JPH03928A - Intake system for internal combustion engine - Google Patents

Intake system for internal combustion engine

Info

Publication number
JPH03928A
JPH03928A JP1137052A JP13705289A JPH03928A JP H03928 A JPH03928 A JP H03928A JP 1137052 A JP1137052 A JP 1137052A JP 13705289 A JP13705289 A JP 13705289A JP H03928 A JPH03928 A JP H03928A
Authority
JP
Japan
Prior art keywords
exhaust gas
intake
valve
feed
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1137052A
Other languages
Japanese (ja)
Other versions
JP2773823B2 (en
Inventor
Hiromitsu Matsumoto
松本 広満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP1137052A priority Critical patent/JP2773823B2/en
Publication of JPH03928A publication Critical patent/JPH03928A/en
Application granted granted Critical
Publication of JP2773823B2 publication Critical patent/JP2773823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To surely perform combustion of mixture and improve fuel consumption by forming a feed nozzle to feed exhaust gas (or air) in the proximity of an intake valve, and blowing out exhaust gas from the feed nozzle synchronizing with the section stroke of an internal combustion engine. CONSTITUTION:When an EGR device is used as an exhaust gas for pumping loss feed device, a control valve 20 is provided between on the way of an exhaust gas recovering pipe 23 connecting its upper stream end to a recovery port 13a formed on an exhaust manifold 13, and the lower stream end of the recovering pipe 23 is connected to the introducing port 31 of a rotary valve 30 as a feed timing control means to inject exhaust gas synchronizing with the suction stroke of an engine 1. The control valve 20 is controlled for its opening degree with negative suction pressure through a control valve 38 controlled according to the load and the rotating speed of the engine. A feed nozzle 37a arranged on the part facing an intake valve 9 in an intake passage 7 is connected to the feed port of the rotary valve 30 through piping.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の吸気装置に関し、特に4サイクル
エンジンの吸入行程時におけるポンピングロスを小さ(
して燃料消費率(以下、燃費と記す)を改善できるよう
にした吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake system for an internal combustion engine.
The present invention relates to an intake device that can improve fuel consumption rate (hereinafter referred to as fuel efficiency).

(従来の技術〕 4サイクルエンジンの動作は吸入行程、圧縮行程、燃焼
−膨張行程、排気行程の4行程からなり、この吸入行程
は吸気バルブを開き、ピストンを下降運動させることに
より燃焼室内に負圧を発止させ、これにより燃料混合気
を燃焼室内に吸入する行程である。ところでこの吸入行
程においては、ピストンの下降運動により燃料混合気を
燃焼室内に吸い込む際のポンプ損失、いわゆるポンピン
グロスが生じ、燃費を悪化させるという問題がある。
(Prior Art) The operation of a 4-stroke engine consists of four strokes: an intake stroke, a compression stroke, a combustion-expansion stroke, and an exhaust stroke.The intake stroke opens the intake valve and moves the piston downward to create a negative load inside the combustion chamber. This is a stroke in which pressure is generated and the fuel mixture is sucked into the combustion chamber.In this intake stroke, there is a so-called pumping loss, which is the pumping loss when sucking the fuel mixture into the combustion chamber by the downward movement of the piston. There is a problem that this occurs and fuel consumption deteriorates.

このポンピングロスはスロットルバルブが略閉状態の低
負荷運転時はど大きくなる。このようなポンピングロス
をできるだけ小さくして燃費を向上させるために、従来
から排気ガスの一部をインテークマニホルド内に供給す
る吸気装置を上記エンジンに付加する場合がある。この
吸気装置は、エキゾーストマニホルドに排気ガス回収管
の一端を接続し、他端をインテークマニホルドの集合部
に接続するとともに、上記回収管にインテークマニホル
ドの内圧に応じて開閉するダイヤフラム式コントロール
バルブを配設して構成されている。この吸気装置によれ
ば、インテークマニホルド内に排気ガスを供給して燃料
混合気とミキシングさせることによりインテークマニホ
ルドの内圧を略大気圧状態にできるので、吸入行程時の
ボンピングロスを小さくできる。
This pumping loss increases during low load operation with the throttle valve in a substantially closed state. In order to reduce such pumping loss as much as possible and improve fuel efficiency, an intake device that supplies a portion of the exhaust gas into the intake manifold has conventionally been added to the engine. This intake system has one end of an exhaust gas recovery pipe connected to the exhaust manifold, and the other end connected to a gathering part of the intake manifold, and the recovery pipe is equipped with a diaphragm control valve that opens and closes depending on the internal pressure of the intake manifold. It is configured with the following settings. According to this intake device, the internal pressure of the intake manifold can be brought to a substantially atmospheric pressure state by supplying exhaust gas into the intake manifold and mixing it with the fuel mixture, so that the pumping loss during the intake stroke can be reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記従来の吸気装置では、排気ガスの供給量
を多くすればそれだけボンピングロスを低減できるわけ
であるが、この排気ガス量が、例えば燃料混合気に対し
て20%を越えると燃料混合気の良好な燃焼が得られず
、火炎伝播不良や失火の原因となる。従って、排気ガス
供給量を増大させるには限度があり、その結果ボンピン
グロス低減にも限界があるという問題点がある。
By the way, in the above-mentioned conventional intake system, the pumping loss can be reduced by increasing the amount of exhaust gas supplied. However, if the amount of exhaust gas exceeds, for example, 20% of the fuel mixture, the fuel mixture Good combustion cannot be obtained, leading to poor flame propagation and misfires. Therefore, there is a problem that there is a limit to increasing the amount of exhaust gas supplied, and as a result, there is a limit to reducing the pumping loss as well.

ここで、火炎伝播不良や失火を生じさせることなく排気
ガスの供給量を増大させるには、この排気ガスと燃料混
合気とを層状にして燃焼室内に供給し、着火部分、つま
り点火プラグの周囲には燃料混合気のみ偏在させること
が考えられる。ところが、上記従来の吸気装置は、イン
テークマニホルドの負圧で排気ガスを吸入するという構
造であり、一方、多気筒エンジンの場合は、いずれかの
気筒が吸入行程となっていることから、上記インテーク
マニホルドの内圧は常時負圧に保たれているのが一般的
である。従って従来装置では、排気ガスはインテークマ
ニホルド内に連続して流入することとなり、このため例
えば4気筒エンジンではインテークマニホールド内に供
給される全排気ガス量の約374は吸入行程以前にイン
テークマニホルド内にすでに流入しており、その結果、
排気ガスの供給口を吸気バルブ近傍に設けても排気ガス
は吸入行程初期に吸気バルブの全周から吸入されて燃焼
室内で拡散してしまう、従って従来装置では層状供給は
困難である。
Here, in order to increase the amount of exhaust gas supplied without causing poor flame propagation or misfire, the exhaust gas and fuel mixture are supplied into the combustion chamber in a layered manner, and the area around the ignition part, that is, the spark plug, is It is conceivable to make only the fuel mixture unevenly distributed. However, the above-mentioned conventional intake system has a structure in which exhaust gas is inhaled by the negative pressure of the intake manifold.On the other hand, in the case of a multi-cylinder engine, since one of the cylinders is in the intake stroke, the above-mentioned intake Generally, the internal pressure of the manifold is maintained at negative pressure at all times. Therefore, in the conventional device, exhaust gas continuously flows into the intake manifold, and for example, in a four-cylinder engine, approximately 374 of the total amount of exhaust gas supplied to the intake manifold flows into the intake manifold before the intake stroke. There has already been an influx, and as a result,
Even if the exhaust gas supply port is provided near the intake valve, the exhaust gas is drawn in from the entire circumference of the intake valve at the beginning of the intake stroke and diffuses within the combustion chamber. Therefore, it is difficult to supply the exhaust gas in a stratified manner with conventional devices.

本発明は上記従来の状況に鑑みてなされたもので、火炎
伝播不良や失火を確実に回避しながら排気ガスの供給量
を増大でき、ひいてはボンピングロスを低減できる内燃
機関の吸気装置を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional situation, and an object of the present invention is to provide an intake device for an internal combustion engine that can increase the amount of exhaust gas supplied while reliably avoiding poor flame propagation and misfire, and can further reduce pumping loss. It is an object.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明は、燃焼室に連通ずる吸気通路の吸気バル
ブ近傍に、排気ガス又は空気を供給する供給ノズルを形
成するとともに、該供給ノズルから上記排気ガス又は空
気を吸入行程に同期するように噴出させる供給時期制御
手段を設けたことを特徴とする内燃機関の吸気装置であ
る。
Therefore, the present invention forms a supply nozzle for supplying exhaust gas or air near the intake valve in the intake passage communicating with the combustion chamber, and jets out the exhaust gas or air from the supply nozzle in synchronization with the intake stroke. This is an intake system for an internal combustion engine, characterized in that it is provided with a supply timing control means for controlling the supply timing.

上記供給時期制御手段として、例えばロータリタイミン
グバルブを供給ノズルに接続し、該バルブの開動作を吸
気バルブの開動作と同期させるようにすることにより実
現できる。
The supply timing control means can be realized, for example, by connecting a rotary timing valve to the supply nozzle and synchronizing the opening operation of the valve with the opening operation of the intake valve.

また、上記排気ガス、空気を燃焼室内に噴出させる場合
、シリンダの内周壁に沿ってスワールするよう、あるい
は吸気通路の底壁に沿うよう方向性を持たせるのが望ま
しく、これにより上記排気ガス等と燃料混合気との層状
供給をより確実に行うことができる。
Furthermore, when the exhaust gas and air are injected into the combustion chamber, it is desirable to give them directionality so that they swirl along the inner circumferential wall of the cylinder or along the bottom wall of the intake passage. The stratified supply of the fuel mixture and fuel mixture can be more reliably performed.

また、本発明では排気ガス、又は空気のいずれを供給し
ても良いのであるが、ボンピングロスを低減し、かつ三
元触媒を効率良く作動させ得る空気/燃料比率A/Fを
確保する観点に立てば、排気ガスを供給するのが望まし
い。
Further, in the present invention, either exhaust gas or air may be supplied, but from the viewpoint of reducing pumping loss and ensuring an air/fuel ratio A/F that allows the three-way catalyst to operate efficiently. If it stands, it is desirable to supply exhaust gas.

〔作用〕[Effect]

本発明に係る内燃機関の吸気装置によれば、吸気バルブ
の近傍から排気ガス又は空気を吸入行程に同期させて噴
出させたので、排気ガス又は空気は吸入行程時のみに集
中して噴出することとなり、燃焼室内に排気ガス、又は
空気と燃料混合気とを層状に供給することができ、着火
部分に燃料混合気のみを偏在させることができる。その
結果、燃料混合気の燃焼を確実に行いながら排気ガスの
供給量を増大でき、火炎伝播不良や失火等の問題を生じ
ることなく、ボンピングロスを低減でき、ひいては燃費
を向上できる。
According to the intake system for an internal combustion engine according to the present invention, the exhaust gas or air is ejected from the vicinity of the intake valve in synchronization with the intake stroke, so that the exhaust gas or air is ejected in a concentrated manner only during the intake stroke. Therefore, the exhaust gas or air and the fuel mixture can be supplied into the combustion chamber in a layered manner, and only the fuel mixture can be unevenly distributed in the ignition part. As a result, the amount of exhaust gas supplied can be increased while the fuel mixture is reliably combusted, bombing loss can be reduced without problems such as poor flame propagation and misfires, and fuel efficiency can be improved.

(実施例〕 以下、本発明の実施例を図について説明する。(Example〕 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図ないし第4図は本発明の一実施例による4サイク
ルエンジンの吸気装置を説明するための図である0本実
施例では、No、を低減するための排気ガス再循環装置
(EGR)をボンピングロス用排気ガス供給装置に兼用
した場合を例にとって説明する。
Figures 1 to 4 are diagrams for explaining an intake system for a four-stroke engine according to an embodiment of the present invention.In this embodiment, an exhaust gas recirculation system (EGR) is used to reduce An example will be explained in which the pump is also used as an exhaust gas supply device for pumping loss.

図において、1はプロパン等のガスを燃料とする4サイ
クルエンジンであり、これはシリンダプロック2の上面
にシリンダヘッド3を載置するとともに、咳へ7ド3の
上面をヘッドカバー(図示せず)で覆った構成となって
いる。上記シリンダブロック2内にはピストン4が往復
自在に配設されており、8亥ピストン4とシリンダへラ
ド3の台面に形成された凹部とで燃焼室5が形成されて
いる。なお、5aは点火プラグである。上記シリンダヘ
ッド3にはそれぞれ燃焼室5に連通ずる排気通路6及び
吸気通路7が形成されており、該各通路6.7にはこれ
を開閉する排気バルブ8及び吸気バルブ9が配設されて
いる。また、この各バルブ8.9はコイルスプリング1
0により閉方向に付勢されている。さらに、上記各バル
ブ8.9の上端には円筒状のバルブリフタ11を介して
カムシャフト12が配設されており、該カムシャフト1
2は、図示していないが、クランクシャフトにタイミン
グベルトを介して連結されている。
In the figure, 1 is a four-cycle engine that uses gas such as propane as fuel, and this has a cylinder head 3 placed on the top surface of a cylinder block 2, and a head cover (not shown) that covers the top surface of the cylinder block 2. It has a structure covered with A piston 4 is disposed in the cylinder block 2 so as to be reciprocatable, and a combustion chamber 5 is formed by the piston 4 and a recess formed in the base of the cylinder head 3. Note that 5a is a spark plug. The cylinder head 3 is formed with an exhaust passage 6 and an intake passage 7 that communicate with the combustion chamber 5, respectively, and each passage 6.7 is provided with an exhaust valve 8 and an intake valve 9 for opening and closing the passage. There is. Each valve 8.9 also has a coil spring 1.
0 in the closing direction. Further, a camshaft 12 is disposed at the upper end of each valve 8.9 via a cylindrical valve lifter 11, and the camshaft 12 is disposed at the upper end of each valve 8.9.
Although not shown, 2 is connected to the crankshaft via a timing belt.

上記排気通路6にはエキゾーストマニホルド13の一端
が接続されており、これの他端は図示していないが、三
元触媒コンバータを介してマフラに接続されている。ま
た、上記吸気通路7にはインテークマニホルド14の一
端が接続されており、これの他端にはキャプレタ15が
接続されている。
One end of an exhaust manifold 13 is connected to the exhaust passage 6, and the other end of the exhaust manifold 13 is connected to a muffler via a three-way catalytic converter (not shown). Further, one end of an intake manifold 14 is connected to the intake passage 7, and a capretor 15 is connected to the other end of the intake manifold 14.

このキャプレタ15は燃料供給管15cが接続されたベ
ンチュリ部15aと、該ベンチュリ部15aの下流に配
設されたスロットルバルブ15bとからなり、該キャブ
レタ15の上流端にはエアクリーナ16が接続されてい
る。
This carburetor 15 includes a venturi section 15a to which a fuel supply pipe 15c is connected, and a throttle valve 15b disposed downstream of the venturi section 15a, and an air cleaner 16 is connected to the upstream end of the carburetor 15. .

18は本実施例の吸気装置であり、これば排気ガス回収
バイブ23の途中に介設されたコントロールバルブ20
と、排気ガスを上記エンジン1の吸入行程に同期して噴
射させる供給時期制御手段としてのロータリバルブ30
とから構成されている。上記コントロールバルブ20は
、バルブ本体20aに回収通路20b及び供給通路20
cを連通形成し、該回収通路20bに開閉弁21を配設
するとともに、該開閉弁21にダイヤフラム22を接続
して構成されている。また上記排気ガス回収バイブ23
の上流端は上記エキゾーストマニホルド13に形成され
た回収口13aに接続されており、下2it端は上記ロ
ータリバルブ30の導入口31に接続されている。また
上記ダイヤフラム22には連通管24の一端が接続され
ており、これの他端は上記インテークマニホルド14に
形成された連道口14aに接続されている。またこの連
通管24の途中にはコントロールバルブ38が介設され
ている。このコントロールバルブ38ばエンジン負荷及
びエンジン回転数に応じて開閉弁21を開閉するための
もので、例えばエンジン負荷が低い時は開閉弁21を絞
って排気ガス流量を少なくして燃焼の安定化を図る。ま
た負荷一定時は、エンジン回転速度が高いほど開閉弁2
1を絞って排気ガス流量を一定にするように構成されて
いる。
Reference numeral 18 designates the intake device of this embodiment, which includes a control valve 20 interposed in the middle of the exhaust gas recovery vibe 23.
and a rotary valve 30 as a supply timing control means for injecting exhaust gas in synchronization with the intake stroke of the engine 1.
It is composed of. The control valve 20 has a recovery passage 20b and a supply passage 20 in a valve body 20a.
c is in communication with each other, an on-off valve 21 is disposed in the recovery passage 20b, and a diaphragm 22 is connected to the on-off valve 21. In addition, the exhaust gas recovery vibe 23
The upstream end of the exhaust manifold 13 is connected to the recovery port 13a formed in the exhaust manifold 13, and the lower end thereof is connected to the inlet 31 of the rotary valve 30. Further, one end of a communication pipe 24 is connected to the diaphragm 22, and the other end of the communication pipe 24 is connected to a communication port 14a formed in the intake manifold 14. Further, a control valve 38 is interposed in the middle of this communication pipe 24. This control valve 38 is for opening and closing the on-off valve 21 according to the engine load and engine speed. For example, when the engine load is low, the on-off valve 21 is throttled to reduce the exhaust gas flow rate and stabilize combustion. Plan. Also, when the load is constant, the higher the engine speed, the more the opening/closing valve 2
1 to keep the exhaust gas flow rate constant.

上記ロークリバルブ30はインテークマニホルド14上
に固定されたバルブ本体30aに回転弁30bを挿入し
て構成されている。上記バルブ本体30aには上記導入
口31と直交するように供給口32が形成されており、
この導入口31.供給口32は上記回転弁30bの回転
により連通又は閉塞されるようになっている。また、上
記回転弁30bの回転軸にはスプロケット33が固着さ
れており、このスプロケット33は上記カムシャフト1
2に固着されたスプロケット34にタイミングベルト3
5により連結されている。そして上記回転弁30bは上
記カムシャフト12が吸気バルブ9を押圧して開いた時
、これと同期して上記導入口31と供給口32とを連通
ずるようになっている。
The rotary valve 30 is constructed by inserting a rotary valve 30b into a valve body 30a fixed on the intake manifold 14. A supply port 32 is formed in the valve body 30a so as to be perpendicular to the introduction port 31,
This introduction port 31. The supply port 32 is communicated or closed by rotation of the rotary valve 30b. Further, a sprocket 33 is fixed to the rotating shaft of the rotary valve 30b, and this sprocket 33 is attached to the camshaft 1.
Timing belt 3 is attached to sprocket 34 fixed to sprocket 2.
5. When the camshaft 12 presses the intake valve 9 to open the rotary valve 30b, the inlet port 31 and the supply port 32 communicate with each other in synchronization with this.

上記ロータリバルブ30の供給口32には排気ガス供給
バイブ37の一端が接続されており、これの他端には供
給ノズル37aが接続されている。
One end of an exhaust gas supply vibrator 37 is connected to the supply port 32 of the rotary valve 30, and the other end of this is connected to a supply nozzle 37a.

この供給ノズル37aは上記シリンダヘッド3の吸気通
路7の吸気バルブ9を臨む部分に配設されており、該ノ
ズル37aの先端は上記燃焼室5の内壁の接線方向に向
けられている(第4図参照)。
This supply nozzle 37a is arranged in a portion of the intake passage 7 of the cylinder head 3 facing the intake valve 9, and the tip of the nozzle 37a is directed in the tangential direction of the inner wall of the combustion chamber 5 (the fourth (see figure).

これにより、上記エンジンlの吸入行程に同期して上記
供給ノズル37aから排気ガスを噴出させる吸気装置1
8が構成されている。
This allows the intake device 1 to eject exhaust gas from the supply nozzle 37a in synchronization with the intake stroke of the engine 1.
8 are made up.

次に本実施例の作用効果について説明する。Next, the effects of this embodiment will be explained.

本実施例の4サイクルエンジン1の吸気装置18の動作
を第2図ないし第4図について説明する。
The operation of the intake system 18 of the four-cycle engine 1 of this embodiment will be explained with reference to FIGS. 2 to 4. FIG.

上記エンジン1の吸入行程において、ピストン4の下降
運動に同期してカムシャフト12が吸気バルブ9を開く
とともに、ロークリバルブ30の回転弁30bが導入口
31と供給口32とを連通させ、これにより燃焼室5内
に燃料混合気Fと排気ガスGとが吸入される。この場合
、供給ノズル37aから噴出された排気ガスGはコント
ロールバルブ38による開閉弁21の開度及び燃焼室5
内の負圧に応じた量が供給されるとともに、該燃焼室5
の内壁に沿ってスワールし、該燃焼室5の内周壁部分に
偏在することとなる。一方、燃料混合気Fはスロットル
バルブ15bの開度に応じた量が供給されるとともに、
燃焼室5の中央部に偏在し、これにより排気ガスGと燃
料混合気Fとは外周層と中央層との二層状に供給される
こととなる。
In the intake stroke of the engine 1, the camshaft 12 opens the intake valve 9 in synchronization with the downward movement of the piston 4, and the rotary valve 30b of the low-return valve 30 communicates the inlet 31 and the supply port 32, thereby causing combustion. A fuel mixture F and exhaust gas G are drawn into the chamber 5 . In this case, the exhaust gas G ejected from the supply nozzle 37a is controlled by the opening of the on-off valve 21 by the control valve 38 and the combustion chamber 5.
The amount corresponding to the negative pressure inside the combustion chamber 5 is supplied.
It swirls along the inner wall of the combustion chamber 5, and is unevenly distributed on the inner circumferential wall of the combustion chamber 5. On the other hand, the fuel mixture F is supplied in an amount corresponding to the opening degree of the throttle valve 15b, and
The exhaust gas G and the fuel mixture F are unevenly distributed in the center of the combustion chamber 5, so that the exhaust gas G and the fuel mixture F are supplied in two layers: an outer layer and a center layer.

このように本実施例によれば、エンジン10)1人行程
に同期して排気ガスGを集中して、かつ燃焼室5の内周
壁に沿って旋回するよう噴出したので、排気ガスGと燃
料混合気Fとを層状に偏在させることができ、これによ
り多量の排気ガスGを供給しても、着火、火炎伝播への
影響をほとんど回避できる。その結果、排気ガスGの供
給量を増大できる分だけポンプ損失を低減でき、燃費を
向上できる。しかも本実施例では排気ガスを再循環させ
るので、燃焼温度が低下し、NO8を低減できる。また
、排気ガスを供給する方式であるからA/Fを三元触媒
の作動領域(理論空燃比)に設定でき、この三元触媒を
有効に作用させることができる。
As described above, according to this embodiment, the exhaust gas G is concentrated in synchronization with the single stroke of the engine 10) and is ejected so as to swirl along the inner circumferential wall of the combustion chamber 5, so that the exhaust gas G and the fuel are The air-fuel mixture F can be unevenly distributed in a layered manner, and as a result, even if a large amount of exhaust gas G is supplied, almost no effect on ignition and flame propagation can be avoided. As a result, pump loss can be reduced by the amount that the supply amount of exhaust gas G can be increased, and fuel efficiency can be improved. Moreover, in this embodiment, since the exhaust gas is recirculated, the combustion temperature is lowered and NO8 can be reduced. Furthermore, since the exhaust gas is supplied, the A/F can be set within the operating range (stoichiometric air-fuel ratio) of the three-way catalyst, allowing the three-way catalyst to operate effectively.

なお、上記実施例では吸入行程において排気ガスを供給
した場合を例にとって説明したが、本発明では空気を供
給してもよく、この場合においても吸入行程に同期させ
ることにより層状に供給することができ、上記実施例と
同様の効果が得られる。
In addition, although the above embodiment has been explained by taking as an example the case where exhaust gas is supplied during the intake stroke, the present invention may also supply air, and even in this case, it is possible to supply the exhaust gas in a layered manner by synchronizing with the intake stroke. The same effect as in the above embodiment can be obtained.

また、上記実施例では、吸気バルブ9の開き始めと同時
に回転弁30bが開き始めるようにしたが、この開き始
めの時期は必ずしも同じタイミングにする必要はなく、
要は吸入行程中のいずれかの期間に排気ガスを吸気バル
ブの近傍に集中して噴出できるようにタイミングを合わ
せればよい6第5図及び第6図は上記実施例の変形例を
示し、図中、第1図と同一符号は同−又は相当部分を示
す、この変形例は、インテークマニホルド14の底壁1
4bに排気ガス供給通路40を形成し、該通路40の上
流端をロークリバルブ30の供給口32に、下流端を供
給ノズル41に連通させ、該供給ノズル41を吸気通路
7の底壁に沿うスリット状に形成した例である。
Further, in the above embodiment, the rotary valve 30b starts opening at the same time as the intake valve 9 starts opening, but the opening timing does not necessarily have to be the same.
The key is to adjust the timing so that the exhaust gas can be ejected in a concentrated manner near the intake valve during any period during the intake stroke.6 Figures 5 and 6 show a modification of the above embodiment. Inside, the same reference numerals as in FIG. 1 indicate the same or corresponding parts. In this modification, the bottom wall 1 of the intake manifold 14
4b is formed with an exhaust gas supply passage 40, the upstream end of the passage 40 communicates with the supply port 32 of the low-resolution valve 30, the downstream end communicates with a supply nozzle 41, and the supply nozzle 41 is connected to a slit along the bottom wall of the intake passage 7. This is an example in which it is formed into a shape.

この変形例では、排気ガスは上記エンジン1の吸入行程
に同期して吸気通路7の底壁表面に沿って燃焼室5内に
吸入され、燃焼室5の第5図右側内壁部分に供偏在する
こととなる。このようにこの変形例においても排気ガス
と燃料混合気とを層状に供給することができ、上記実施
例と同様の効果が得られる。
In this modification, exhaust gas is sucked into the combustion chamber 5 along the bottom wall surface of the intake passage 7 in synchronization with the intake stroke of the engine 1, and is unevenly distributed on the right inner wall portion of the combustion chamber 5 in FIG. It happens. In this manner, also in this modification, the exhaust gas and the fuel mixture can be supplied in a layered manner, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る内燃機関の吸気装置によれ
ば、吸気バルブの近傍に供給ノズルを形成するとともに
、該供給ノズルから排気ガス又は空気を吸入行程に同期
させて噴出させる供給時期制御手段を設けたので、燃焼
室内に排気ガス、又は空気と燃料混合気とを層状に供給
することができ、燃料混合気の燃焼を確実に行いながら
排気ガス等の供給量を増大でき、その結果ボンピングロ
スを低減でき、燃費を向上できる効果がある。
As described above, according to the intake system for an internal combustion engine according to the present invention, the supply nozzle is formed near the intake valve, and supply timing control is performed to eject exhaust gas or air from the supply nozzle in synchronization with the intake stroke. Since the means is provided, exhaust gas or air and fuel mixture can be supplied into the combustion chamber in a stratified manner, and the amount of exhaust gas etc. to be supplied can be increased while ensuring combustion of the fuel mixture. This has the effect of reducing bombing loss and improving fuel efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の一実施例による4サイク
ルエンジンの吸気装置を説明するための図であり、第1
図はその概略構成図、第2図はその吸入行程時を示す概
略構成図、第3図はその排気ガスの吸入を示す模式図、
第4図はその燃焼室内の模式図、第5図は上記実施例の
変形例を示す概略構成図、第6図は第5図のvr−vr
線断面図である。 図において、1は4サイクルエンジン(内燃機関)、5
は燃焼室、7は吸気通路、9は吸気バルブ、18は吸気
装置、30はロータリバルブ(供給時期制御手段)、3
7a、41は供給ノズル、Gは排気ガスである。
1 to 4 are diagrams for explaining an intake system for a four-stroke engine according to an embodiment of the present invention.
The figure is a schematic diagram of the configuration, Figure 2 is a schematic diagram of the intake stroke, and Figure 3 is a schematic diagram of the intake of exhaust gas.
Fig. 4 is a schematic diagram of the inside of the combustion chamber, Fig. 5 is a schematic configuration diagram showing a modification of the above embodiment, and Fig. 6 is a vr-vr diagram of Fig. 5.
FIG. In the figure, 1 is a 4-cycle engine (internal combustion engine), 5 is
1 is a combustion chamber, 7 is an intake passage, 9 is an intake valve, 18 is an intake device, 30 is a rotary valve (supply timing control means), 3
7a and 41 are supply nozzles, and G is exhaust gas.

Claims (1)

【特許請求の範囲】[Claims] (1)燃焼室に連通する吸気通路の吸気バルブ近傍に、
排気ガス又は空気を供給する供給ノズルを形成するとと
もに、該供給ノズルから上記排気ガス又は空気を該内燃
機関の吸入行程に同期するように噴出させる供給時期制
御手段を設けたことを特徴とする内燃機関の吸気装置。
(1) Near the intake valve in the intake passage communicating with the combustion chamber,
An internal combustion engine characterized by comprising a supply nozzle for supplying exhaust gas or air, and supply timing control means for jetting out the exhaust gas or air from the supply nozzle in synchronization with the intake stroke of the internal combustion engine. Engine intake system.
JP1137052A 1989-05-29 1989-05-29 Intake device for internal combustion engine Expired - Fee Related JP2773823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1137052A JP2773823B2 (en) 1989-05-29 1989-05-29 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137052A JP2773823B2 (en) 1989-05-29 1989-05-29 Intake device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03928A true JPH03928A (en) 1991-01-07
JP2773823B2 JP2773823B2 (en) 1998-07-09

Family

ID=15189755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137052A Expired - Fee Related JP2773823B2 (en) 1989-05-29 1989-05-29 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2773823B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118362A (en) * 2004-10-19 2006-05-11 Mitsubishi Heavy Ind Ltd Gas engine with egr system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969360A (en) * 1982-10-14 1984-04-19 Tsudakoma Ind Co Ltd Tension detecting method and device during 2-beam delivery, winding and the like
JPS5991882A (en) * 1982-10-08 1984-05-26 ヘキスト・アクチエンゲゼルシヤフト Preparation of living catalyst of bead form
JPS6163081A (en) * 1984-09-03 1986-04-01 松下電器産業株式会社 Electronic circuit part and its mounting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991882A (en) * 1982-10-08 1984-05-26 ヘキスト・アクチエンゲゼルシヤフト Preparation of living catalyst of bead form
JPS5969360A (en) * 1982-10-14 1984-04-19 Tsudakoma Ind Co Ltd Tension detecting method and device during 2-beam delivery, winding and the like
JPS6163081A (en) * 1984-09-03 1986-04-01 松下電器産業株式会社 Electronic circuit part and its mounting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118362A (en) * 2004-10-19 2006-05-11 Mitsubishi Heavy Ind Ltd Gas engine with egr system
JP4576198B2 (en) * 2004-10-19 2010-11-04 三菱重工業株式会社 Gas engine with EGR system

Also Published As

Publication number Publication date
JP2773823B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
JPH0232466B2 (en)
US4060059A (en) Internal combustion engine
JPS63173813A (en) Two-cycle internal combustion engine
EP0691470A1 (en) Internal combustion engine and method for forming the combustion charge thereof
WO2002001054A3 (en) Conjugate vortex stratified exhaust gas recirculation system
JPS6435021A (en) Device and method of introducing vaporized fuel mixture to cylinder for engine under pressure
JPS5825512A (en) 4-cycle engine
JP2773823B2 (en) Intake device for internal combustion engine
JPH06146886A (en) Cylinder injection type internal combustion engine
US3967611A (en) Stratified-combustion type internal combustion engine with pre-combustion-chamber
JP3799183B2 (en) Engine intake system
JP3094215B2 (en) Engine intake system
JPS61167129A (en) 2-cycle internal-combustion engine
JPH0261364A (en) Fuel feeding device for two-cycle engine
JPH0545789Y2 (en)
JP3008417B2 (en) 2-stroke engine
JPH0631146Y2 (en) Combustion chamber structure of two-cycle internal combustion engine
JPH04116223A (en) Two-cycle diesel engine having sub-chamber
JPH0341055Y2 (en)
JPS5851373Y2 (en) 2-stroke internal combustion engine
JPS6341538Y2 (en)
JPH0245614A (en) Crank chamber preliminarily pressurized type two cycle engine
JPH0633852A (en) Fuel feeding device for engine
JPH04116222A (en) Two-cycle diesel engine having sub-chamber
JPH06323141A (en) Scavenging mechanism for two-cycle engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees