JPH0393418A - Ice/snow anti-accretion spiral rod for wire - Google Patents
Ice/snow anti-accretion spiral rod for wireInfo
- Publication number
- JPH0393418A JPH0393418A JP1230868A JP23086889A JPH0393418A JP H0393418 A JPH0393418 A JP H0393418A JP 1230868 A JP1230868 A JP 1230868A JP 23086889 A JP23086889 A JP 23086889A JP H0393418 A JPH0393418 A JP H0393418A
- Authority
- JP
- Japan
- Prior art keywords
- paint
- heat
- spiral rod
- pipe
- generating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003973 paint Substances 0.000 claims abstract description 44
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 abstract description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical class [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 241000533950 Leucojum Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000036621 balding Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Suspension Of Electric Lines Or Cables (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、発熱体を電線に添設し、当該発熱を利川して
電線への着氷雷を融解落下させる方式の着氷雪防止装置
に使用するための改良されたスパイラルロッドに関する
ものである.
[従来の技術]
架空送電線への着氷雷は、その時の雪質や風速などによ
り必ずしもつねに一様な様相を呈するとは限らない.
すなわち、微風状態下で乾雷が着雪した場合には、着雪
は電線の上方に成長する.しかし、風速が強く湿雪であ
る場合には、着氷雪が電線の横方向にウィング(翼)状
に威長し、とくに外気温が低い場合にはウィングは氷結
状態となって張り出し、スリートジャンプやギヤロッピ
ング振動の原因となり、相間短絡など重大な事故の原因
となるおそれがある.
また、上方に着雪する場合でも、雪質によっては電線の
外周に雷が回転しつつ成長し雪塊となって落下して繰下
の構築物や農作物などに被害を与えるおそれがあるし、
上記回転成長がさらに大きくなれば、過大張力のために
電線の断線事故が発生したり、Ik屡の場合には鉄塔の
倒壊を惹き起すおそれすらある.
このため、送電線への着氷雪を防止しようとする提案や
試みは、これまでにも数多く実施されてきた.
第lO図に示すように、変流器(装着上分割型が好まし
い》10を送電線30に装着し、2次コイルに発熱スパ
イラルロッド20を図のように接続し、当該発熱スパイ
ラルロッド20を電線の長手方向に巻回装着して、変流
器10に巻かれた2次コイルの巻数に応じて発生した電
流をt源として発熱スパイラルロッド20を発熱させ融
雪させる方法は、必要な熱量を供給できさえすれば雪質
に関係なく確実に着氷雷を融解落下させることができる
.
発熱スパイラルロッド20としては、具体的には、第1
1図にその断面梢成を示すように、アルミパイプ23内
に絶縁体22を充填し、ニクロム線のような抵抗発熱線
21.21を挿通させるもの、あるいは12図にその断
面構成を示すように、アルミパイ123の内側に絶縁材
26を設け導体24.24を並行して貫通させる一方、
その間に発熱体く好ましくは耐熱性樹脂中にカーボンブ
ラックのような導電片を分散混和してなる自己制御型発
熱体がよい)25を充填しておき、導体24.24に上
記変流器10を電源とする通電を行なわせ、発熱スパイ
ラルロッド20を発熱させるものなどが提案されている
.
[発明が解決しようとする課題]
上記した既提案の発熱スパイラルロッド方式のものは、
上述したように雪質とは余り関係なく着氷雪防止効果を
発揮することができるという大きな利点があるが、問題
がないわけではない.まず、第11図に示す発熱線21
をもって構成する場合、発熱量をfJ!ILたり長さを
調整する自由度に乏しく、製造前に予め所定の設計長を
決め、それに従って製造する必要がある.また、使用中
途で熱応力や外力により断線が生じた場合、補修が不可
能であるという問題もあるし、このように発熱線をパイ
プ内に具合よく収容する技術は意外に難しいものである
.
また、第12図に示す構成の場合、切断して長さを調整
することは可能であるが、使用中に劣化部分が生じても
、これを補修することはできない.本発明の目的は、上
記したような従来技術の問題点を解消し、低電圧によっ
て容易に発熱させることができ、必要に応じて長さ調整
を自由に行なうことができる上、部分的に劣化が生じた
場合の補修ないし交換をも容易に行ない得る送電線着氷
雪防止装置のための新規な発熱スパイラルロッドを提供
しようとするものである.
[課題を解決するための手段]
本発明は、通電によって発熱する発熱塗料を電線外周に
巻回されるパイプ状ロッドの内面に塗布したものであり
、またさらに、可視性を有する心部材の外周に通電によ
って発熱する発熱塗料を塗布し、これを予めスパイラル
状に成形された保護パイプ内に押入収容したものである
.
[作用]
従来のようにアルミパイプ内に発熱線を通したり導体を
通したりするものに比べ、単にパイプ内面あるいは心部
材の外周に発熱塗料を塗布するだけでよいから、製造が
格段に簡易化され低廉化を図ることができる.また、発
熱塗料は電圧に応じその発熟量を調整できるために、長
短自在な長さに対応でき、劣化部が生じたら塗布し直せ
ばよいから補修も極めて容易かつ自在である.[実龍例
]
以下に、本発明について実施例図面を参照し説明する.
第1図は本発明に係る発熱スパイラルロツド1の実施例
を示す説明図であり、第2図はそのA一Altli面図
、第3図は第1図の一方の端末のP円内部分の拡大縦断
面図、第4図は他方の端末のQ円内部分の拡大縦断面図
をそれぞれ示すものである.発熱スパイラルロッド1の
基本的構成体としては、例えばアルミパイプ4(アルミ
合金でもよいしステンレス鋼の如き他の金属であっても
よい)が適当である.
アルミバイブ4の内面には絶縁塗料3が塗布されその上
に発熱塗料2が塗布される.この発熱塗料2は通電によ
り発熱するものであるから、アルミパイプ4内に塗布し
た状態で一定の通電回路が形成されるように塗布されね
ばならない.そのために、第1図に示した実施例におい
ては、スパイラルロッド1の中間部分において、同図の
A−A断面を示した第2図の断面図に示されるように、
発熱塗料2は内面全周にわたって塗布されず、間隙δよ
りなる離間部が長子方向に伸長して2個所設けられ、発
熱塗料2はパイグ4の内面において2分割された状態に
塗布される.
そして、第1図の端末Q円内部分の拡大縦断面図である
第4図に示すように、端末部で例えば銅メッシュの如き
導電材で補強された接続発熱塗料2bを内周面全体に塗
布し、あるいは別な導電部材を充填接触させるなどして
、中間で分割されていた発熱塗料2.2の間を端末で電
気的に連結し導通状態とするのである,6bはそのよう
な端末部分を保護するための端末キャップである.また
、第1図のスパイラルロッドの別な側の端末においては
、同図P円内部分の拡大縦断面図である第3図に示すよ
うに、2分割されている発熱塗料2.2のそれぞれにこ
れも例えば銅メッシュの如き導電補強部材を用いて発熱
塗料電極2a,2aを形成し、これを電極としてリード
線71.72を接続し引出すように構成する.このリー
ド線7s .7gを外部電源として例えば前述した変流
器あるいは太陽電池などに接続してやれば、スパイラル
ロッド1の内部にはリード線7s . 7gを引出線と
する発熱塗料2による通電回路が構成されることとなり
、これによってスパイラルロッド1を発熱させ電線上の
着氷雪を融かし落下させることができる.6aはリード
線71 .7gの引出口を保護するための端末キャップ
である,このように使用される発熱塗料の具体的構成と
しては、特殊な発熱素子と特殊な無機物とを結合し有機
溶剤に融かし込んで塗料状としたものがあり、ハゲなど
による塗布あるいはスプレーなどによる吹付けなどによ
ってその形状に関係なく塗布することができ、そのまま
短時間で自然乾燥するものである.パイプ内に塗布する
には例えば長尺板状体の状態で塗布し、これを内側にし
てパイプに成形すればよい.
この種の発熱塗料は12V程度の低電圧で30〜60℃
に発熱し、24Vで140℃、IOOVで800℃とい
った高温にまで発熱するものであり、送電線着氷雪防止
用として極めて有用なものである.しかも、発熱塗料の
発熱量は−、その配合や塗布厚さによって調整すること
ができる.なお、第2〜4図において外周面全体に塗布
されている5は遠赤外線発生塗料であり、内部の発熱塗
料との相乗作用により発熱効果を倍加させるべく塗布さ
れるものである.
上記の実施例は、パイプ状スパイラルロツド1の内面に
発熱塗料を直接塗布するものであるが、第5〜7図に示
すように外側の保護パイプIAの内面に直接塗布せずに
心部材1aに発熱塗料2を塗布して発熱ロッドIBを形
成し、これを保護パイプIA内に挿入収容するようにし
てもよい.すなわち、第5図は予めスパイラル状に成形
された成形保護パイプIA内に上述のように別途形成さ
れた発熱ロッドIBを挿入してなる別な実施例を示す見
取図である.
第5図のB−B断面である第6図に示すように、比較的
可撓性を有する金属又はグラスチック等よりなる心部材
1aを使用し、心部材1aが金属である場合には図のよ
うに絶縁塗料3を下地として塗布し、プラスチックの場
合にはかかる下地の絶縁塗料3を省略し、先に説明した
と同様に間隙δを長手方向2個所に形成するようにして
心部材1aの外周の2分割表面に発熱塗料2.2を塗布
し、その上より絶縁塗料3を塗布したものを発熱ロッド
IBとし、例えばアルミバイブ8よりなり予めスパイラ
ル状に成形された保護パイプIA内に図のように挿入収
容させる.
第7図は、第5図の端末部であるC−C断面図であり、
この端末部においては絶縁塗料2が心部材1aの全周に
塗布され、前記した間隙δが埋められて分割状態にあっ
た発熱塗料2.2は電気的に導通状態となるように一体
に連結される.これにようて前述した通電回路が形成さ
れ、別途先に説明したようにして取付けられたリード線
71.72をもって電源に接続するようにすればよい.
図においてパイプ8の外周に塗布されている5は先に説
明した遠赤外Il発生塗料である.第8図は、本発明に
係るリード線71.72の取付け方法における変形例を
示すものであり、方のリード線71はスパイラルロッド
の一方の端末に接続され、他方のリード線72は第8図
のD−D断面図である第9図に示すようにスパイラルロ
ッド1に添わせて反対端まで延長させ、反対端末で発熱
塗料に接続させるようにした例を示すものである.この
ようにすれば、発熱塗料2をパイプ内面あるいは心部材
外周面で[1δを形成して2分割することなく全周塗布
状態としても延長されたリード線72を介して通電回路
を形成することができ、発熱塗料の塗布を容易かつ簡略
化できるというメリットがある.
第8図において、9は温度スイッチであり、降雪や着氷
を生ずるような低温時においてのみ作動するようにして
高温時に無駄な動作を起さないように配置したものであ
る.この温度スイッチについては、前2例の実施例では
省略してあるが、不必要な季節に無駄な発熱を生じない
ようにしてスパイラルロッドの寿命を延ばす上で有効な
ものであり、かかるスイッチあるいは同効素子を取付け
ておくようにすることが望ましい.なお、第8図におけ
る10はすでに説明した変流器である.上記した保護バ
イプIAについては、金属に限らず非金属であっても差
支えないのであり、そのことは第1〜4図に例示したパ
イプ状ロッドの材料についても同様である.
また、端末の電極としても、例示した椙成に限定はされ
ず、例えば銀ペースト、銅テープ、銅メッシュテーブ等
を用いても差支えはないのである.[発明の効果1
以上の通り本発明に係る着氷雷防止用スパイラルロッド
によれば、次のような数々の優れた効果を発揮すること
ができる.
(1)塗料の塗布によって発熱体を作ることができるた
め、経済的であるばかりでなく、補修が容易である.
(2)必要な発熱量を塗布厚さ、塗料の配合を変えるこ
とによって得ることができ、優れた工業性を有する.
(3)発熟体がバイ1の内部に配設される構成であるた
め、外部からの損傷を受けるおそれがない.
(4)送電線に使用する場合、他の発熱体のように重量
増加を見込む必要性が少ない.
(5) !氷雪防止効果以外に風騒音防止効果をも併
せ有する.[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an icing and snow prevention device in which a heating element is attached to an electric wire and the generated heat is used to melt and fall lightning that has formed on the electric wire. It concerns an improved spiral rod for use. [Prior Art] Icing lightning on overhead power lines does not always have a uniform appearance depending on the snow quality, wind speed, etc. In other words, if dry lightning causes snow to fall under light wind conditions, the snow will grow above the power lines. However, if the wind speed is strong and the snow is wet, the ice and snow will grow in the shape of wings in the horizontal direction of the power line, and if the outside temperature is particularly low, the wings will become frozen and stick out, causing a three-way jump. This may cause gear-ropping vibration, which may cause serious accidents such as phase-to-phase short circuits. Furthermore, even if snow falls on the ground above, depending on the quality of the snow, lightning may rotate and grow around the outer periphery of the power lines and fall as snowflakes, causing damage to structures and crops.
If the above-mentioned rotational growth becomes even larger, there is a risk that the excessive tension may cause wire breakage accidents, or in extreme cases, even cause the tower to collapse. For this reason, many proposals and attempts have been made to prevent ice and snow from accreting on power transmission lines. As shown in Figure 1O, a current transformer (preferably a split type) 10 is attached to the power transmission line 30, a heat generating spiral rod 20 is connected to the secondary coil as shown in the figure, and the heat generating spiral rod 20 is connected to the secondary coil as shown in the figure. The method of melting snow by winding the electric wire in the longitudinal direction and using the electric current generated in accordance with the number of turns of the secondary coil wound around the current transformer 10 as a source to generate heat in the heating spiral rod 20 is to As long as it can be supplied, ice lightning can be reliably melted and fallen regardless of the snow quality.Specifically, the heat generating spiral rod 20 includes the first
As shown in Fig. 1, the insulator 22 is filled in an aluminum pipe 23 and a resistance heating wire 21, 21 such as a nichrome wire is inserted through it, or as shown in Fig. 12, the sectional structure is shown in Fig. 12. In addition, an insulating material 26 is provided inside the aluminum pie 123 and the conductors 24 and 24 are passed through in parallel,
In between, a heating element (preferably a self-regulating heating element made by dispersing conductive pieces such as carbon black in a heat-resistant resin) 25 is filled, and the conductor 24 is filled with the current transformer 10. A device has been proposed in which the heating spiral rod 20 generates heat by energizing the heating spiral rod 20 as a power source. [Problem to be solved by the invention] The above-mentioned heat-generating spiral rod type is as follows:
As mentioned above, it has the great advantage of being able to prevent snow and ice formation regardless of snow quality, but it is not without its problems. First, the heating wire 21 shown in FIG.
When configured with fJ! There is little flexibility in adjusting IL and length, and it is necessary to determine a predetermined design length before manufacturing and manufacture according to that. Another problem is that if a wire breaks due to thermal stress or external force during use, it cannot be repaired, and the technology to properly accommodate the heat-generating wire inside the pipe is surprisingly difficult. Further, in the case of the configuration shown in FIG. 12, although it is possible to cut and adjust the length, even if a deteriorated part occurs during use, it cannot be repaired. The purpose of the present invention is to solve the above-mentioned problems of the conventional technology, to easily generate heat with low voltage, to freely adjust the length as necessary, and to prevent partial deterioration. The purpose of this invention is to provide a new heat-generating spiral rod for a power transmission line ice and snow prevention device that can be easily repaired or replaced in the event of a problem. [Means for Solving the Problems] The present invention is characterized in that a heat-generating paint that generates heat when energized is applied to the inner surface of a pipe-shaped rod wound around the outer periphery of an electric wire, and furthermore, the outer periphery of a core member that is visible A heat-generating paint that generates heat when energized is applied to the pipe, and this is then pushed into a protection pipe that has been formed into a spiral shape. [Function] Compared to the conventional method in which heat-generating wires or conductors are passed through aluminum pipes, manufacturing is much simpler as it is only necessary to apply heat-generating paint to the inner surface of the pipe or the outer periphery of the core member. This makes it possible to reduce the cost. Furthermore, since the amount of heat-generating paint can be adjusted according to the voltage, it can be made in any length, and if a deteriorated part occurs, it can be reapplied, making repair extremely easy and flexible. [Actual Dragon Example] The present invention will be explained below with reference to the drawings. FIG. 1 is an explanatory diagram showing an embodiment of the heat-generating spiral rod 1 according to the present invention, FIG. 2 is an A-Altli side view thereof, and FIG. 3 is a portion inside the P circle of one end of FIG. 1. Fig. 4 shows an enlarged longitudinal cross-sectional view of the inside of the Q circle of the other terminal. As the basic structure of the heating spiral rod 1, for example, an aluminum pipe 4 (which may be made of an aluminum alloy or other metal such as stainless steel) is suitable. An insulating paint 3 is applied to the inner surface of the aluminum vibe 4, and a heat-generating paint 2 is applied thereon. Since the heat-generating paint 2 generates heat when energized, it must be applied to the aluminum pipe 4 so that a certain current-carrying circuit is formed. For this reason, in the embodiment shown in FIG. 1, in the middle portion of the spiral rod 1, as shown in the cross-sectional view of FIG.
The heat-generating paint 2 is not applied over the entire circumference of the inner surface, but two spaced apart parts formed by a gap δ are provided extending in the longitudinal direction, and the heat-generating paint 2 is applied on the inner surface of the pipe 4 in two parts. As shown in FIG. 4, which is an enlarged vertical cross-sectional view of the inner part of the terminal Q circle in FIG. 6b is such a terminal to electrically connect between the exothermic paint 2.2, which was divided in the middle, by applying it or filling it with another conductive material and bringing it into contact. This is a terminal cap to protect the parts. In addition, at the other end of the spiral rod in FIG. 1, as shown in FIG. Also in this case, heat-generating paint electrodes 2a, 2a are formed using a conductive reinforcing member such as a copper mesh, and lead wires 71 and 72 are connected and drawn out using these as electrodes. This lead wire 7s. 7g is connected as an external power source to, for example, the aforementioned current transformer or solar cell, the spiral rod 1 has a lead wire 7s. An energizing circuit is constructed using the heat-generating paint 2 with 7g as a lead wire, thereby making it possible to generate heat in the spiral rod 1 and melt the ice and snow on the wire and cause it to fall. 6a is a lead wire 71. The specific composition of the heat-generating paint used in this way, which is a terminal cap to protect the 7g outlet, is a paint made by combining a special heat-generating element with a special inorganic material and melting it in an organic solvent. It can be applied to any shape by balding or spraying, and dries naturally in a short period of time. To apply it inside a pipe, for example, it can be applied in the form of a long plate, and then molded into a pipe with this inside. This type of heat-generating paint can be heated to 30-60℃ at a low voltage of about 12V.
It generates heat up to a high temperature of 140°C at 24V and 800°C at IOOV, making it extremely useful for preventing ice and snow from accumulating on power transmission lines. Moreover, the calorific value of the exothermic paint can be adjusted by its formulation and coating thickness. In addition, in Figs. 2 to 4, the numeral 5 applied to the entire outer peripheral surface is a far-infrared emitting paint, which is applied to double the heat-generating effect through a synergistic effect with the heat-generating paint inside. In the above embodiment, the heat-generating paint is applied directly to the inner surface of the pipe-shaped spiral rod 1, but as shown in FIGS. The heat generating rod IB may be formed by applying heat generating paint 2 to 1a, and this may be inserted and accommodated in the protective pipe IA. That is, FIG. 5 is a sketch showing another embodiment in which a separately formed heating rod IB as described above is inserted into a formed protective pipe IA that is previously formed into a spiral shape. As shown in FIG. 6, which is a cross section taken along line B-B in FIG. The core member 1a is coated with an insulating paint 3 as a base as shown in FIG. Heat-generating paint 2.2 is applied to the two-part surface of the outer periphery of the rod, and insulating paint 3 is applied thereon to form the heat-generating rod IB, and the heat-generating rod IB is placed in a protection pipe IA made of, for example, an aluminum vibrator 8 and formed in a spiral shape in advance. Insert and accommodate as shown in the figure. FIG. 7 is a cross-sectional view taken along line C-C, which is the terminal portion of FIG.
At this terminal part, the insulating paint 2 is applied to the entire circumference of the core member 1a, and the above-mentioned gap δ is filled, and the heat-generating paint 2.2 that was in the divided state is connected together so that it is electrically conductive. It will be done. In this way, the above-mentioned energizing circuit is formed, and the lead wires 71 and 72 attached as described above are connected to the power source.
In the figure, the reference numeral 5 applied to the outer circumference of the pipe 8 is the far-infrared Il-generating paint described above. FIG. 8 shows a modification of the method of attaching lead wires 71 and 72 according to the present invention, in which one lead wire 71 is connected to one end of the spiral rod, and the other lead wire 72 is connected to the eighth end of the spiral rod. As shown in FIG. 9, which is a sectional view taken along line D-D in the figure, an example is shown in which the spiral rod 1 is extended to the opposite end and connected to the heat-generating paint at the opposite end. In this way, the exothermic paint 2 can be applied to the inner surface of the pipe or the outer circumferential surface of the core member to form a current-carrying circuit through the extended lead wire 72 even when it is applied all around without dividing it into two parts. This has the advantage of making it easier and simpler to apply the heat-generating paint. In FIG. 8, numeral 9 is a temperature switch, which is arranged so that it operates only at low temperatures that would cause snow or ice to occur, so as not to cause unnecessary operation at high temperatures. Although this temperature switch is omitted in the previous two examples, it is effective in extending the life of the spiral rod by preventing wasteful heat generation in unnecessary seasons, and such a switch or It is desirable to install an equivalent element. In addition, 10 in FIG. 8 is the current transformer already explained. The above-mentioned protective pipe IA is not limited to metal and may be made of non-metal, and the same applies to the material of the pipe-shaped rod illustrated in FIGS. 1 to 4. Further, the terminal electrodes are not limited to the exemplified cylindrical material, and silver paste, copper tape, copper mesh tape, etc. may also be used. [Effects of the Invention 1 As described above, the spiral rod for preventing icing and lightning according to the present invention can exhibit the following excellent effects. (1) Since the heating element can be created by applying paint, it is not only economical but also easy to repair. (2) The required calorific value can be obtained by changing the coating thickness and paint composition, and it has excellent industrial properties. (3) Since the ripening body is arranged inside the bin 1, there is no risk of damage from the outside. (4) When used on power transmission lines, there is less need to expect an increase in weight like with other heating elements. (5)! In addition to the effect of preventing ice and snow, it also has the effect of preventing wind noise.
第1図は本発明に係る実施例の見取図、第2図は第1図
のA−A断面図、第3図は第1図のP円内部分のlI1
断面図、第4図は同じく。円内部分の縦断面図、第5図
は別な実施例の見取図、第6図は第5図のB−B断面図
、第7図は同じ<C−C断面図、第8図はリード線の取
付け方法における別な実施例を示す見取図、第9図は第
8図のD一D断面図、第10図は従来の着氷雪助止装置
の梢或を示す説明図、第11図は従来の允熟スパイラル
ロッドの一梢成状況を示す説明断面図、第12図は従来
の発熱スパイラルロツドの別な構戊例を示す説明断面図
である.
1:発熱スパイラルロッド、
IA:成形保護パイプ、
1B:挿入発熱ロッド、
1a:心部材、
2:発熱塗料、
2a:発熱塗料Th極、
2b=発熱塗料端末連結部、
3:絶縁塗料
4:アルミパイプ、
5:遠赤外線発生塗料、
6a.6b:端末キャップ、
71.72 :リード線、
8:アルミパイプ部、
9:温度スイッチ.
10:変流器、
30 :Th線.FIG. 1 is a sketch of an embodiment according to the present invention, FIG. 2 is a sectional view taken along line A-A in FIG.
The sectional view and Figure 4 are the same. A vertical sectional view of the inner part of the circle, FIG. 5 is a sketch of another embodiment, FIG. 6 is a BB sectional view of FIG. 5, FIG. 7 is a sectional view of the same <CC, and FIG. 8 is a lead. A sketch showing another embodiment of the wire attachment method, FIG. 9 is a D-D sectional view of FIG. FIG. 12 is an explanatory cross-sectional view showing one configuration of a conventional Yunju spiral rod, and FIG. 12 is an explanatory cross-sectional view showing another example of the structure of the conventional heat-generating spiral rod. 1: Heat-generating spiral rod, IA: Molded protection pipe, 1B: Inserted heat-generating rod, 1a: Core member, 2: Heat-generating paint, 2a: Heat-generating paint Th pole, 2b = Heat-generating paint terminal connection part, 3: Insulating paint 4: Aluminum Pipe, 5: Far-infrared emitting paint, 6a. 6b: Terminal cap, 71.72: Lead wire, 8: Aluminum pipe section, 9: Temperature switch. 10: Current transformer, 30: Th line.
Claims (2)
されるパイプ状ロッドの内面に塗布してなる電線への着
氷雪防止用スパイラルロッド。(1) A spiral rod for preventing ice and snow from accumulating on electric wires, which is made by applying a heat-generating paint that generates heat when energized to the inner surface of a pipe-shaped rod that is wound around the outer circumference of the electric wires.
する発熱塗料を塗布し、これをスパイラル状に成形され
た保護パイプ内に挿入収容してなる電線への着氷雪防止
用スパイラルロッド。(2) A spiral rod for preventing icing and snow from accumulating on electric wires, which is made by coating the outer periphery of a flexible core member with a heat-generating paint that generates heat when energized, and inserting and storing this into a spirally formed protection pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1230868A JPH0393418A (en) | 1989-09-06 | 1989-09-06 | Ice/snow anti-accretion spiral rod for wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1230868A JPH0393418A (en) | 1989-09-06 | 1989-09-06 | Ice/snow anti-accretion spiral rod for wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0393418A true JPH0393418A (en) | 1991-04-18 |
Family
ID=16914567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1230868A Pending JPH0393418A (en) | 1989-09-06 | 1989-09-06 | Ice/snow anti-accretion spiral rod for wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0393418A (en) |
-
1989
- 1989-09-06 JP JP1230868A patent/JPH0393418A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4937429A (en) | Heated hand grips and method of manufacture | |
AU2002228247B2 (en) | Electrical insulators, materials and equipment | |
JPS61144002A (en) | Electric assembly and making thereof | |
AU2002228247A1 (en) | Electrical insulators, materials and equipment | |
KR101665038B1 (en) | electrically conductive material impregnated no-insulation superconducting coil and manufacturing apparatus of the same | |
WO2020238050A1 (en) | Layer-stranded deicing optical fiber composite overhead ground wire | |
JPH0393418A (en) | Ice/snow anti-accretion spiral rod for wire | |
JPH10224973A (en) | Snow-melting spiral heater rod for overhead ground line | |
CN207503691U (en) | A kind of high-tension cable of automatic defrosting snow melting | |
KR100797009B1 (en) | Fusible Wire Wound Resistor | |
CN214226568U (en) | Cable capable of automatically melting and covering ice and snow | |
JPH04281314A (en) | Snow and ice accretion prevention equipment for power transmission line | |
CN110184918A (en) | A kind of anti-freeze super-durable drag-line | |
JPH0374130A (en) | Transmission line ice and snow accretion preventive device | |
US2087736A (en) | Resistor construction | |
CA1077095A (en) | Fuse with a free standing fuse element | |
JPS6155206B2 (en) | ||
JP5041434B2 (en) | Hard-to-snow tape for overhead wires and hard-to-snow wires | |
CN215069295U (en) | Wind-resistant overhead aluminum alloy stranded wire | |
CN219696096U (en) | Overhead ice melting ground wire | |
RU99117709A (en) | POWER LINE | |
JPS5457241A (en) | Heat-sensitive body | |
US1909061A (en) | Electric soldering iron | |
JP4249555B2 (en) | Overhead wire snow melting method | |
CN220420283U (en) | Moisture-resistant three-layer insulated wire |