JPH039300B2 - - Google Patents

Info

Publication number
JPH039300B2
JPH039300B2 JP59041682A JP4168284A JPH039300B2 JP H039300 B2 JPH039300 B2 JP H039300B2 JP 59041682 A JP59041682 A JP 59041682A JP 4168284 A JP4168284 A JP 4168284A JP H039300 B2 JPH039300 B2 JP H039300B2
Authority
JP
Japan
Prior art keywords
gas
pressure
gas pressure
cylinder
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59041682A
Other languages
Japanese (ja)
Other versions
JPS60184937A (en
Inventor
Gensuke Okada
Hideaki Nakano
Tadahiro Ozu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP59041682A priority Critical patent/JPS60184937A/en
Publication of JPS60184937A publication Critical patent/JPS60184937A/en
Publication of JPH039300B2 publication Critical patent/JPH039300B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/024Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Description

【発明の詳細な説明】 この発明はガスエンジンのガス圧力制御装置に
関するもので、特にガスエンジン全体の効率を改
善することのできるガス圧力制御装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas pressure control device for a gas engine, and more particularly to a gas pressure control device that can improve the efficiency of the entire gas engine.

ガスエンジンには、燃料ガスをガス噴射弁を通
じてシリンダ内に吹込み、燃焼させる方式のエン
ジンがあるが、特に燃料ガスを、圧縮、爆発過程
時にシリンダ内に供給してデイーゼルサイクルを
実現する方式であることから、デイーゼルガスエ
ンジンとも称されている。このようなデイーゼル
ガスエンジンにおいては、噴射弁からシリンダ内
に吹込まれる燃料ガスを、圧縮機によつて加圧す
る必要があり、場合によつては、燃料ガスを250
〜300Kg/cm2の高圧にまで加圧する必要があると
されている。この際、ガスの圧縮に必要な動力
は、全力運転時に必要とされる全エネルギーの4
〜6%程度にも達し、燃料ガスの圧縮にはきわめ
て大きな動力を要している。
Some gas engines use a system in which fuel gas is injected into a cylinder through a gas injection valve and combusted.In particular, there is a system in which fuel gas is supplied into a cylinder during the compression and explosion process to achieve a diesel cycle. For this reason, it is also called a diesel gas engine. In such diesel gas engines, it is necessary to pressurize the fuel gas injected into the cylinder from the injection valve using a compressor.
It is said that it is necessary to pressurize to a high pressure of ~300Kg/cm 2 . At this time, the power required to compress the gas is 44% of the total energy required during full-power operation.
It reaches about 6%, and extremely large power is required to compress the fuel gas.

本発明者等は上記に鑑み、まずシリンダ内に噴
出された燃料ガスの挙動についての検討を行つ
た。第1図に示すようにガス状燃料はガス噴射弁
Aの噴口より噴出されるが、そのためには噴射弁
A内の圧力即ち燃料ガス圧力P1は噴射弁Aの外
圧、すなわちシリンダBの内圧P2に比べて高く
することが必要である。その際、P1のP2に対す
る圧力比P1/P2が、臨界圧力比Ps/P2(Psを臨
界圧力という)を越える場合には、いわゆるチヨ
ーク状態の流れとなり、それ以上に燃料ガス圧力
P1を上げても容積流量の増加はなく、しかも第
2図のように、ノズルを出た噴流は安定した平行
流動とはならなくなる。この場合、ノズル出口に
おいてちょうど臨界圧に達した気体が急に低い圧
力P2の室内に流入すると、あたかも圧縮ガス容
器が破裂したときのように爆発的に膨張する。そ
のため、気体は側方に加速され、さらにその慣性
により平衡位置を越えてさらに側方へと変位す
る。その結果、噴流中心部の圧力がP2以下に降
下し、これが原因となつて気体は再び反対方向に
変位を起こす。この作用が周期的に繰り返され、
同時に噴流が前進する。その際に強い衝撃波を生
じ、気体が臨界圧からP2まで膨張する際に有効
エネルギーが失われる。第2図における下側の曲
線は、噴流中心部の圧力変動を示したものである
が、図のように噴流中心部の圧力は大幅に変動し
ており、このため安定した燃焼を得難くなり且つ
損失も大きくなる。なおガス圧力が臨界圧以下の
場合には、ノズルから出た噴流は安定した円筒形
の平行流れとなる。
In view of the above, the present inventors first studied the behavior of the fuel gas ejected into the cylinder. As shown in Fig. 1, gaseous fuel is injected from the nozzle of gas injection valve A. For this purpose, the pressure inside injection valve A, that is, the fuel gas pressure P1, is the external pressure of injection valve A, that is, the internal pressure of cylinder B, P2. It is necessary to make it higher than that. At that time, if the pressure ratio P1/P2 of P1 to P2 exceeds the critical pressure ratio Ps/P2 (Ps is referred to as critical pressure), the flow will be in a so-called chi-yoke state, and if the fuel gas pressure
Even if P1 is increased, the volumetric flow rate will not increase, and as shown in Figure 2, the jet flow exiting the nozzle will no longer be a stable parallel flow. In this case, when the gas that has just reached the critical pressure at the nozzle exit suddenly flows into the chamber at a lower pressure P2, it expands explosively, as if a compressed gas container were to burst. The gas is therefore accelerated laterally and further displaced laterally beyond its equilibrium position due to its inertia. As a result, the pressure at the center of the jet drops below P2, which causes the gas to again be displaced in the opposite direction. This action is repeated periodically,
At the same time, the jet moves forward. This creates a strong shock wave, and effective energy is lost as the gas expands from the critical pressure to P2. The lower curve in Figure 2 shows pressure fluctuations at the center of the jet, but as shown in the figure, the pressure at the center of the jet fluctuates significantly, making it difficult to obtain stable combustion. Moreover, the loss will also increase. Note that when the gas pressure is below the critical pressure, the jet flow from the nozzle becomes a stable cylindrical parallel flow.

以上のことから、圧力比P1/P2を臨界圧力比
Ps/P2以下となるように、シリンダ内圧に応じ、
燃料ガス圧力P1を臨界圧より少しだけ下げて運
転するのが望ましい。特に部分負荷等のようにシ
リンダの内圧力が低い場合には、燃料ガス圧力を
例えば250〜300Kg/cm2の高圧のまま一定にするこ
とは無駄であり、シリンダ内圧に応じて、燃料ガ
ス圧力を臨界圧力より少しだけ下げることが合理
的である。このように燃料ガス圧力を下げること
により、ガス圧縮に要する動力を減少させること
ができ、全体システムとして熱効率の向上を図る
ことが可能となる。また圧力の低下は配管系統の
安全性を向上させることにもなる。
From the above, the pressure ratio P1/P2 is the critical pressure ratio
Depending on the cylinder internal pressure, so that it is below Ps/P2,
It is desirable to operate with the fuel gas pressure P1 slightly lower than the critical pressure. Especially when the internal pressure of the cylinder is low, such as during partial load, it is wasteful to keep the fuel gas pressure constant at a high pressure of, for example, 250 to 300 kg/ cm2 . It is reasonable to lower the pressure by just a little below the critical pressure. By lowering the fuel gas pressure in this manner, the power required for gas compression can be reduced, and the thermal efficiency of the entire system can be improved. The pressure reduction also improves the safety of the piping system.

しかしながら従来のデイーゼルガスエンジンに
おいては、シリンダ内の圧力がエンジンの負荷状
態によつて変動するのにもかかわらず、供給ガス
圧力は一定に維持されたままで、ガス圧力の変更
は行われてはいない。したがつて、燃料ガスの圧
縮に費やされた多大のエネルギを、上記のような
現象によつて浪費しているのが実情である。
However, in conventional diesel gas engines, although the pressure inside the cylinder fluctuates depending on the engine load condition, the supply gas pressure remains constant and the gas pressure is not changed. . Therefore, the reality is that a large amount of energy expended in compressing the fuel gas is wasted due to the above-mentioned phenomenon.

この発明は上記に鑑みなされたもので、その目
的は、供給する燃料ガス圧力を、シリンダの内圧
に応じて制御することが可能であり、そのためガ
スエンジンの効率を向上することのできるガス圧
力制御装置を提供することにある。
This invention was made in view of the above, and its purpose is to provide gas pressure control that can control the pressure of supplied fuel gas according to the internal pressure of the cylinder, thereby improving the efficiency of the gas engine. The goal is to provide equipment.

上記目的に沿うこの発明のガスエンジンのガス
圧力制御装置は、シリンダ内にガス状燃料を噴出
するためのガス噴射弁と、このガス噴射弁にガス
状燃料を供給するためのガス圧縮手段と、上記シ
リンダの内圧を検出するための内圧検出手段と、
上記ガス圧縮手段からガス噴射弁へと至る流路内
の供給ガス圧力を検出するためのガス圧検出手段
と、該流路内のガス圧力を調整するためのガス圧
力調整手段と、上記ガス噴射弁から噴出されるガ
ス状燃料がチヨーク状流れとなる臨界圧力比以下
になるように上記検出されたシリンダ内圧に応じ
て供給目標ガス圧力を設定する供給目標ガス圧力
設定手段と、この目標ガス圧力と上記供給ガス圧
力とを比較し、供給ガス圧力が目標ガス圧力に近
づくように上記ガス圧縮手段の駆動源及び/又は
上記ガス圧力調整手段を制御するための制御手段
とを有することを特徴とするものとなる。
A gas pressure control device for a gas engine according to the present invention in accordance with the above object includes: a gas injection valve for injecting gaseous fuel into a cylinder; a gas compression means for supplying gaseous fuel to the gas injection valve; internal pressure detection means for detecting the internal pressure of the cylinder;
a gas pressure detection means for detecting the supply gas pressure in the flow path leading from the gas compression means to the gas injection valve; a gas pressure adjustment means for adjusting the gas pressure in the flow path; supply target gas pressure setting means for setting a supply target gas pressure in accordance with the detected cylinder internal pressure so that the gaseous fuel injected from the valve becomes below a critical pressure ratio at which the gaseous fuel is in a choke-like flow; and a control means for controlling the drive source of the gas compression means and/or the gas pressure adjustment means so that the supply gas pressure approaches the target gas pressure by comparing the gas pressure and the supply gas pressure. Become something to do.

上記の結果、シリンダ内へは、常にシリンダ内
圧に応じた圧力の燃料ガスが供給され、両圧力比
を臨界圧力比以下とし、燃料ガスを音速以下で効
率よく噴出することが可能となる。その結果、ガ
ス圧縮手段において、余分なエネルギを消費する
のを防止することができ、ガスエンジンシステム
の効率を向上することが可能となる。
As a result of the above, fuel gas is always supplied into the cylinder at a pressure that corresponds to the cylinder internal pressure, and the ratio of both pressures is made equal to or less than the critical pressure ratio, making it possible to efficiently eject the fuel gas at a speed equal to or less than the speed of sound. As a result, it is possible to prevent the gas compression means from consuming excess energy, and it is possible to improve the efficiency of the gas engine system.

次ぎにこの発明のガスエンジンのガス圧力制御
装置の具体的な実施例につき、図面を参照しつつ
詳細に説明する。
Next, specific embodiments of the gas pressure control device for a gas engine according to the present invention will be described in detail with reference to the drawings.

第3図において、1はシリンダであつて、この
シリンダ1内にはピストン2が往復動自在に配置
されている。上記シリンダ1の上部にはシリンダ
ヘツド3が取着され、このシリンダヘツド3に、
ガス噴射弁4と、点火装置5と、内圧計測ピツク
アツプ6とがそれぞれ装着されている。なお、こ
の内圧計測ピツクアツプ6は、シリンダ1の内圧
を検出するための内圧検出手段となるものであ
る。そして上記ガス噴射弁4は、流路7を介して
ガスタンク8に接続されており、この流路7に
は、ガス圧縮手段としての可変圧縮機9と、該流
路7内の供給ガス圧力を検出するためのガス圧検
出手段としてのガス圧力ピツクアツプ10と、該
流路7内のガス圧力を調整する手段としての圧力
調整弁11とがそれぞれ介設されている。なお、
12は可変モータであつて、この可変モータ12
によつて上記可変圧縮機9を作動させ、供給され
る燃料ガスを加圧し、加圧した燃料ガスを上記ガ
ス噴射弁4へと送出し得るようなされている。
In FIG. 3, 1 is a cylinder, and a piston 2 is disposed within this cylinder 1 so as to be able to reciprocate. A cylinder head 3 is attached to the upper part of the cylinder 1, and this cylinder head 3 has the following:
A gas injection valve 4, an ignition device 5, and an internal pressure measuring pickup 6 are each installed. The internal pressure measuring pickup 6 serves as internal pressure detection means for detecting the internal pressure of the cylinder 1. The gas injection valve 4 is connected to a gas tank 8 via a flow path 7, and this flow path 7 includes a variable compressor 9 as a gas compression means, and a variable compressor 9 that controls the supply gas pressure in the flow path 7. A gas pressure pickup 10 as means for detecting gas pressure and a pressure regulating valve 11 as means for adjusting the gas pressure in the flow path 7 are provided. In addition,
12 is a variable motor, and this variable motor 12
The variable compressor 9 is operated to pressurize the supplied fuel gas, and the pressurized fuel gas can be sent to the gas injection valve 4.

また上記内圧計測ピツクアツプ6とガス圧力ピ
ツクアツプ10とはそれぞれ制御手段となる制御
装置13へ接続されると共に、さらにこの制御装
置13が上記可変モータ12と圧力調整弁11と
へそれぞれ接続され、両検出圧力に基づいて可変
モータ12の回転速度等の駆動状態を制御すると
共に、さらに圧力調整弁11のセツト値をも制御
し得るようなされているので、以下にその点につ
いて説明する。まず、第4図に示すように、上記
内圧計測ピツクアツプ6によつて、シリンダ1の
内圧P2を検出する。そして制御装置13に設け
られている供給目標ガス圧力設定手段(図示せ
ず)によつて、上記検出された内圧P2から、供
給される燃料ガス圧力の目標ガス圧力P0を定め
る。この目標ガス圧力P0は上記内圧P2との比
P0/P2が臨界圧力比Ps/P2(Ps:臨界圧力)(例
えば2程度)以下となるように定めるものとす
る。次いで、この目標ガス圧力P0と、上記ガス
圧力ピツクアツプ10において検出された供給燃
料ガス圧力P1とを比較する。この比較の結果、
供給ガス圧力P1が目標ガス圧力P0よりも高い場
合には、制御装置13からの指令によつて可変モ
ータ12を減速し、またこれとは逆の場合には可
変モータ12を増速することによつて、上記供給
ガス圧力P1を目標ガス圧力P0と一致させるよう
な制御を行う。またこれと同時に、この際の制御
信号によつて圧力調整弁11のセツト値の可変制
御も行う。このように、上記装置においては、部
分負荷時等のようにシリンダ内圧P2が低い場合
には、これに伴つて目標ガス圧力P0、すなわち
供給ガス圧力P1を低くし、またこれとは逆に全
力運転時のようにシリンダ内圧P2が高い場合に
は、これに伴つて供給ガス圧力P1を高くすると
いうように可変モータ12の駆動状態や圧力調整
弁11のセツト値の制御を行う訳である。
Further, the internal pressure measuring pickup 6 and the gas pressure pickup 10 are each connected to a control device 13 serving as a control means, and this control device 13 is also connected to the variable motor 12 and the pressure regulating valve 11, respectively. Based on the pressure, the driving state such as the rotational speed of the variable motor 12 is controlled, and the set value of the pressure regulating valve 11 can also be controlled, so this point will be explained below. First, as shown in FIG. 4, the internal pressure P2 of the cylinder 1 is detected by the internal pressure measuring pickup 6. Then, a supply target gas pressure setting means (not shown) provided in the control device 13 determines a target gas pressure P0 of the fuel gas pressure to be supplied from the detected internal pressure P2. This target gas pressure P0 is the ratio of the above internal pressure P2
It is assumed that P0/P2 is set to be less than or equal to the critical pressure ratio Ps/P2 (Ps: critical pressure) (for example, about 2). Next, this target gas pressure P0 is compared with the supplied fuel gas pressure P1 detected in the gas pressure pickup 10. As a result of this comparison,
When the supply gas pressure P1 is higher than the target gas pressure P0, the variable motor 12 is decelerated by a command from the control device 13, and in the opposite case, the variable motor 12 is accelerated. Therefore, control is performed to match the supply gas pressure P1 with the target gas pressure P0. At the same time, the set value of the pressure regulating valve 11 is also variably controlled by the control signal at this time. In this way, in the above device, when the cylinder internal pressure P2 is low, such as during partial load, the target gas pressure P0, that is, the supply gas pressure P1, is lowered accordingly, and, conversely, the full power When the cylinder internal pressure P2 is high as during operation, the driving state of the variable motor 12 and the set value of the pressure regulating valve 11 are controlled to increase the supply gas pressure P1 accordingly.

上記の結果、シリンダ2の内圧P1と、供給ガ
ス圧力P1との比P1/P2を、常に臨界圧力比以下
に保つことが可能となり、燃料ガスを音速以下の
安定した円筒形の平行流として、効率よくシリン
ダ1内へ噴出することが可能となる。またこの場
合、圧縮機9の可変モータ12は、上記シリンダ
内圧P2に応じて駆動制御されることになるため、
この可変モータ12において余分なエネルギを消
費する余地はなく、したがつてガスエンジンシス
テムの効率を向上することが可能となる。
As a result of the above, the ratio P1/P2 between the internal pressure P1 of the cylinder 2 and the supply gas pressure P1 can always be kept below the critical pressure ratio, and the fuel gas is formed into a stable cylindrical parallel flow below the speed of sound. It becomes possible to eject into the cylinder 1 efficiently. Furthermore, in this case, the variable motor 12 of the compressor 9 is driven and controlled according to the cylinder internal pressure P2, so
There is no room for extra energy to be consumed in this variable motor 12, thus making it possible to improve the efficiency of the gas engine system.

なお上記において検出するシリンダ内圧P2は、
シリンダ1内の最高圧力とするのが好ましく、ま
たその検出法としては、所定時間だけ検出を継続
して、該時間内の最高圧力の平均値を求めるよう
な方法を採用するのが好ましい。
The cylinder internal pressure P2 detected above is
It is preferable to use the maximum pressure in the cylinder 1, and it is preferable to adopt a method of continuously detecting the pressure for a predetermined period of time and finding the average value of the maximum pressure within the period.

以上にこの発明のガスエンジンのガス圧力制御
装置の一実施例の説明をしたが、この発明のガス
エンジンのガス圧力制御装置は上記実施例に限定
されるものではなく、種々変更して実施すること
が可能である。例えば上記においては、ガス圧縮
手段として可変圧縮機を用い、この圧縮機を駆動
する可変モータの回転速度と、圧力調整弁のセツ
ト値との両者を制御する例を示したが、これらを
それぞれ単独に作動させて実施することも可能で
ある。さらにガス圧種手段及びその駆動源は上記
と同様な機能を果たす他の任意の手段を採用する
ことが可能である。このことは、内圧検出手段や
ガス圧検出手段等についても同様であり、種々変
更して実施することが可能である。
Although one embodiment of the gas pressure control device for a gas engine according to the present invention has been described above, the gas pressure control device for a gas engine according to the present invention is not limited to the above embodiment, and can be implemented with various modifications. Is possible. For example, in the above example, a variable compressor is used as the gas compression means, and both the rotational speed of the variable motor that drives the compressor and the set value of the pressure regulating valve are controlled, but each of these is controlled independently. It is also possible to carry out the operation by operating the system. Further, as the gas pressure species means and its driving source, any other means that performs the same functions as those described above may be employed. This also applies to the internal pressure detection means, gas pressure detection means, etc., and can be implemented with various modifications.

この発明のガスエンジンのガス圧力制御装置は
上記のように構成されたものであり、したがつて
この発明のガスエンジンのガス圧力制御装置によ
れば、シリンダ内に供給する燃料ガスの圧力を、
シリンダ内圧に応じて制御することが可能とな
る。したがつてガスエンジンシステム全体の熱効
率を向上することが可能となり、また燃料ガス圧
力を低下することができるため、各配管系統の安
全性を向上することも可能となる。
The gas pressure control device for a gas engine according to the present invention is configured as described above. Therefore, according to the gas pressure control device for a gas engine according to the present invention, the pressure of the fuel gas supplied into the cylinder can be adjusted to
It becomes possible to control according to the cylinder internal pressure. Therefore, it is possible to improve the thermal efficiency of the entire gas engine system, and since the fuel gas pressure can be reduced, it is also possible to improve the safety of each piping system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガス噴射弁から噴出される燃料ガスの
噴射状態を示す説明図、第2図はガス噴流の圧力
変動状態を示す説明図、第3図はこの発明のガス
エンジンのガス圧力制御装置の一実施例の全体系
統を示す説明図、第4図は上記実施例における制
御方法を説明するブロツク図である。 1……シリンダ、4……ガス噴射弁、6……内
圧計測ピツクアツプ、7……流路、9……圧縮
機、10……ガス圧力ピツクアツプ、11……圧
力調整弁、12……可変モータ、13……制御装
置。
Fig. 1 is an explanatory diagram showing the injection state of fuel gas ejected from a gas injection valve, Fig. 2 is an explanatory diagram showing the pressure fluctuation state of the gas jet, and Fig. 3 is a gas pressure control device for a gas engine of the present invention. FIG. 4 is a block diagram illustrating the control method in the above embodiment. 1... Cylinder, 4... Gas injection valve, 6... Internal pressure measurement pickup, 7... Flow path, 9... Compressor, 10... Gas pressure pickup, 11... Pressure adjustment valve, 12... Variable motor , 13...control device.

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダ内にガス状燃料を噴出するためのガ
ス噴射弁と、このガス噴射弁にガス状燃料を供給
するためのガス圧縮手段と、上記シリンダの内圧
を検出するための内圧検出手段と、上記ガス圧縮
手段からガス噴射弁へと至る流路内の供給ガス圧
力を検出するためのガス圧検出手段と、該流路内
のガス圧力を調整するためのガス圧力調整手段
と、上記ガス噴射弁から噴出されるガス状燃料が
チヨーク状流れとなる臨界圧力比以下になるよう
に上記検出されたシリンダ内圧に応じて供給目標
ガス圧力を設定する供給目標ガス圧力設定手段
と、この目標ガス圧力と上記供給ガス圧力とを比
較し、供給ガス圧力が目標ガス圧力に近づくよう
に上記ガス圧縮手段の駆動源及び/又は上記ガス
圧力調整手段を制御するための制御手段とを有す
ることを特徴とするガスエンジンのガス圧力制御
装置。
1 a gas injection valve for injecting gaseous fuel into a cylinder; a gas compression means for supplying gaseous fuel to the gas injection valve; an internal pressure detection means for detecting the internal pressure of the cylinder; a gas pressure detection means for detecting the supply gas pressure in a flow path leading from the gas compression means to the gas injection valve; a gas pressure adjustment means for adjusting the gas pressure in the flow path; and the gas injection valve. supply target gas pressure setting means for setting a supply target gas pressure in accordance with the detected cylinder internal pressure so that the gaseous fuel ejected from the cylinder is below a critical pressure ratio at which the gaseous fuel is in a choke-like flow; It is characterized by comprising a control means for comparing the supply gas pressure with the supply gas pressure and controlling the drive source of the gas compression means and/or the gas pressure adjustment means so that the supply gas pressure approaches the target gas pressure. Gas pressure control device for gas engines.
JP59041682A 1984-03-05 1984-03-05 Gas pressure controller for gas engine Granted JPS60184937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59041682A JPS60184937A (en) 1984-03-05 1984-03-05 Gas pressure controller for gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59041682A JPS60184937A (en) 1984-03-05 1984-03-05 Gas pressure controller for gas engine

Publications (2)

Publication Number Publication Date
JPS60184937A JPS60184937A (en) 1985-09-20
JPH039300B2 true JPH039300B2 (en) 1991-02-08

Family

ID=12615196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59041682A Granted JPS60184937A (en) 1984-03-05 1984-03-05 Gas pressure controller for gas engine

Country Status (1)

Country Link
JP (1) JPS60184937A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109237A (en) * 1986-10-28 1988-05-13 Daihatsu Diesel Kk Gas injection engine
US5136986A (en) * 1991-04-26 1992-08-11 Energy Conversions, Inc. Dual fuel injection structure
AUPN489595A0 (en) * 1995-08-18 1995-09-14 Orbital Engine Company (Australia) Proprietary Limited Gaseous fuel direct injection system for internal combustion engines
WO1997029273A1 (en) * 1996-02-12 1997-08-14 Scfm Compression Systems, Company Exhaust gas driven fuel gas pressure booster method and apparatus
JP2013209926A (en) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd Ship, fuel gas supply apparatus, and fuel gas supply method

Also Published As

Publication number Publication date
JPS60184937A (en) 1985-09-20

Similar Documents

Publication Publication Date Title
JP4083571B2 (en) Method for operating an internal combustion engine
US5758622A (en) Process and device for controlling an internal combustion engine
US3956892A (en) Fuel-air regulating system for hot gas engines
KR950019079A (en) Gas turbine control method and apparatus
US5477834A (en) Fuel injection control apparatus
WO2001075308A1 (en) A gas compressor
US4711216A (en) Fuel supply device for an internal combustion engine
JPS61286540A (en) Fuel injection controller
JPH0693936A (en) Accumulator fuel injection device
US6712037B2 (en) Low pressure direct injection engine system
JPH039300B2 (en)
CN110700954A (en) Liquid dual-fuel medium-speed diesel engine system and speed regulation control method thereof
JP2882358B2 (en) Accumulator type fuel injection device
CN211343148U (en) Liquid dual-fuel medium-speed diesel engine system
JPH11210534A (en) Self ignition type air compression internal combustion engine driving method and fuel injection system thereof
JPS6060020B2 (en) Diesel engine fuel injection control method
IE41519B1 (en) A power unit
JPH06235352A (en) Fuel gas feeding device for torch ignition type gas engine
SU1758262A1 (en) Internal combustion engine
JPH0953485A (en) Two fluid injection system of internal combustion engine
US5070689A (en) Power unit with stored energy
SU1740725A1 (en) Free-piston diesel-compressor
JPH04109468U (en) fuel injector
JPS61145329A (en) Method of successively injecting two kinds of fuels and fuel injection valve
KR100252361B1 (en) Hydrogen engine