JPH0393623A - Production of cuprous oxide - Google Patents

Production of cuprous oxide

Info

Publication number
JPH0393623A
JPH0393623A JP22437989A JP22437989A JPH0393623A JP H0393623 A JPH0393623 A JP H0393623A JP 22437989 A JP22437989 A JP 22437989A JP 22437989 A JP22437989 A JP 22437989A JP H0393623 A JPH0393623 A JP H0393623A
Authority
JP
Japan
Prior art keywords
cuprous oxide
solution
electrolytic solution
electrolytic
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22437989A
Other languages
Japanese (ja)
Inventor
Yoshio Kawasumi
川澄 良雄
Yoichi Chiba
千葉 養一
Eiji Nishimura
栄二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP22437989A priority Critical patent/JPH0393623A/en
Publication of JPH0393623A publication Critical patent/JPH0393623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To easily obtain regular octahedral cuprous oxide having prescribed particle diameter and useful as an antifouling light-colored pigment by using an electrolytic cell having an electrode made of metallic copper, using an electrolytic solution consisting of an aqueous solution containing NaCl and an antioxidant and carrying out electrolysis while restricting the pH of the electrolytic solution to a specific level. CONSTITUTION:An electrolytic cell is prepared by using an aqueous solution of NaCl and an antioxidant (e.g. glycerol) as an electrolytic solution and metallic copper as both electrodes and placing the cathode in a diaphragm chamber. An acidic or an alkaline solution is supplied to the diaphragm chamber to adjust the pH of the electrolytic solution and the electrolysis is carried out by keeping the pH of the electrolytic solution to 9-11 while using an inert gas for the agitation of the solution and the shielding of the solution from air to form cuprous oxide having an average particle diameter of 8-20mum and regular octahedral shape and suitable as an antifouling light-colored pigment for a ship bottom coating. The temperature of the electrolytic solution in electrolysis is preferably 50-107 deg.C.

Description

【発明の詳細な説明】 産粟≧曵剋亙立互 本発明は、金属鋼を電極とする電解による平均粒径8μ
mから20μmの亜酸化銅の製造方法に関する。
[Detailed Description of the Invention] The present invention provides millet with an average grain size of 8μ by electrolysis using metal steel as an electrode.
The present invention relates to a method for producing cuprous oxide having a thickness of 20 μm to 20 μm.

且圭立且歪 亜酸化銅は船底塗料等の防汚顔料、窯業用顔料、農薬、
触媒等に巾広く使用されており、通常品は平均粒径2μ
mから5μmの丸状粉で、その製法はよく知られている
Strained cuprous oxide is used as antifouling pigments for ship bottom paints, pigments for ceramics, agricultural chemicals,
Widely used in catalysts, etc., and regular products have an average particle size of 2μ
It is a round powder with a size of 5 μm to 5 μm, and its manufacturing method is well known.

一方、本発明の方法に関する平均粒径8μmから20μ
mの亜酸化銅はレジャーボート、漁船、軍用艦艇等の防
汚性低着色顔料として用いられるもので、その製法の詳
細は公表されていない。
On the other hand, the average particle size for the method of the present invention is 8 μm to 20 μm.
The cuprous oxide of M is used as an antifouling, low-coloring pigment for leisure boats, fishing boats, military ships, etc., and the details of its manufacturing method have not been made public.

例えば電解法での亜酸化銅の製法として特公昭54−6
639 (特願昭52−132479)の比較例に、?
膜電解での亜酸化鋼の作製が報告されている。
For example, as a method for producing cuprous oxide using the electrolytic method,
639 (Japanese Patent Application No. 52-132479), as a comparative example?
The production of suboxide steel by membrane electrolysis has been reported.

く    べ  ■  , 上述の従来の方法で得られる亜酸化銅は、丸状粉で平均
粒径2μmから5μmである。このものは粒径が小さく
防汚性低着色顔料用には使用出来ない。このため大粒径
亜酸化銅を簡易に製造する方法が要望されていた。この
ため発明者等らは鋭意検討した結果下記の発明をなした
1. Cuprous oxide obtained by the conventional method described above is a round powder with an average particle size of 2 μm to 5 μm. This product has a small particle size and cannot be used as a colored pigment with low stain resistance. Therefore, there has been a need for a method for easily producing large-particle cuprous oxide. For this reason, the inventors have made the following invention as a result of intensive studies.

且且曵曵炭 本発明の方法は、(1)NaCl及び酸化防止剤を含む
水溶液を電解液とし、両極を銅材とし、陰極を隔膜室内
に配置した電解槽において、隔膜室内に電解液pH調整
用酸又はアルカリ溶液を給液し、かつ不活性ガスによる
撹拌及び空気遮断を行って、電解液pH9.0から11
.0で電解し、平均粒径8μmから20μmの形状のも
のを得ることを特徴とする亜酸化銅の製造方法。(2)
電解液温を50℃から107℃とすることを特徴とする
上記(1)記載の亜酸化鋼の製造方法。(3)電解槽底
面lmlあたり0 . I Q /minから5Q/I
Iinの流速で不活性ガスを吹き込むことを特徴とする
上記(1)記載の亜酸化銅の製造方法。(4)不活性ガ
スでの空気遮断に代えて、電解液面を多数個の球形のプ
ラスチックの中空体で覆うことを特徴とする上記(1)
記載の亜酸化銅の製造方法。を提供するものである。
The method of the present invention includes (1) an electrolytic cell in which an aqueous solution containing NaCl and an antioxidant is used as an electrolyte, both electrodes are made of copper, and a cathode is arranged in a diaphragm chamber; The pH of the electrolytic solution is adjusted from 9.0 to 11 by supplying an acid or alkaline solution for adjustment, stirring with an inert gas, and blocking air.
.. 1. A method for producing cuprous oxide, which comprises electrolyzing at 0 to obtain cuprous oxide having an average particle size of 8 to 20 μm. (2)
The method for producing suboxide steel according to (1) above, characterized in that the temperature of the electrolyte is 50°C to 107°C. (3) 0.0% per ml on the bottom of the electrolytic cell. IQ/min to 5Q/I
The method for producing cuprous oxide according to (1) above, characterized in that the inert gas is blown in at a flow rate of Iin. (4) In the above (1), the electrolyte surface is covered with a large number of spherical plastic hollow bodies instead of blocking air with an inert gas.
The method for producing cuprous oxide described above. It provides:

ベ 本発明者等は、NaCl及び酸化防止剤を含む水溶液を
電解液とし、両極を銅材とし、陰極を隔膜室内に配置し
た電解槽において、諸条件を詳細に検討した結果、電解
液中のNaCl濃度及び酸化防止剤濃度、電解液pH及
び調整方法、電解電流密度、電解液温度及び撹伴方法、
酸化防止策等を適切に選択することによって、平均粒径
8μmから20μmの亜酸化銅が得られる事を見出した
The inventors of the present invention have investigated the various conditions in detail for an electrolytic cell in which an aqueous solution containing NaCl and an antioxidant is used as the electrolyte, both electrodes are made of copper, and the cathode is placed in the diaphragm chamber. NaCl concentration and antioxidant concentration, electrolyte pH and adjustment method, electrolytic current density, electrolyte temperature and stirring method,
It has been found that cuprous oxide having an average particle size of 8 μm to 20 μm can be obtained by appropriately selecting anti-oxidation measures and the like.

以下に本発明の方法及び条件について詳述する。The method and conditions of the present invention will be explained in detail below.

電解液中のNaC1の濃度は、高い程好ましいが実施の
面から3から5Mol/Lが好ましい。電解液温は、高
いほど好ましいが、50℃から107℃が好ましい。こ
れは、低温側では粒径が小さく一方、亜酸化鋼の製造に
おいては、酸化防止剤として、グリセリン、砂糖を用い
る。本発明の方法においても酸化防止策は必要で酸化防
止剤の添加に加えて、電解液と空気との接触を断つ為に
、不活性ガスでの液面のシールが最も効果的である。
The concentration of NaCl in the electrolytic solution is preferably as high as possible, but from a practical standpoint, it is preferably 3 to 5 Mol/L. The higher the electrolyte temperature is, the more preferable it is, and preferably from 50°C to 107°C. This has a small particle size at low temperatures, while glycerin and sugar are used as antioxidants in the production of suboxidized steel. Anti-oxidation measures are also necessary in the method of the present invention, and in addition to adding an antioxidant, sealing the liquid surface with an inert gas is most effective in order to cut off contact between the electrolyte and air.

しかし、電槽、ポンプ槽、貯槽などの液面を多数個の球
状のプラスチックなどの中空体でシールする方法であっ
ても目的の亜酸化銅粉が得られる.以下、実施例で詳述
する。
However, the desired cuprous oxide powder can also be obtained by sealing the liquid surface of a battery container, pump tank, storage tank, etc. with a large number of hollow bodies such as spherical plastic. This will be explained in detail in Examples below.

叉轟盟工 NaCl濃度5Mol/L,グーリセリン1 0g/L
の水溶液を電解液とし、隔膜ボックスを内装した電槽を
用い、両極とも有効面10c+nX10anの銅板とし
、陰極は隔膜ボックス内に配置し、電槽底部より窒素ガ
スをlml当たり0 .9 Q /+ainの速度で吹
き込む方法で、液温のみを50℃から107℃に変化さ
せ、電流密度3 0 0 A/rd,電解時間10時間
を一定とし電解を行った。なお、いずれの場合でも、電
解中はpHコントローラーにて、酸及びアルカリを隔膜
ボックス内に添加し、電解液のpHは9.5からto,
5に保った。液面は窒素ガスでシールした。得られた亜
酸化銅の粒径は走査型電子顕微鏡(5000倍)で観察
し、粒径は光透過法で測定し第1表の結果を得た。
NaCl concentration 5Mol/L, Glycerin 10g/L
The electrolyte is an aqueous solution of 100 ml, a diaphragm box is used inside the container, both electrodes are copper plates with an effective surface of 10 c + n x 10 an, the cathode is placed inside the diaphragm box, and nitrogen gas is supplied from the bottom of the container at a rate of 0. Electrolysis was carried out by blowing at a rate of 9 Q/+ain while changing only the liquid temperature from 50°C to 107°C, keeping the current density at 300 A/rd, and the electrolysis time constant at 10 hours. In any case, during electrolysis, acid and alkali are added into the diaphragm box using a pH controller, and the pH of the electrolytic solution is adjusted from 9.5 to
I kept it at 5. The liquid level was sealed with nitrogen gas. The particle size of the cuprous oxide obtained was observed using a scanning electron microscope (5,000 times magnification), and the particle size was measured using a light transmission method, and the results shown in Table 1 were obtained.

第   1   表 液温60℃、電流密度3 0 0A/nl.液面を直径
約5閣のプラスチックボールでシール(窒素シールに代
えて)した以外は総て実施例1同様に行って、平均粒径
 10.9μmの正八面体の亜酸化銅粉を得た。
1st surface liquid temperature 60°C, current density 300A/nl. The same procedure as in Example 1 was repeated except that the liquid level was sealed with a plastic ball having a diameter of approximately 5 mm (instead of a nitrogen seal), to obtain octahedral cuprous oxide powder with an average particle size of 10.9 μm.

井一較一銭 液温40℃、他の条件は実施例lと同一に行った。得ら
れた亜酸化銅の平均粒径は5μmで好ましくない。
The liquid temperature was 40° C., and the other conditions were the same as in Example 1. The average particle size of the cuprous oxide obtained was 5 μm, which is not preferable.

且映坐立果 実施例から明らかなように本発明の方法によって、防汚
性低着色顔料用として有用な、平均粒径8μmから20
μmの正八面体の亜酸化銅が得られる。
As is clear from the Examples, the method of the present invention produces particles with an average particle diameter of 8 μm to 20 μm, which are useful as antifouling, low-color pigments.
A regular octahedral cuprous oxide of μm size is obtained.

Claims (4)

【特許請求の範囲】[Claims] (1)NaCl及び酸化防止剤を含む水溶液を電解液と
し、両極を銅材とし、陰極を隔膜室内に配置した電解槽
において、隔膜室内に電解液pH調整用酸又はアルカリ
溶液を給液し、かつ不活性ガスによる撹拌及び空気遮断
を行って、電解液pH9.0から11.0で電解し、平
均粒径8μmから20μmの形状のものを得ることを特
徴とする亜酸化銅の製造方法。
(1) In an electrolytic cell in which an aqueous solution containing NaCl and an antioxidant is used as an electrolyte, both electrodes are made of copper, and a cathode is placed in a diaphragm chamber, an acid or alkaline solution for adjusting the electrolyte pH is supplied into the diaphragm chamber, A method for producing cuprous oxide, which comprises stirring with an inert gas and blocking air, electrolyzing the electrolytic solution at pH 9.0 to 11.0, and obtaining particles having an average particle size of 8 μm to 20 μm.
(2)電解液温を50℃から107℃とすることを特徴
とする特許請求の範囲第1項記載の亜酸化銅の製造方法
(2) The method for producing cuprous oxide according to claim 1, characterized in that the temperature of the electrolyte is 50°C to 107°C.
(3)電解槽底面1m^2あたり0.1l/minから
5l/minの流速で不活性ガスを吹き込むことを特徴
とする特許請求の範囲第1項記載の亜酸化銅の製造方法
(3) The method for producing cuprous oxide according to claim 1, characterized in that inert gas is blown at a flow rate of 0.1 l/min to 5 l/min per 1 m^2 of the bottom surface of the electrolytic cell.
(4)不活性ガスでの空気遮断に代えて、電解液面を多
数個の球形のプラスチックの中空体で覆うことを特徴と
する特許請求の範囲第1項記載の亜酸化銅の製造方法。
(4) The method for producing cuprous oxide according to claim 1, characterized in that instead of blocking air with an inert gas, the electrolyte surface is covered with a large number of spherical plastic hollow bodies.
JP22437989A 1989-09-01 1989-09-01 Production of cuprous oxide Pending JPH0393623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22437989A JPH0393623A (en) 1989-09-01 1989-09-01 Production of cuprous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22437989A JPH0393623A (en) 1989-09-01 1989-09-01 Production of cuprous oxide

Publications (1)

Publication Number Publication Date
JPH0393623A true JPH0393623A (en) 1991-04-18

Family

ID=16812834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22437989A Pending JPH0393623A (en) 1989-09-01 1989-09-01 Production of cuprous oxide

Country Status (1)

Country Link
JP (1) JPH0393623A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234072A (en) * 1998-12-17 2000-08-29 Chugoku Marine Paints Ltd Antifouling paint composition, antifouling coating, ship or submarine structure coated therewith, and antifouling method of outer board of ship and submarine structure
WO2011010663A1 (en) * 2009-07-22 2011-01-27 日本化学工業株式会社 Particles coated with cuprous oxide, method for producing same, and antifouling coating material containing the particles coated with cuprous oxide
RU2570086C2 (en) * 2014-04-01 2015-12-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Method of obtaining copper (i) oxide
CN105905936A (en) * 2016-04-14 2016-08-31 青岛大学 Cuprous oxide nanocrystalline assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234072A (en) * 1998-12-17 2000-08-29 Chugoku Marine Paints Ltd Antifouling paint composition, antifouling coating, ship or submarine structure coated therewith, and antifouling method of outer board of ship and submarine structure
WO2011010663A1 (en) * 2009-07-22 2011-01-27 日本化学工業株式会社 Particles coated with cuprous oxide, method for producing same, and antifouling coating material containing the particles coated with cuprous oxide
JP2011042559A (en) * 2009-07-22 2011-03-03 Nippon Chem Ind Co Ltd Particle coated with cuprous oxide and method for producing the same, and antifouling coating material containing the particle coated with cuprous oxide
RU2570086C2 (en) * 2014-04-01 2015-12-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Method of obtaining copper (i) oxide
CN105905936A (en) * 2016-04-14 2016-08-31 青岛大学 Cuprous oxide nanocrystalline assembly

Similar Documents

Publication Publication Date Title
CA1068645A (en) Electrolysis cathodes bearing a melt-sprayed and leached nickel or cobalt coating
US4126588A (en) Fluorinated cation exchange membrane and use thereof in electrolysis of alkali metal halide
US4243497A (en) Process for the electrolytic production of hydrogen in an alkaline
CA1158600A (en) Cathode for the production of hydrogen through electrolysis
US4465570A (en) Process for producing hydrogen
CA1072916A (en) Electrolysis cathodes having a melt-sprayed cobalt/zirconium dioxide coating
RU2357016C1 (en) Method of receiving of protective coating on magnesium alloys
US4444641A (en) Electrode
JPH0393623A (en) Production of cuprous oxide
US4496453A (en) Hydrogen-evolution electrode
US4240895A (en) Raney alloy coated cathode for chlor-alkali cells
JPS5925986A (en) Cathode with high durability and low hydrogen over-voltage and its manufacture
CA1038333A (en) Process for the manufacture of an electrode suitable for the production of hydrogen peroxide
US4269670A (en) Electrode for electrochemical processes
US5084154A (en) Hydrogen-evolution electrode having high durability and stability
US4370361A (en) Process of forming Raney alloy coated cathode for chlor-alkali cells
US4518457A (en) Raney alloy coated cathode for chlor-alkali cells
CA1260427A (en) Low hydrogen overvoltage cathode and method for producing the same
US4405434A (en) Raney alloy coated cathode for chlor-alkali cells
JP2643128B2 (en) Method for producing quaternary ammonium hydroxide
US4394228A (en) Raney alloy coated cathode for chlor-alkali cells
US4430186A (en) Electrolytic cell with improved hydrogen evolution cathode
EP0122775A1 (en) Method for making a cathode, and method for lowering hydrogen overvoltage in a chloralkali cell
JPS6120634B2 (en)
EP0045147A2 (en) Process for producing a membrane for electrolysis