can be obtained by removing insoluble matter from the hydrolyzed solution by filtration, etc., and then distilling off ammonia and crystallizing it, or by neutralizing some remaining ammonia and then crystallizing it. It is isolated by a method such as analysis, or treatment with an ion exchange resin if necessary, followed by concentration and crystallization.

(発明の効果) 本発明によれば、α−アミノ酸アミドから穏和な条件下
に高収率でα−アミノ酸類を得ることができ、また水溶
性の酸、アルカリを使用せずに反応、後処理が実施出来
るので従来法と比べて経済的に極めて有利である。
(Effects of the Invention) According to the present invention, α-amino acids can be obtained in high yield from α-amino acid amides under mild conditions, and the reaction and post-processing can be carried out without using water-soluble acids or alkalis. Since the process can be carried out, it is economically extremely advantageous compared to conventional methods.

(実施例) 以下、実施例により本発明を更に詳細に説明するが、本
発明はこれらに限定されない。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

酸化ジルコニウム、酸化チタンおよび酸化二オブは市販
品を用いた。
Commercially available zirconium oxide, titanium oxide, and niobium oxide were used.

実施例l 2 0 0+111オートクレープに1−(β−メチル
チオエチル)アミノアセトアミド14.8g,水1 0
 0 g,粉末の酸化ジルコニウム10.0gを加え、
140℃で2時間撹拌、加熱した。反応後オートクレー
プを室温まで急冷し、残圧をパージ後、オートクレープ
を開けて内容物を水でよく洗いだしながら、取り出した
。得られた反応液をメンプランフィルターで濾過し、触
媒を分離した。濾液をロータリー・エバポレーターで蒸
発乾固し、結晶1 4. 3 gを得た。結晶を液体ク
ロマトグラフィーで分析した結果、メチオニン含量は9
8%であり、メチオニン収率は94%であった。
Example 1 14.8 g of 1-(β-methylthioethyl)aminoacetamide and 10 water in a 200+111 autoclave.
0 g, add 10.0 g of powdered zirconium oxide,
The mixture was stirred and heated at 140° C. for 2 hours. After the reaction, the autoclave was rapidly cooled to room temperature, and after purging the residual pressure, the autoclave was opened and the contents were thoroughly washed with water and taken out. The resulting reaction solution was filtered with a membrane filter to separate the catalyst. The filtrate was evaporated to dryness on a rotary evaporator to give crystals 1.4. 3 g was obtained. As a result of analyzing the crystals by liquid chromatography, the methionine content was 9.
8%, and the methionine yield was 94%.

実施例2 2 0 0mlオートクレープにアミノアセトアミド7
.5g,水100g,酸化ジルコニウム5.0gを加え
、120℃で3時間撹拌、加熱し、加水分解を行った。
Example 2 Aminoacetamide 7 in 200ml autoclave
.. 5 g of water, 100 g of water, and 5.0 g of zirconium oxide were added, and the mixture was stirred and heated at 120° C. for 3 hours to perform hydrolysis.

実施例1と同様に処理、分析した結果、グリシン収率は
92%であった。
As a result of processing and analysis in the same manner as in Example 1, the glycine yield was 92%.

実施例3 2 0 0mlオートクレープに1−ペンジルアミノア
セトアミド16.4g,水100g,酸化ジルコニウム
l O. O gを加え、160℃でl時間撹拌、加熱
し、加水分解を行った。実施例1と同様に処理、分析し
た結果、フェニルアラニン収率は75%であった。
Example 3 In a 200 ml autoclave, 16.4 g of 1-pendylaminoacetamide, 100 g of water, and 100 g of zirconium oxide were added. Og was added, and the mixture was stirred and heated at 160° C. for 1 hour to perform hydrolysis. As a result of processing and analysis in the same manner as in Example 1, the yield of phenylalanine was 75%.

実施例4 2 0 0+++lオートクレープに1−メチルーアミ
ノアセトアミド8.7g,水1 0 0 g,酸化ジル
コニウム5.0gを加え、100℃で5時間撹拌、加熱
し、加水分解を行った。実施例lと同様に処理、分析し
た結果、アラニン収率は83%であった。
Example 4 8.7 g of 1-methyl-aminoacetamide, 100 g of water, and 5.0 g of zirconium oxide were added to a 200+1 autoclave, and the mixture was stirred and heated at 100° C. for 5 hours to perform hydrolysis. As a result of processing and analysis in the same manner as in Example 1, the alanine yield was 83%.

実施例5 2 0 0mlオートクレープに1−(β−メチルチオ
エチル)アミノアセトアミド14.8g,水100g,
粉末の酸化チタン4.0gを加え、140℃で2時間撹
拌、加熱し、加水分解を行った。実施例lと同様に処理
、分析した結果、メチオニン収率は93%であった。
Example 5 In a 200 ml autoclave, 14.8 g of 1-(β-methylthioethyl)aminoacetamide, 100 g of water,
4.0 g of powdered titanium oxide was added, and the mixture was stirred and heated at 140° C. for 2 hours to perform hydrolysis. As a result of treatment and analysis in the same manner as in Example 1, the methionine yield was 93%.

実施例6 2 0 Qmlオートクレープにアミノアセトアミド7
.5g,水100g,酸化チタン2.0gを加え、12
0℃で3時間撹拌、加熱し、加水分解を行った。実施例
1と同様に処理、分析した結果、グリシン収率は89%
であった。
Example 6 Aminoacetamide 7 in a 20 Qml autoclave
.. Add 5g, 100g of water, and 2.0g of titanium oxide, 12
Hydrolysis was carried out by stirring and heating at 0°C for 3 hours. As a result of processing and analysis in the same manner as in Example 1, the glycine yield was 89%.
Met.

実施例7 2 0 0+111オートクレープに1−ペンジルアミ
ノアセトアミド1 6. 4 g、水100g、酸化チ
タン4.0gを加え、160℃で1時間撹拌、加熱し、
加水分解を行った。実施例1と同様に処理、分析した結
果、フェニルアラニン収率は85%であった。
Example 7 1-Pendylaminoacetamide 1 in 200+111 autoclave 6. 4 g, 100 g of water, and 4.0 g of titanium oxide, stirred and heated at 160°C for 1 hour,
Hydrolysis was performed. As a result of processing and analysis in the same manner as in Example 1, the yield of phenylalanine was 85%.

実施例8 2 0 011+1オートクレープに1−メチルーアミ
ノアセトアミド8.7g,水100g、酸化チタン2.
0gを加え、100℃で5時間撹拌、加熱し、加水分解
を行った。実施例1と同様に処理、分析した結果、アラ
ニン収率は90%であった。
Example 8 In a 20011+1 autoclave, 8.7 g of 1-methyl-aminoacetamide, 100 g of water, and titanium oxide 2.
0 g was added, and the mixture was stirred and heated at 100° C. for 5 hours to perform hydrolysis. As a result of processing and analysis in the same manner as in Example 1, the alanine yield was 90%.

実施例9 2 0 0mlオートクレープl: 1 − (β−i
 チルチオエチル〉アミノアセトアミド14.8g,水
100g,粉末の酸化二オブl O. O gを加え、
140℃で2時間撹拌、加熱し、加水分解を行った。実
施例1と同様に処理、分析した結果、メチオニン収率は
88%であった。
Example 9 200ml autoclave l: 1-(β-i
Tylthioethyl> Aminoacetamide 14.8g, water 100g, powdered niobium oxide 1 O. Add Og,
Hydrolysis was carried out by stirring and heating at 140° C. for 2 hours. As a result of processing and analysis in the same manner as in Example 1, the methionine yield was 88%.

比較例1 酸化ジルコニウムを加えなかった以外は実施例lと同様
に反応を行った。
Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that zirconium oxide was not added.

反応液を液体クロマトグラフィーで分析した結果、メチ
オニン収率はlO%であった。
As a result of analyzing the reaction solution by liquid chromatography, the methionine yield was 10%.

比較例2 酸化ジルコニウムを加えなかった以外は実施例2と同様
に反応を行った。
Comparative Example 2 The reaction was carried out in the same manner as in Example 2 except that zirconium oxide was not added.

反応液を液体クロマトグラフィーで分析した結果、グリ
シン収率は46%であった。
As a result of analyzing the reaction solution by liquid chromatography, the glycine yield was 46%.

比較例3 酸化ジルコニウムを加えなかった以外は実施例3と同様
に反応を行った。
Comparative Example 3 The reaction was carried out in the same manner as in Example 3 except that zirconium oxide was not added.

反応液を液体クロマトグラフィーで分析した結果、フェ
ニルアラニン収率は12%であった。
As a result of analyzing the reaction solution by liquid chromatography, the yield of phenylalanine was 12%.

比較例4 酸化ジルコニウムを加えなかった以外は実施例4と同様
に反応を行った。
Comparative Example 4 The reaction was carried out in the same manner as in Example 4 except that zirconium oxide was not added.

反応液を肢体クロマトグラフィーで分析した結果、アラ
ニン収率24%であった。
Analysis of the reaction solution by body chromatography revealed that the yield of alanine was 24%.

\ \ \ \ \ \\ \ \ \ \ \

Claims (1)

【特許請求の範囲】 1、一般式(1) ▲数式、化学式、表等があります▼(1) (式中、R_1およびR_2はそれぞれ同一または異な
って、水素原子、低級アルキル基、置換低級アルキル基
、シクロヘキシル基、フェニル基および置換フェニル基
を示す。)で表されるα−アミノ酸アミドを酸化ジルコ
ニウム、酸化チタンおよび酸化ニオブからなる群より選
ばれた少なくとも一種の金属酸化物の存在下に、液相で
水と接触させて加水分解することを特徴とするα−アミ
ノ酸の製造方法。
[Claims] 1. General formula (1) ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (1) (In the formula, R_1 and R_2 are each the same or different and represent a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, etc.) group, cyclohexyl group, phenyl group, and substituted phenyl group) in the presence of at least one metal oxide selected from the group consisting of zirconium oxide, titanium oxide, and niobium oxide, A method for producing an α-amino acid, which comprises hydrolyzing it by contacting it with water in a liquid phase.
JP1229725A 1989-09-04 1989-09-04 Production of alpha-amino acid Pending JPH0393753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1229725A JPH0393753A (en) 1989-09-04 1989-09-04 Production of alpha-amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229725A JPH0393753A (en) 1989-09-04 1989-09-04 Production of alpha-amino acid

Publications (1)

Publication Number Publication Date
JPH0393753A true JPH0393753A (en) 1991-04-18

Family

ID=16896720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229725A Pending JPH0393753A (en) 1989-09-04 1989-09-04 Production of alpha-amino acid

Country Status (1)

Country Link
JP (1) JPH0393753A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001060788A1 (en) * 2000-02-15 2001-08-23 Rhone-Poulenc Animal Nutrition Process for the production of methionine
WO2001060789A1 (en) * 2000-02-15 2001-08-23 Rhone-Poulenc Animal Nutrition Process for the production of methionine
WO2001060790A1 (en) * 2000-02-15 2001-08-23 Aventis Animal Nutrition S.A. Process for the production of methionine
WO2004089863A1 (en) 2003-04-09 2004-10-21 Degussa Ag Process for the production of 2-hydroxy-4-methylthiobutyric acid ammonium salt
WO2018021338A1 (en) * 2016-07-28 2018-02-01 昭和電工株式会社 Method for producing α-amino acid
EP3689851A1 (en) 2019-02-04 2020-08-05 Evonik Operations GmbH Salt-free production of methionine from methionine nitrile
CN113105352A (en) * 2021-04-16 2021-07-13 铂尊投资集团有限公司 Method for preparing food-grade and feed-grade zinc glycinate and implementation device thereof
WO2023144265A1 (en) 2022-01-28 2023-08-03 Evonik Operations Gmbh Granular catalyst for the hydrolysis of amino nitriles and amino amides to amino acids or derivatives thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815089B2 (en) * 2000-02-15 2011-11-16 アジツソ・フランス・エス・アー・エス Method for producing methionine
WO2001060789A1 (en) * 2000-02-15 2001-08-23 Rhone-Poulenc Animal Nutrition Process for the production of methionine
WO2001060788A1 (en) * 2000-02-15 2001-08-23 Rhone-Poulenc Animal Nutrition Process for the production of methionine
US6545179B2 (en) * 2000-02-15 2003-04-08 Aventis Animal Nutrition, Sa Process for the production of methionine
JP2003522815A (en) * 2000-02-15 2003-07-29 アベンテイス・アニマル・ニユートリシヨン・エス・エー Method for producing methionine
US6911557B2 (en) 2000-02-15 2005-06-28 Adisseo France S.A.S. Process for the production of methionine
WO2001060790A1 (en) * 2000-02-15 2001-08-23 Aventis Animal Nutrition S.A. Process for the production of methionine
WO2004089863A1 (en) 2003-04-09 2004-10-21 Degussa Ag Process for the production of 2-hydroxy-4-methylthiobutyric acid ammonium salt
US7485748B2 (en) 2003-04-09 2009-02-03 Degussa Ag Process for the production of 2-hydroxy-4-methythiobutyric acid ammonium salt
US10774037B2 (en) 2016-07-28 2020-09-15 Showa Denko K.K. Method for producing alpha-amino acid
CN109563026A (en) * 2016-07-28 2019-04-02 昭和电工株式会社 The manufacturing method of a-amino acid
CN109563026B (en) * 2016-07-28 2021-12-28 昭和电工株式会社 Process for producing alpha-amino acid
WO2018021338A1 (en) * 2016-07-28 2018-02-01 昭和電工株式会社 Method for producing α-amino acid
EP3689851A1 (en) 2019-02-04 2020-08-05 Evonik Operations GmbH Salt-free production of methionine from methionine nitrile
WO2020161074A1 (en) 2019-02-04 2020-08-13 Evonik Operations Gmbh Salt-free production of methionine from methionine nitrile
CN113396142A (en) * 2019-02-04 2021-09-14 赢创运营有限公司 Salt-free production of methionine from methionine nitrile
CN113396142B (en) * 2019-02-04 2023-04-18 赢创运营有限公司 Salt-free production of methionine from methionine nitrile
CN113105352A (en) * 2021-04-16 2021-07-13 铂尊投资集团有限公司 Method for preparing food-grade and feed-grade zinc glycinate and implementation device thereof
WO2023144265A1 (en) 2022-01-28 2023-08-03 Evonik Operations Gmbh Granular catalyst for the hydrolysis of amino nitriles and amino amides to amino acids or derivatives thereof

Similar Documents

Publication Publication Date Title
JPS581105B2 (en) Optically active amino acid-mandelic acid complex and method for producing the same
EP0213785B1 (en) Method for optical resolution of dl-cysteine and (r,s)-1-(1-naphthyl)ethylamine
JPH0393753A (en) Production of alpha-amino acid
PAUL et al. Some side reactions of nitro-L-arginine
JPH02231457A (en) Method for synthesizing l-(-)-2-amino-3-(3,4- dihydroxyphenyl)propanoic acid, product thereby, and use of said product in said synthesis
JPH0393757A (en) Production of alpha-amino acid
JP3273578B2 (en) Method for producing salt of ornithine with acidic amino acids or keto acids
JPH0393754A (en) Production of alpha-amino acid
JPH0395145A (en) Production of alpha-amino acid
JP4564375B2 (en) Method for producing theanine
JPH0393755A (en) Production of alpha-amino acid
JPH0395146A (en) Production of alpha-amino acid
JPH0393756A (en) Production of alpha-amino acid
JPH08291135A (en) Production of taurine analog
US3860607A (en) Process for preparing hydroxy-l-proline or n-acetyl-hydroxy-l-proline from hydrolyzed gelatin
JP3888402B2 (en) Process for producing optically active N-carbobenzoxy-tert-leucine
JPH0741462A (en) Production of 2-hydroxymethylmercaptobutyric acid
JPS62267253A (en) Production of alpha-amino acid
JPS62103049A (en) Production of alpha-amino acid
JPS62288102A (en) Production of dicyanamide metal salt
KR940005014B1 (en) Process for producting pyrrolidine derivatives
EP0151651B1 (en) Process for the preparation of a starting material for the production of phenylalanine
KR950005766B1 (en) Preparation of 4-hydroxymandelic acid
JPH1072419A (en) Production of tertiary-leucine
JPS6327477A (en) Production of oxiracetam