JPH0393681A - Desalting of rc, src structure - Google Patents

Desalting of rc, src structure

Info

Publication number
JPH0393681A
JPH0393681A JP22929989A JP22929989A JPH0393681A JP H0393681 A JPH0393681 A JP H0393681A JP 22929989 A JP22929989 A JP 22929989A JP 22929989 A JP22929989 A JP 22929989A JP H0393681 A JPH0393681 A JP H0393681A
Authority
JP
Japan
Prior art keywords
concrete
electrolyte
container
anode
concrete structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22929989A
Other languages
Japanese (ja)
Other versions
JP2649089B2 (en
Inventor
Yuu Ogawa
小川 游
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP1229299A priority Critical patent/JP2649089B2/en
Publication of JPH0393681A publication Critical patent/JPH0393681A/en
Application granted granted Critical
Publication of JP2649089B2 publication Critical patent/JP2649089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

PURPOSE:To eliminate chipping operation and to discharge chloride ion in concrete out of system in a short time by bringing a solution of electrolyte into contact with the surface of concrete structure and carrying out electrolyte using a reinforcing material in the structure as a cathode. CONSTITUTION:Desalted part of concrete structure 10 is covered with a container 20 of bottomed structure and the container 20 is charged with a solution of electrolyte 30. An electrode 40 is set in the solution of electrolyte 30, made into an anode, reinforcing materials 11 such as reinforcing bar or steel frame of the concrete structure 10 are used as cathodes, several volt - tens volt electric voltage is applied from a DC electric source 50 to the electrodes, an electric current is sent and chloride ion existing in the structure 10 is attracted to the anode 40 to remove salt content.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、鉄筋コンクリート(RC)や鉄骨コンクリー
ト(SRC〉構造物の塩害対策技術に関し、詳細には電
気化学的手法によりコンクリート中の塩素成分を除去す
る、RC−SRC構造物の脱塩方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a technology for preventing salt damage in reinforced concrete (RC) and steel frame concrete (SRC) structures, and more specifically, the present invention relates to technology for preventing salt damage in reinforced concrete (RC) and steel frame concrete (SRC) structures. The present invention relates to a method for desalting an RC-SRC structure.

く従来の技術〉 一般に、海砂を使用したコンクリート構造物や、海浜地
帯のコンクリート構造物が、亀裂や剥離を起こすことが
知られている。
BACKGROUND OF THE INVENTION It is generally known that concrete structures using sea sand and concrete structures in coastal areas crack and peel.

これは、コンクリート中の塩分が構造物内部の鉄筋や鉄
骨を発錆させる際の膨脹圧によるものである。
This is due to the expansion pressure when the salt in the concrete rusts the reinforcing bars and steel frames inside the structure.

従来、発錆の可能性のあるコンクリート構造物又は、発
錆したコンクリート構造物の補修方法として、次の2つ
の方法が存在する。
Conventionally, there are the following two methods for repairing concrete structures that are likely to rust or have rusted.

その一つは、発錆箇所のコンクリートをはつって取り除
いた後、塩分の含まれていないコンクリートを埋め戻す
方法である。
One method is to remove the concrete from the rusted area and then backfill it with salt-free concrete.

他の方法はコンクリート構造物に通電することで、鉄筋
や鉄骨の発錆の原因である電池作用を抑制する電気防食
法で、将来の実用化が期待されている。
Another method is cathodic protection, which suppresses the battery action that causes rust on reinforcing bars and steel frames by applying electricity to concrete structures, and is expected to be put into practical use in the future.

この電気防食法は、はつり取った発錆笛所に導電性のコ
ーティング層を形成し、このコーティング層の表面に耐
腐食性の高い陽極棒を設置すると共に、内部の鉄筋又は
鉄骨を陰極として、100mV以上の電位が卑になるよ
うに厘流電源を通電する方法である。
This cathodic protection method involves forming a conductive coating layer on the stripped rusted whistle, installing a highly corrosion-resistant anode rod on the surface of this coating layer, and using the internal reinforcing bars or steel frame as a cathode. This is a method of energizing a free current power source so that a potential of 100 mV or more becomes base.

〈本発明が解決しようとする問題点〉 前記した従来のコンクリート構造物の発錆防止技術には
次の問題点がある。
<Problems to be Solved by the Present Invention> The conventional rust prevention technology for concrete structures described above has the following problems.

〈イ〉 前者の方法にあっては、飛来する塩粒がコンク
リート構造物中に浸透し、発錆を再度引き起こす可能性
が残り、補修工事の繰り返しを強いられる。
<B> In the former method, there remains a possibility that the flying salt particles will penetrate into the concrete structure and cause rust to occur again, forcing repeated repair work.

しかも、コンクリート構造物の補修に多くの手数と時間
がかかる問題がある。
Moreover, there is a problem in that repairing concrete structures requires a lot of effort and time.

〈口〉 後者の方法の場合、永久的に通電しなければな
らない。
<mouth> In the case of the latter method, electricity must be permanently energized.

又、コンクリートの電気抵抗が含水変化や温度変化によ
り変化するから、電流量の調整が難しい。
Furthermore, since the electrical resistance of concrete changes due to changes in moisture content and temperature, it is difficult to adjust the amount of current.

そのうえ陽極棒の消耗は避けられないから、定期的に導
電性のコーティング層を含めて新たな陽極棒を交換しな
ければならない。
Moreover, since the anode rod inevitably wears out, a new anode rod including the conductive coating layer must be replaced periodically.

〈ハ〉 両者ともはつりがあるため、道路橋、橋梁等に
おいて構造的(強度的)な問題で、作業期間中の長期に
亘り使用できない。
〈C〉 Since both have chisels, they cannot be used for a long period of time during the work period due to structural (strength) problems on road bridges, bridges, etc.

〈本発明の目的〉 本発明は以上の問題点を解決するために成されたもので
、その目的とするところは、はつり作業を不要とし、し
かも短期間に脱塩を行え、さらには陽極電極の再利用が
可能な、RC−SRC構造物の脱塩方法を提供すること
にある。
<Objective of the present invention> The present invention was made in order to solve the above problems, and its purpose is to eliminate the need for chisel work, to desalinate in a short period of time, and furthermore to An object of the present invention is to provide a method for desalting an RC-SRC structure, which allows reuse of the RC-SRC structure.

〈問題点を解決するための手段〉 即ち本発明は、コンクリート構造物の表面に有底橘造の
容器を設け、前記容器内に電解質液を満たし、電解質液
中に電極を配置しこれを陽極とすると共に、コンクリー
ト構造物中の導電性の補強材に陰極を接続し、両電極間
に直流電源を通電し、コンクリート中の塩素イオンを系
外へ除去する、RC−SRC構造物の脱塩方法である。
<Means for Solving the Problems> That is, the present invention provides a bottomed Tachibana container on the surface of a concrete structure, fills the container with an electrolyte solution, arranges an electrode in the electrolyte solution, and uses this as an anode. At the same time, the cathode is connected to the conductive reinforcing material in the concrete structure, and DC power is applied between both electrodes to remove chlorine ions in the concrete from the system. Desalination of RC-SRC structures It's a method.

〈本発明の説明〉 以下、図面を参照しながら本発明について説明する。<Description of the present invention> The present invention will be described below with reference to the drawings.

〈イ〉脱塩原理 第1図に発錆を起こす可能性のある又は発錆を生じた橋
脚等のコンクリート構造物10の縦断面図を示す。
<A> Principle of desalination FIG. 1 shows a longitudinal cross-sectional view of a concrete structure 10 such as a bridge pier that is likely to rust or has rusted.

本発明は同図に示すように、コンクリート構造物10の
脱塩箇所を有底構造の容器20で包囲し、容器20内に
電解質液30を満たす。
As shown in the figure, the present invention surrounds the desalination area of a concrete structure 10 with a container 20 having a bottomed structure, and fills the container 20 with an electrolyte solution 30.

電解質液30中にセットした電極40を陽極とすると共
に、コンクリート構造物10・の鉄筋や鉄骨等の導電性
の補強材11を陰極として、直流電源50から通電する
The electrode 40 set in the electrolyte solution 30 is used as an anode, and the conductive reinforcing material 11 such as a reinforcing bar or steel frame of the concrete structure 10 is used as a cathode, and electricity is supplied from a DC power source 50.

電極40と補強材11との間に通電をすると、コンクリ
ート構造物10中に存在する塩素イオンが電極40に引
き付けられ、電解質液30中に溶解する。
When electricity is applied between the electrode 40 and the reinforcing material 11, chlorine ions present in the concrete structure 10 are attracted to the electrode 40 and dissolved in the electrolyte solution 30.

その結果、コンクリート構造物10中の塩分が除去され
る。
As a result, salt in the concrete structure 10 is removed.

次に、上記した各部材について説明する。Next, each of the above-mentioned members will be explained.

く口〉容器 容器20は電解質液30の貯留を目的とするもので、木
製、鋼製、樹脂製等材質に制限を受けない。
Exit> Container The purpose of the container 20 is to store the electrolyte solution 30, and the material thereof is not limited to wood, steel, resin, etc.

又容器20の形状は、脱塩予定のコンクリート構造物1
0の対象や竜塩範囲等により決定する。
The shape of the container 20 is similar to that of the concrete structure 1 to be desalinated.
Determined by 0 target, dragon salt range, etc.

〈ハ〉電解質液 電解質液30は、水道水や導電性を向上させるために電
解質物質(各種の塩やアルカリ性物質)を溶解した公知
の液を使用できる。
<C> Electrolyte solution As the electrolyte solution 30, tap water or a known solution in which electrolyte substances (various salts and alkaline substances) are dissolved to improve conductivity can be used.

〈二〉電極 電極40にはイオン化傾向の小さい金属又は導電材を用
いる。
<2> Electrode For the electrode 40, a metal or conductive material with a small ionization tendency is used.

電極40としては、電気防食の外部電源法において使用
されている電極で、例えば炭素、黒鉛、磁性酸化鉄、け
い素鋳鉄、鉛合金、白金等又はこれらの素材を導電性樹
脂板に貼着したものを使用できる。
The electrode 40 is an electrode used in the external power supply method for cathodic protection, such as carbon, graphite, magnetic iron oxide, silicon cast iron, lead alloy, platinum, etc., or a material made of these materials adhered to a conductive resin plate. can use things.

電極40は、容器30の内面に予め固着して使用するか
、或は容器30から分離独立して使用する。
The electrode 40 may be used by being fixed to the inner surface of the container 30 in advance, or may be used separately from the container 30.

くホ〉印加電圧 電極40及び補強材11の間に印加する電圧は脱塩規模
により異なるが、数ボルト乃至数十ボルトの比較的低い
範囲とする。
〉Applied voltage The voltage applied between the electrode 40 and the reinforcing material 11 varies depending on the scale of desalination, but is set in a relatively low range of several volts to several tens of volts.

確かに印加電圧を高くすれば、脱塩効果の促進が図れる
が、その反面、陰極である補強材11@で水素の発生量
が増して、鉄の水素魔性を誘発したり,作業員の作業環
境が悪化するといった問題もあるので、印加電圧の設定
は慎重を期する必要がある。
It is true that the desalination effect can be promoted by increasing the applied voltage, but on the other hand, the amount of hydrogen generated at the reinforcing material 11@, which is the cathode, increases, which may induce hydrogen magic in iron or cause workers to Since there is also the problem of deterioration of the environment, it is necessary to be careful in setting the applied voltage.

尚、高張力鋼やプレストレス鋼材以外はこのような水素
脆性の問題は生じない。
Note that this problem of hydrogen embrittlement does not occur with materials other than high-tensile steel and prestressed steel.

〈試験例〉 次に本発明による脱塩効果を裏付けるために次のような
試験を行った。
<Test Example> Next, the following test was conducted to confirm the desalting effect of the present invention.

くイ〉印加電圧と電極の及ぼす脱塩効果について塩分含
有量の多い海砂を用い、中央に鉄筋を1本埋設したコン
クリート製の供試体(20c+axlOc+mXlO備
)を製作し、その一面(103×20備)を残し他面を
シールした後、水道水、飽和水酸化カルシウム溶液(S
at.Ca(OR)2)等を電解液として負荷電圧、陽
極を変えて経時的な脱塩量(Nacl換算)を測定した
、 脱塩量(縦軸: Y, Nacl  gr)と経時時間
(横軸:X,hr)の関係より回帰式を求め、Xの係数
を脱塩速度(Nacl gr/hr)とした。
Kui〉Concerning the desalination effect of applied voltage and electrodes A concrete specimen (with 20c+axlOc+mXlO) was made using sea sand with a high salt content and one reinforcing bar was buried in the center, and one side of it (103×20 After sealing the other side while leaving the
at. The amount of desalination (in terms of Nacl) over time was measured using Ca(OR)2) as an electrolyte and changing the load voltage and anode. :X, hr), and the coefficient of X was taken as the desalination rate (Nacl gr/hr).

第2図に負荷電圧と脱塩速度の関係の試験結果を示し、
第3図に陽極の種類と脱塩速度の関係の試験結果を示し
、第4図に面積比(@極面積/モルタル・コンクリート
面積〉と脱塩速度の関係の試験結果を示す。
Figure 2 shows the test results of the relationship between load voltage and desalination rate.
Figure 3 shows the test results on the relationship between the type of anode and the desalination rate, and Figure 4 shows the test results on the relationship between the area ratio (@pole area/mortar/concrete area) and the desalination rate.

〈本発明の効果〉 本発明は以上説明したようになるから次の効果が得られ
る。
<Effects of the Present Invention> Since the present invention is as described above, the following effects can be obtained.

〈イ〉 コンクリート構造物に何ら手を加えないで脱塩
できるので、従来のようなはつり作業が不要である。
<B> Since desalination can be carried out without making any changes to the concrete structure, there is no need for the conventional chisel work.

〈口〉 高能率に脱塩できるので、工期が短期間で済む
〈口〉 Since it can desalinate with high efficiency, the construction period can be shortened.

〈ハ〉 陽極に白金系の高価な電極を用いても、脱塩作
業を終了したら撤去して再使用できるので、転用性に優
れる。
<C> Even if an expensive platinum-based electrode is used as the anode, it can be removed and reused after desalination work is completed, so it is highly versatile.

〈二〉 道路や鉄道の橋梁を対象する場合、車両を通行
させたまま脱塩を行える。
(2) When targeting road and railway bridges, desalination can be carried out while vehicles are still running.

〈ホ〉 各種の海中・海洋コンクリート構造物や、海浜
近くのコンクリート構造物或は海砂を用いたコンクリー
ト構造物等、広範囲のコンクリート構造物の脱塩に適用
できる。
<E> It can be applied to desalination of a wide range of concrete structures, such as various underwater/offshore concrete structures, concrete structures near beaches, or concrete structures using sea sand.

【図面の簡単な説明】[Brief explanation of drawings]

第1図二本発明に係る脱塩方法の概念図第2図:負荷電
圧と脱塩速度の関係の試験結果の説明図 第3図:陽極の種類と脱塩速度の関係の試験結果の説明
図 第4図二面積比(陽極面積/モルタル・コンクリート面
積)と脱塩速度の関係の試験結果の説明図 粥 1 図 箒2 図 9衡t斥 ff) 第3図 ?角早メj二yJcl堤イ乙カル7ウム@氷■ふiメ(
八 Ptlκ (2r) 鴻 f’tメ.六  PLiq〜 (zp)  C5pL) 陽極の鏡頻ヒ脱4遼戊
Figure 1 2 Conceptual diagram of the desalination method according to the present invention Figure 2: Explanation of test results on the relationship between load voltage and desalination rate Figure 3: Explanation of test results on the relationship between anode type and desalination rate Figure 4: Explanation of the test results of the relationship between area ratio (anode area/mortar/concrete area) and desalination rate. Kakuhaya me j 2 y Jcl tsutsumi i otsu kal 7um @ ice ■ fi me (
8 Ptlκ (2r) Ko f't me. 6 PLiq~ (zp) C5pL) Anode mirror frequency removal 4 Liao

Claims (1)

【特許請求の範囲】[Claims] (1)コンクリート構造物の表面に有底構造の容器を設
け、 前記容器内に電解質液を満たし、 電解質液中に電極を配置しこれを陽極とすると共に、 コンクリート構造物中の導電性の補強材に陰極を接続し
、 両電極間に直流電源を通電し、 コンクリート中の塩素イオンを系外へ除去する、RC・
SRC構造物の脱塩方法。
(1) A container with a bottomed structure is provided on the surface of the concrete structure, the container is filled with an electrolyte solution, an electrode is placed in the electrolyte solution to serve as an anode, and the conductivity in the concrete structure is reinforced. A cathode is connected to the concrete, and a DC power is applied between both electrodes to remove chlorine ions in the concrete from the system.
Method for desalting SRC structures.
JP1229299A 1989-09-06 1989-09-06 Desalination method for RC / SRC structure Expired - Lifetime JP2649089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1229299A JP2649089B2 (en) 1989-09-06 1989-09-06 Desalination method for RC / SRC structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229299A JP2649089B2 (en) 1989-09-06 1989-09-06 Desalination method for RC / SRC structure

Publications (2)

Publication Number Publication Date
JPH0393681A true JPH0393681A (en) 1991-04-18
JP2649089B2 JP2649089B2 (en) 1997-09-03

Family

ID=16889960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229299A Expired - Lifetime JP2649089B2 (en) 1989-09-06 1989-09-06 Desalination method for RC / SRC structure

Country Status (1)

Country Link
JP (1) JP2649089B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111453A (en) * 2006-10-27 2008-05-15 Hitachi Metals Ltd Joint for flexible pipe
JP2012504542A (en) * 2008-10-03 2012-02-23 コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ Electrokinetic decontamination method for porous solid media
CN104459093A (en) * 2014-12-26 2015-03-25 浙江大学宁波理工学院 Chloride ion concentration detection device of reinforced concrete structure and nondestructive testing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193927A (en) * 1975-02-17 1976-08-18 Konkuriitono efuroretsusensuboshishoriho
JPH02302384A (en) * 1989-05-16 1990-12-14 Oystein Vennesland Method for restoration of reinforced con- crete by removal of chloride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193927A (en) * 1975-02-17 1976-08-18 Konkuriitono efuroretsusensuboshishoriho
JPH02302384A (en) * 1989-05-16 1990-12-14 Oystein Vennesland Method for restoration of reinforced con- crete by removal of chloride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111453A (en) * 2006-10-27 2008-05-15 Hitachi Metals Ltd Joint for flexible pipe
JP2012504542A (en) * 2008-10-03 2012-02-23 コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ Electrokinetic decontamination method for porous solid media
CN104459093A (en) * 2014-12-26 2015-03-25 浙江大学宁波理工学院 Chloride ion concentration detection device of reinforced concrete structure and nondestructive testing method thereof

Also Published As

Publication number Publication date
JP2649089B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
Goyal et al. A review of corrosion and protection of steel in concrete
US6303017B1 (en) Cathodic protection of reinforced concrete
US6471851B1 (en) Cathodic protection system
Van Nguyen et al. The performance of carbon fibre composites as iccp anodes for reinforced concrete structures
CN1246499C (en) Cathodic protection of steel in reinforced concrete electroosmotic treatment
US20100038261A1 (en) Composite anode for cathodic protection
US4440605A (en) Repair of reinforced concrete structures by mineral accretion
JP2783957B2 (en) How to passivate steel in concrete
JPH0393681A (en) Desalting of rc, src structure
JP2649090B2 (en) Desalination method for RC / SRC structure
CN108821792A (en) A method of improving concrete durability
CA2428016C (en) Cathodic protection of reinforced concrete with impregnated corrosion inhibitor
US6322691B1 (en) Method for passivating steel in large structures formed of steel-reinforced concrete
CN105115886B (en) The corrosion test device and method of steel-concrete combination beam shear connector
JP3438960B2 (en) How to repair concrete
Ainakulova et al. Analytical Review of Conductive Coatings, Cathodic Protection, and Concrete
CA2342620C (en) Method of electrochemical treatment of prestressed concrete
EP1777322A1 (en) Apparatus for cathodic protection of steel reinforced concrete structures and method
JP6622372B1 (en) Anticorrosion method for concrete structures
Liu et al. Cathodic protection technologies for reinforced concrete: introduction and recent developments
Bennett Corrosion of reinforcing steel in concrete and its prevention by cathodic protection
US20160159700A1 (en) Method of repairing steel reinforced concrete structure affected by chloride induced corrosion
JP2017014567A (en) Monitoring method for sacrificial anode construction method in concrete structure
Galvanic Galvanic cathodic protection of reinforced and prestressed concrete using a thermally sprayed aluminum coating
JP3415744B2 (en) Recycling method of prestressed concrete