JPH0392595A - Vertical shaft pump - Google Patents

Vertical shaft pump

Info

Publication number
JPH0392595A
JPH0392595A JP22793489A JP22793489A JPH0392595A JP H0392595 A JPH0392595 A JP H0392595A JP 22793489 A JP22793489 A JP 22793489A JP 22793489 A JP22793489 A JP 22793489A JP H0392595 A JPH0392595 A JP H0392595A
Authority
JP
Japan
Prior art keywords
water level
branch pipe
pumping
water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22793489A
Other languages
Japanese (ja)
Inventor
Katsuro Konishi
小西 克郎
Masahide Konishi
小西 正英
Tsukasa Imamura
司 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP22793489A priority Critical patent/JPH0392595A/en
Publication of JPH0392595A publication Critical patent/JPH0392595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To prevent hunting while keeping waiting running performance for full speed by arranging a valve, which is closed through discharge pressure and is opened during closing of a discharge pipe, at a suction port of a reverse U-letter shaped branch pipe connected to an inlet casing, and also by setting a return bend portion of the branch pipe higher than a suction head due to maximum negative pressure in a runner casing. CONSTITUTION:A reverse U-letter shaped branch pipe 3 is connected to a suction casing 2 communicating with an impeller casing 6. A lower open end 7 of the branch pipe 3 is located near the lowest water level, and the branch pipe 3 has an air inlet port 14 for introducing air. A valve 13 is provided at the air inlet port 14 for closing the pipe line by discharge pressure and for opening the pipe line during no-discharge. A return bend portion 8 of the reverse U-letter shaped branch pipe 3 is set higher than the suction head due to the maximum negative pressure generated in the impeller casing 6. Thus, transition from operation in air to pumping operation and vice versa is performed on the basis of different water levels. Consequently, it is possible to prevent hunting while keeping waiting running performance for full speed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水位に関係なく全速運転を行わせることが可
能な立軸ポンプに関する. [従来の技術] 従来より、排水機場のポンプ吸水井などに設置されてい
る一般的な立軸ポンプには、水位が一定のレベルより低
いと吸込口が水中にあるのにもかかわらず渦を生じて空
気混じりの水を吸い込むといった、個々のポンプに特有
の最低水位(揚水停止水位)が存在し、水位がこの最低
水位よりも低レベルであるときに運転を行うと、空気吸
込み渦の発生や呼吸現象などに起因して振動や騒音など
を生じるという特性がある.したがって、このような一
般的な立軸ポンプを、吸水井などの水位に関係な〈全速
で運転して不慮の出水などのために待機させておくと(
全速待機運転)、水位が前記最低水位以下にあるときに
激しい振動や騒音が発生してポンプ運転機能障害を引き
起こしたり、基礎や建屋の損傷を引き起こしたりすると
いった事態を生じることがある. そこで、従来の一般的な立軸ポンプでは、全速待機建転
を行わず、水位が最低水位よりも高いときのみ窪転を行
い、水位が最低水位より低いときには運転を停止すると
いった運転システムが採用されていた. ところが、近年では、都市化の進展に伴う舗装率の増大
や緑地の減少などにより地層の保水機能が低下している
一方で、前記吸水井などへの流入水量が増大する傾向に
あり、しかも、所謂、鉄砲水のように突発的に急激に大
量の水が吸水井に流入することも多々生じている.その
ため,吸水井などでは、水位が短時間で変動し、従来の
一般的な立軸ポンプによる前述の運転システムでは立軸
ポンプの運転開始タイミングや運転停止タイミングを的
確に制御することができず、水位の異常上昇による洪水
の発生や異常低下にょるポンプ運転機能障害の発生とい
った事態の引き起こされる懸念があった. そこで、本願出願人は特願昭el−280867号によ
り、水位が最低水位より高いか低いかに関係なく安定し
た全速待機運転を行うことが可能な立軸ポンプを提案し
た。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a vertical shaft pump that can be operated at full speed regardless of the water level. [Conventional technology] Traditionally, general vertical shaft pumps installed in pump water intake wells of drainage pump stations, etc., have a problem in that when the water level is lower than a certain level, a vortex is generated even though the suction port is underwater. Each pump has its own minimum water level (pumping stop level), at which air-mixed water is sucked into the pump, and if the pump is operated when the water level is lower than this minimum water level, air suction vortices may occur. It has the characteristic of generating vibrations and noise due to breathing phenomena. Therefore, if a general vertical shaft pump like this is operated at full speed and left on standby in case of an unexpected water outflow, etc.
When the water level is below the above-mentioned minimum water level, severe vibrations and noise may occur, causing pump operation malfunction or damage to the foundation or building. Therefore, conventional general vertical shaft pumps do not perform full-speed standby construction, but instead perform dimple rotation only when the water level is higher than the minimum water level, and stop operation when the water level is lower than the minimum water level. It was. However, in recent years, the water retention function of the strata has been decreasing due to an increase in paving ratio and a decrease in green areas due to the progress of urbanization, and at the same time, the amount of water flowing into the water absorption wells has been increasing. There are many cases where large amounts of water suddenly and rapidly flow into water intake wells, such as in so-called flash floods. Therefore, in water intake wells, etc., the water level fluctuates in a short period of time, and the above-mentioned operation system using conventional vertical shaft pumps cannot accurately control the operation start timing and operation stop timing of the vertical shaft pump, and the water level changes. There were concerns that abnormal rises could lead to flooding, and abnormal drops could lead to problems with pump operation. Therefore, in Japanese Patent Application No. EL-280867, the applicant of the present application proposed a vertical shaft pump that can perform stable full-speed standby operation regardless of whether the water level is higher or lower than the minimum water level.

この立軸ポンプは、第4図に示すように、ポンプ羽根車
1の前方(上流側)の吸込側ケーシング2にその吸込口
よりもはるかに径小でかつ大気中に開放された分岐管3
を連通させると共に、この分岐管3の先端部に吸気弁4
を介設し、この吸気弁4を水位検出計5からの信号によ
って開閉制御するようにしたものである。
As shown in FIG. 4, this vertical shaft pump has a branch pipe 3 that is much smaller in diameter than the suction port and is open to the atmosphere in a suction side casing 2 in front (upstream side) of a pump impeller 1.
At the same time, an intake valve 4 is connected to the tip of this branch pipe 3.
The intake valve 4 is opened and closed by a signal from a water level detector 5.

この立軸ポンプは全速大気運転される.そして、吸水井
Pの水位が前記最低水位よりも下位から上昇している場
合において、水位検出計5により水位が前記最低水位に
達してい状態を検出している間は吸気弁4を開成し、水
位検出計5により吸水井Pの水位が前記最低水位に達し
ている状態を検出すると、吸気弁4を閉じるように制御
するから,水位が前記最低水位に達するまでは、分岐管
3から羽根車室6に吸気されて揚水が行われず,所謂、
気中での全速運転が無理なく続行され、水位が前記最低
水位に達した後には、分岐管3からの羽根車室6への吸
気を停止して通常の揚水運転が行われる. 一方、吸水井Pの水位が前記最低水位よりも上位から下
降している場合において、水位検出計5により水位が最
低水位に達していないことを検出している間は、吸気弁
4の閉成状態が保持されて、揚水運転が続行される.水
位検出計5により水位が最低水位に達した状態を検出す
ると、吸気弁4が開かれ、径小な分岐管3を通して羽根
車室6に空気が吸い込まれ、揚水が遮断されて揚水運転
から無理な〈気中運転に切り換わる.したがって、この
立軸ポンプによれば、突発的な水位の上昇や下降に対処
し得る全速待機運転ができるようになり、前述した水位
の異常上昇による洪水の発生や異常低下によるポンプ運
転機能障害の発生などを防止することが可能になる.[
発明が解決しようとする課題] しかし、この立軸ポンプに用いられている水位検出計5
は水質や塵芥などによる悪影響を受けることが懸念され
る.このことは前記立軸ポンプが不慮の出水などに対処
し得ることを要求されるものであることを考えると、き
わめて重要なyX:題の一つである.また、電動弁や空
気圧操作弁などにより構威される吸気弁4は外部駆動源
が必要であり、それを操作させるためにシーケンス制御
も必要であるという難点がある. このような事情を踏まえ,本願出願人はさらに特願平1
−113193号において、水位検出計や1!動吸気弁
を用いずに、水位が最低水位より高いか低いかに関係な
く安定した全速待機運転を行わせることが可能な立軸ポ
ンプを提案した. この立軸ポンプは、第5図に示すように、分岐管3を逆
U字状としてその下部開放端7を前記最低水位LWLと
同一レベルもしくはそれに近いレベルに設定し、しかも
U字状の前記分岐管3の折返し部8を、羽根車1を全速
運転したときに羽根車室6の吸込部に発しする最大負圧
による吸込揚程よりも高い位置に設定したものである。
This vertical shaft pump is operated at full speed in the atmosphere. When the water level of the water intake well P is rising from below the minimum water level, the intake valve 4 is opened while the water level detector 5 detects that the water level has reached the minimum water level, When the water level detector 5 detects that the water level in the water intake well P has reached the minimum water level, the intake valve 4 is controlled to close. Air is taken into chamber 6 and water is not pumped, so-called
After the full speed operation in air continues without difficulty and the water level reaches the minimum water level, the intake of air from the branch pipe 3 to the impeller chamber 6 is stopped and normal water pumping operation is performed. On the other hand, when the water level of the water intake well P is falling from above the minimum water level, the intake valve 4 is closed while the water level detector 5 detects that the water level has not reached the minimum water level. The condition is maintained and pumping operation continues. When the water level detector 5 detects that the water level has reached the lowest water level, the intake valve 4 is opened, air is sucked into the impeller chamber 6 through the small diameter branch pipe 3, and water pumping is cut off, making pumping operation impossible. 〈Switches to air driving. Therefore, with this vertical shaft pump, it is possible to perform full-speed standby operation that can cope with sudden rises or falls in the water level, and the above-mentioned problems such as flooding caused by an abnormal rise in water level or pump operation malfunction caused by an abnormal drop in water level can be achieved. It becomes possible to prevent such things. [
Problems to be Solved by the Invention] However, the water level detector 5 used in this vertical shaft pump
There are concerns that water quality and dust may have negative effects on water quality. This is an extremely important issue considering that the vertical shaft pump is required to be able to cope with unexpected water outflows. In addition, the intake valve 4, which is operated by an electric valve or a pneumatically operated valve, requires an external drive source, and sequence control is also required to operate it. In light of these circumstances, the applicant further filed the patent application No. 1
- In No. 113193, water level detector and 1! We proposed a vertical shaft pump that can perform stable full-speed standby operation regardless of whether the water level is higher or lower than the minimum water level without using a dynamic intake valve. As shown in FIG. 5, this vertical shaft pump has a branch pipe 3 shaped like an inverted U, with its lower open end 7 set at the same level as or close to the lowest water level LWL, and the U-shaped branch The folded portion 8 of the tube 3 is set at a position higher than the suction lift due to the maximum negative pressure generated in the suction portion of the impeller chamber 6 when the impeller 1 is operated at full speed.

この立軸ポンプにおいて、全速運転中に吸水井Pの水位
が前記最低水位LWLよりも下位から上昇している場合
,その水位が前記下部開放端7に達していないときは、
その下部開放端7から分岐管3を経て羽根車室6に吸気
されるため揚水が行われず,所謂、気中での全速運転が
無理なく続行されるのに対し、水位が前記最低水位LW
Lに達すると前記下部開放端7が水封されるため、ベル
マウス9を含む吸込側ケーシング2や分岐管3内の残留
空気を吸込みながら速やかに揚水運転に切り換わり、吸
込側ケーシング2の残留空気が完全に吸い込まれた時点
で完全な揚水運転が行われるそして分岐管3の折返し部
8が羽根車室6に発生する最大負圧による吸込揚程より
も高い位置に設定されている関係上、揚水運転中は分岐
管3の垂下部10に前記羽根車室6の負圧に相当する高
さだけ水が吸い上げられて釣り合った状態になるため、
分岐管3から羽根車室6には吸水されず、水は吸込側ケ
ーシング2だけを通して吸い上げられて円滑な揚水運転
がなされる. 一方、立軸ポンプの全速運転中に吸水井Pの水位が前記
最低水位LWLよりも上位から下降している場合,その
水位が前記下部開放端7に低下していないときは、その
下部開放端7が水封されたままになっているため揚水が
続行され、分岐管3の垂下部10には前記羽根車室6の
負圧に相当する高さだけ水を吸い上げられて釣り合った
状態になっている.水位が最低水位LWLに達し,分岐
管3の下部開放端7の水封が解除されたときに、垂下部
10に吸い上げられている水が落下して分岐管3を全長
にわたって開放するため、下部開放端7から分岐管3を
経て空気が羽根車室6に吸い込まれ、その吸気に伴って
吸込側ケーシング2などを満たしている水が遮断されて
速やかに無理なく気中運転に切り換わる. この立軸ポンプによれば、突発的な水位の上昇や下降に
対してポンプを全速運転状態として待機させることがで
きるようになり、上述した水位の異常上昇による洪水や
異常低下によるポンプ運転機能障害を防止することが可
能になり、同時に第4図で説明した水位検出計5や吸水
弁4を用いなくてよいので、水質や塵芥などにより水位
検出計5が悪影響を受けるといった問題や制御装置が若
干煩雑になるといった問題がなくなり,不慮の出水など
に確実に対処することができるようになる. ところが、第5図の立軸ポンプにおいて,最低水位LW
L付近での水位の変動速度が遅い場合やその最低氷位L
WLの付近で水面が波打ったりしている場合には、分岐
管3の下部開放端7が水没したり大気に開放されたりす
る挙動が短時間のうちに何回も繰り返され、下部開放端
7が大気に開放されたときの下部開放端7の開口面積や
開放時間が不十分になることがある.このような事態を
生じると、分岐管3による羽根車室6への不十分な吸気
が短時間のうちに断続的に行われるといった、所謂、ハ
ンチング現象が発生し、気中運転から揚水運転、あるい
は揚水運転から気中運転への切換わりが円滑に行われず
、羽根車lに無理な力が加わってポンプ機能障害を引き
起こす懸念がある.このハンチング現象は特に吸水井P
などの水位が最低水位LWLよりも上位から下降して揚
水運転から気中運転に切り換わるときに顕著に発生する
.これは全速待機運転中における気中運転と揚水運転と
の相互間での移行が前記最低水位LWLと同一レベルま
たはその付近のレベルに設定された前記下部開放端7の
レベルを基準として行われており、しかも下部開放端7
の開口面積や開放時間が不足すると、吸込側ケーシング
2にそれまで行われていた揚水を速やかに遮断するのに
必要な空気吸込量を確保できなくなるからである.本発
明は以上の事情に鑑みなされたもので、気中運転から揚
水運転への移行と揚水運転から気中運転への移行とが異
なるレベルを基準にして行われるようにすることによっ
て、第5図で説明した立軸ポンプの全速待機運転性能を
そのまま維持しつつ、上述したハンチング現象の発生を
防止することが可能な立軸ポンプの提供を目的とする.
[課題を解決するための千段] 本発明にかかる第1の発明は、羽根車室に連通する吸込
側ケーシングに下部開放端を立軸ポンプの最低水位もし
くはその付近に設定した逆U字状の分岐管が接続され、
この分岐管に空気の導入可能な吸気口が開設され、該吸
気口に立軸ポンプの揚水圧によって閉成し、揚水遮断時
に開成される弁が介設され、前記分岐管の逆U字状の折
返し部が羽根車室に発生する最大負圧による吸込揚程よ
りも高い位置に設定したものである. また、前記目的を達或するために、本発明にかかる第2
の発明は、羽根車室に連通する吸込側ケーシングに下部
開放端を立軸ポンプの最低水位もしくはその付近に設定
した逆U字状の分岐管が接続され、この分岐管と立軸ポ
ンプの吐出側ケーシングとを互いに連通させる連通管が
設けられるとともに、この連通管に立軸ポンプの揚水圧
によって閉成し揚水遮断時に開成されて該連通管を大気
に開閉させる弁が介設された吸気口を開設し、前記分岐
管の逆U字状の折返し部が前記羽根車室に発生する最大
負圧による吸込揚程よりも高い位置に設定したものであ
る。
In this vertical shaft pump, when the water level of the water suction well P rises from below the lowest water level LWL during full speed operation, and the water level does not reach the lower open end 7,
Since air is taken into the impeller chamber 6 from the lower open end 7 via the branch pipe 3, water is not pumped and so-called full-speed operation in air continues without difficulty, whereas the water level is lower than the minimum water level LW.
When the lower open end 7 reaches L, the lower open end 7 is sealed with water, and the operation is quickly switched to pumping operation while sucking in the residual air in the suction side casing 2 including the bell mouth 9 and the branch pipe 3, and the remaining air in the suction side casing 2 is removed. A complete pumping operation is performed when the air is completely sucked in, and since the folded part 8 of the branch pipe 3 is set at a position higher than the suction lift due to the maximum negative pressure generated in the impeller chamber 6, During pumping operation, water is sucked up by the hanging portion 10 of the branch pipe 3 to a height corresponding to the negative pressure of the impeller chamber 6, and a balanced state is created.
Water is not sucked into the impeller chamber 6 from the branch pipe 3, and water is sucked up only through the suction side casing 2, resulting in smooth water pumping operation. On the other hand, if the water level in the water suction well P is lower than the lowest water level LWL during full speed operation of the vertical shaft pump, and if the water level has not fallen to the lower open end 7, then the lower open end 7 Since the water remains sealed, water pumping continues, and water is sucked up into the hanging portion 10 of the branch pipe 3 to a height corresponding to the negative pressure in the impeller chamber 6, resulting in a balanced state. There is. When the water level reaches the lowest water level LWL and the water seal at the lower open end 7 of the branch pipe 3 is released, the water sucked up into the hanging part 10 falls and opens the branch pipe 3 along its entire length. Air is sucked into the impeller chamber 6 from the open end 7 via the branch pipe 3, and the water filling the suction side casing 2 and the like is shut off with the intake air, and the operation is quickly and easily switched to air operation. According to this vertical shaft pump, the pump can be put on standby in full speed operation in the event of a sudden rise or fall in the water level, and the above-mentioned flooding due to an abnormal rise in water level or pump operation malfunction due to an abnormal drop in water level can be avoided. At the same time, since there is no need to use the water level detector 5 or the water intake valve 4 explained in FIG. Problems such as complication will be eliminated, and it will be possible to reliably deal with unexpected flooding. However, in the vertical shaft pump shown in Figure 5, the lowest water level LW
If the water level fluctuates slowly near L or its lowest ice level L
When the water surface is undulating near the WL, the behavior of the lower open end 7 of the branch pipe 3 being submerged in water and being exposed to the atmosphere is repeated many times in a short period of time, causing the lower open end 7 to When the lower open end 7 is exposed to the atmosphere, the opening area and opening time of the lower open end 7 may be insufficient. When such a situation occurs, a so-called hunting phenomenon occurs, in which insufficient air is intermittently drawn into the impeller chamber 6 by the branch pipe 3 in a short period of time, and the process changes from air operation to pumping operation. Alternatively, there is a concern that the switch from pumping operation to submerged operation may not be performed smoothly, and excessive force may be applied to the impeller l, causing pump malfunction. This hunting phenomenon is especially observed in water absorption well P.
This occurs noticeably when the water level falls from above the lowest water level LWL and switches from pumping operation to submerged operation. This is because the transition between submerged operation and pumped storage operation during full-speed standby operation is performed with reference to the level of the lower open end 7, which is set at the same level as or near the lowest water level LWL. Moreover, the lower open end 7
This is because if the opening area or opening time of the casing 2 is insufficient, it will not be possible to secure the amount of air sucked into the suction side casing 2 that is necessary to quickly shut off the water pumping that has been performed up to that point. The present invention has been made in view of the above circumstances, and by making the transition from submersible operation to pumping operation and the transfer from pumping operation to submersible operation based on different levels, The purpose of this invention is to provide a vertical shaft pump that can prevent the hunting phenomenon described above while maintaining the full speed standby operation performance of the vertical shaft pump explained in the figure.
[A thousand steps to solve the problem] The first invention according to the present invention is an inverted U-shaped in which the lower open end of the suction side casing communicating with the impeller chamber is set at or near the lowest water level of the vertical shaft pump. branch pipe is connected,
An intake port through which air can be introduced is opened in this branch pipe, and a valve that is closed by the pumping pressure of the vertical pump and opened when the pumping is cut off is interposed, and the inverted U-shaped inlet of the branch pipe The folded part is set at a position higher than the suction lift due to the maximum negative pressure generated in the impeller chamber. In addition, in order to achieve the above object, the second aspect of the present invention
In the invention, an inverted U-shaped branch pipe whose lower open end is set at or near the lowest water level of the vertical shaft pump is connected to the suction side casing communicating with the impeller chamber, and this branch pipe and the discharge side casing of the vertical shaft pump are connected to each other. A communication pipe is provided to communicate the two with each other, and an intake port is provided in the communication pipe, which is closed by the pumping pressure of the vertical pump and is opened when the pumping is interrupted to open and close the communication pipe to the atmosphere. , the inverted U-shaped folded portion of the branch pipe is set at a position higher than the suction lift due to the maximum negative pressure generated in the impeller chamber.

[作用] 第1の発明によれば、気中運転中には,弁に揚水圧が作
用しないので、弁は開いている.そのために、気中運転
時に水位が分岐管の下部開放端を水封する位置よりも下
位にある場合には、分岐管の下部開放端と吸気口の双方
から羽根車室に空気が吸込まれるので、揚水されること
なく気中運転が続行される. そして、水位が分岐管の下部開放端を水封する水位に達
して、下部開放端からの吸気がなされなくなっても、吸
気口から弁を通って吸気されるので、揚水されることな
く気中運転が続行される。
[Operation] According to the first invention, the valve is open during submerged operation because pumping pressure does not act on the valve. Therefore, during submerged operation, if the water level is below the position where the lower open end of the branch pipe is sealed, air is sucked into the impeller chamber from both the lower open end of the branch pipe and the intake port. Therefore, submerged operation continues without pumping water. Even if the water level reaches the water level that seals the lower open end of the branch pipe and air cannot be taken in from the lower open end, air is taken in from the intake port through the valve, so the water does not get pumped up and remains in the air. Driving continues.

さらに水位が上昇して揚水開始水位に達すると、羽根車
の自吸作用によって、吸込側ケーシングから揚水が開始
される. このように、揚水が開始されても、分岐管の折返し部が
羽根車室に発生する最大負圧にょる吸込揚程よりも高い
位置に設定されているから、分岐管を通って羽根車室に
水が吸込まれないので、揚水運転中における羽根車室の
水の流れを乱れさせない. 揚水運転によって生じる吐出側ケーシング内の揚水圧で
弁を閉成させる.当然、揚水開始水位よりも水位が上位
にあるときには吸込側ケーシングを通して揚水運転が続
行される. 揚水運転中では弁が閉或しているので、揚水運転中に水
位が下がっても、その水位が分岐管の下部開放端に低下
するまでの間は、揚水運転が続行される. 水位がさらに下がることで、分岐管の下部開放端よりも
下位になり、その下部開放端の水封が解除されると、羽
根車室の負圧により下部開放端から羽根車室に吸気され
、その吸気によって吸込側ケーシングを満たしていた揚
水が遮断され、気中運転に切換わる. 揚水が遮断されることで、弁に揚水圧が作用しなくなる
ので、弁が開或して、吸気口からも吸気されることにな
る。
When the water level rises further and reaches the pumping start water level, pumping starts from the suction side casing due to the self-priming action of the impeller. In this way, even when water pumping starts, since the folded part of the branch pipe is set at a position higher than the suction lift due to the maximum negative pressure generated in the impeller room, water flows through the branch pipe into the impeller room. Since water is not sucked in, the flow of water in the impeller chamber during pumping operation is not disturbed. The valve is closed by the pumping pressure in the discharge side casing generated by pumping operation. Naturally, when the water level is higher than the pumping start water level, pumping operation continues through the suction side casing. Since the valve is closed during pumping operation, even if the water level drops during pumping operation, pumping operation will continue until the water level falls to the lower open end of the branch pipe. As the water level further decreases, it becomes lower than the lower open end of the branch pipe, and when the water seal at the lower open end is released, air is drawn into the impeller chamber from the lower open end due to negative pressure in the impeller chamber. The intake air cuts off the pumped water that filled the casing on the suction side and switches to air operation. When pumping water is cut off, pumping pressure no longer acts on the valve, so the valve opens and air is also taken in from the intake port.

また、第2の発明によれば、気中運転中には、吐出側ケ
ーシングから辿通管に揚水が流れないので、揚水圧が弁
に作用しないから、弁は開いている.そのために、気中
運転時に水位が分岐管の下部開放端を本封する位置より
も下位にある場合には、分岐管の下部開放端と、吸気口
および連通管の一部を通り分岐管に合流する経路から羽
根車室に空気が吸込まれるとともに、吸気口から連通管
を通って吐出側ケーシングに空気が吸込まれて,揚水さ
れることなく気中運転が続行される。
Further, according to the second aspect of the invention, during submerged operation, pumped water does not flow from the discharge side casing to the passage pipe, so pumping water pressure does not act on the valve, so the valve is open. For this reason, if the water level is below the position where the lower open end of the branch pipe is permanently sealed during submerged operation, it will pass through the lower open end of the branch pipe, the intake port, and part of the communication pipe to the branch pipe. Air is drawn into the impeller chamber from the merging path, and air is also drawn into the discharge side casing from the intake port through the communication pipe, allowing air operation to continue without pumping water.

そして、水位が分岐管の下部開放端を水封する水位に達
して、下部開放端からの吸気がなされなくなっても、吸
気口から弁を通って連通管の一部を通り分岐管に合流す
るする経路から羽根車室に空気が吸込まれるとともに、
吸気口から連通管を通って吐出側ケーシングに空気が吸
込まれて吸気されるので,揚水されることなく気中運転
が続行される。
Even if the water level reaches a water level that seals the lower open end of the branch pipe and air is no longer taken in from the lower open end, the air flows from the intake port, through the valve, through part of the communication pipe, and into the branch pipe. Air is sucked into the impeller chamber from the path
Since air is drawn into the discharge side casing from the intake port through the communication pipe, air operation continues without water being pumped up.

さらに水位が上昇して揚水開始水位に達すると、羽根車
の自吸作用によって、吸込側ケーシングから揚水が開始
される. このように、揚水が開始されても,分岐管の折返し部が
羽根車室に発生する最大負圧による吸込揚程よりも高い
位置に設定されているから、分岐管を通って羽根室に水
が吸込まれないので、揚水運転中における羽根車室の水
の流れを乱れさせない, 揚水運転によって、吐出側ケーシングから連通管に揚水
が流れ込んで、揚水圧により弁を閉成させる.当然,揚
水開始水位よりも水位が上位にあるときには吸込側ケー
シングを通して揚水運転が続行される. 揚水運転中では弁が閉成しているので、揚水運転中に水
位が下がっても,その水位が分岐管の下部開放端に低下
するまでの間は、揚水運転が続行される. 水位がさらに下がることで、分岐管の下部開放端よりも
下位になり、その下郁開放端の水封が解除されると、羽
根車室の負圧により下部開放端から羽根車室に吸気され
、その吸気によって吸込側ケーシングを満たしていた揚
水が遮断され、気中迂転に切換わる. 揚水が遮断されることで、弁に揚水圧が作用しなくなる
ので、弁が開成して、前記同様に吸気口からも吸気され
ることになる. [実施例] 以下、本発明の実施例を図面に基づいて説明する. 第1図は本発明の第1実施例を示し、羽根車lを軸支し
た状態で内装している羽根車室6の下側,つまり上流側
に吸込側ケーシング2が連通状態で接続され、上側、即
ち下流側には揚水vl1Aと吐出弁12を介装した吐出
側エルポIIBとからなる吐出側ケーシング11が接続
されてポンプ木体を構威している。
When the water level rises further and reaches the pumping start water level, pumping starts from the suction side casing due to the self-priming action of the impeller. In this way, even when water pumping starts, water does not flow into the impeller chamber through the branch pipe because the turned part of the branch pipe is set at a position higher than the suction lift due to the maximum negative pressure generated in the impeller chamber. Since it is not sucked in, the flow of water in the impeller chamber during pumping operation is not disturbed. During pumping operation, pumped water flows from the discharge side casing into the communication pipe, and the pumping pressure closes the valve. Naturally, when the water level is higher than the pumping start water level, pumping operation continues through the suction side casing. Since the valve is closed during pumping operation, even if the water level drops during pumping operation, pumping operation will continue until the water level falls to the lower open end of the branch pipe. As the water level further decreases, it becomes lower than the lower open end of the branch pipe, and when the water seal at the lower open end is released, air is sucked into the impeller chamber from the lower open end due to the negative pressure in the impeller chamber. The pumped water filling the suction side casing is cut off by the intake air, and the system switches to air diversion. When pumping water is cut off, pumping pressure no longer acts on the valve, so the valve opens and air is also taken in from the intake port in the same way as above. [Example] Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 shows a first embodiment of the present invention, in which a suction side casing 2 is connected in communication with the lower side, that is, the upstream side, of an impeller chamber 6 which is internally installed with an impeller l being pivotally supported. A discharge side casing 11 consisting of a pumped water vl1A and a discharge side elbow IIB with a discharge valve 12 interposed therebetween is connected to the upper side, that is, the downstream side, and constitutes a pump body.

吸込側ケーシング2には逆U字状の分岐管3が接続され
ている.この分岐管3の下部開放端7を立軸ポンプ固有
の最低水位LWLと同一もしくはその付近に設定し、折
返し部8が羽根車1の全速運転時に羽根車室6に発生す
る最大負圧による吸込揚程よりも高い位置に設定されて
いる.分岐管3の折返し部8の一端に弁l3を介設した
吸気口14が開設されている.弁l3は第2A図および
第2B図に示すように、ダイヤフラム13Aと、このダ
イヤフラム13Aに弁棒13Bを介して一体に結合され
ている弁体13Gおよび該弁体13Cを吸気口l4の内
部に形威されている弁座14Aから離れる方向に付勢す
る弾性部材13Dによって構成されている.そして,ダ
イヤフラム13Aの外面が管路15を介して吐出側ケー
シング11における揚水管LIAに連通している. つぎに前記構戒の作動について説明する.気中運転中に
は、第1図の弁13に揚水圧が作用しないので,弁13
は、第2A図に示すように開いている.そのために、気
中運転時に水位が第1図の分岐管3における垂下部10
の下部開放端7を木封する最低木位LWLよりも下位に
ある場合には,分岐管3の下部開放端7と吸気口14の
双方から羽根車室6に空気が吸込まれるので、揚水され
ることな〈気中運転が続行される。
An inverted U-shaped branch pipe 3 is connected to the suction side casing 2. The lower open end 7 of this branch pipe 3 is set at the same level as or near the lowest water level LWL specific to the vertical shaft pump, and the folded part 8 is set at the suction lift due to the maximum negative pressure generated in the impeller chamber 6 when the impeller 1 is operated at full speed. It is set higher than the An intake port 14 with a valve l3 interposed therein is provided at one end of the folded portion 8 of the branch pipe 3. As shown in FIGS. 2A and 2B, the valve 13 includes a diaphragm 13A, a valve body 13G integrally connected to the diaphragm 13A via a valve stem 13B, and a valve body 13C that is placed inside the intake port 14. It is constituted by an elastic member 13D that urges the valve seat 14A away from the valve seat 14A. The outer surface of the diaphragm 13A communicates with the lift pipe LIA in the discharge side casing 11 via the pipe line 15. Next, we will explain the operation of the above-mentioned Kaikai. During submerged operation, pumping pressure does not act on valve 13 in Fig. 1, so valve 13
is open as shown in Figure 2A. Therefore, during submerged operation, the water level is lower than the hanging part 10 of the branch pipe 3 in FIG.
If the lower open end 7 of the branch pipe 3 is lower than the lowest wood level LWL for sealing the lower open end 7 of the branch pipe 3, air is sucked into the impeller chamber 6 from both the lower open end 7 of the branch pipe 3 and the intake port 14, so that the pumping ``Driving while distracted'' continues.

そして、水位が分岐v3の下部開放端7を本封する最低
木位LWLもしくはその付近に達して、下部開放端7か
らの吸気がなされなくなっても、吸気口l4から弁13
を通って吸気されるので、揚水されることなく気中運転
が続行される.さらに水位が上昇して揚水開始水位WL
に達すると、羽根車1の自吸作用によって、吸込側ケー
シング2の残留空気を吸込んで揚水が開始される. このように、揚水が開始されても、分岐管3の折返し部
8が羽根車室6に発生する最大負圧による吸込揚程より
も高い位置に設定されているから、分岐管3の垂直部l
Oには羽根車室6の負圧に相当する高さだけ水が吸い上
げられて釣り合った状態になっている.そのために、分
岐管3を通って羽根車室6に水が吸込まれないので、揚
水運転中における羽根車室6の水の流れを乱れさせない
. 揚水によって生じる吐出側ケーシング1l内の揚水圧が
、管路l5を介して第2A図の弁13のダイヤフラム1
3Aに負荷され、弾性部材13Dに抗して弁棒13Bを
前進させ、第2B図のように、弁体13cを弁座14A
に押圧して弁13を閉或させる.邑然、揚水開始水位W
Lよりも水位が上位にあるときには吸込側ケーシング2
を通して揚水運転が続行される. 揚水運転中では弁13が閉成している.したがって、揚
水運転中に水位が下がっても2その水位が分岐管3の下
部開放端7に相当する最低木位LWLに低下するまでの
間は、揚水運転が続行される.即ち、水位が揚水開始水
位WLの上位から揚水開始水位WLより下位に低下して
行っても、揚水運転が続行される. 水位がさらに下がって、最低水位LWLよりも下位にな
って、分岐v3の下部開放端7の水封が解除されると、
垂下部10内で釣り合う高さに吸い上げられていた水が
下部開放端7から吸水井に落下し、羽根車室6の負圧に
より分岐管3の下部開放端7から羽根車室6に吸気され
、その吸気によって吸込側ケーシング2を満たしていた
揚水が遮断され、気中運転に切換わる。
Even if the water level reaches or near the lowest level LWL at which the lower open end 7 of the branch v3 is permanently sealed, and air is no longer drawn from the lower open end 7, the valve 13
Air is taken in through the tank, so air operation can continue without pumping water. The water level rises further and pumping starts at water level WL.
When it reaches this point, the self-priming action of the impeller 1 sucks in the residual air in the suction side casing 2 and starts pumping water. In this way, even when water pumping starts, since the folded part 8 of the branch pipe 3 is set at a position higher than the suction lift due to the maximum negative pressure generated in the impeller chamber 6, the vertical part l of the branch pipe 3
Water is sucked up to O by a height corresponding to the negative pressure in the impeller chamber 6, and a balanced state is created. Therefore, water is not sucked into the impeller chamber 6 through the branch pipe 3, so that the flow of water in the impeller chamber 6 during pumping operation is not disturbed. The pumping pressure in the discharge side casing 1l generated by pumping water is transmitted to the diaphragm 1 of the valve 13 in FIG. 2A via the pipe l5.
3A, the valve rod 13B is advanced against the elastic member 13D, and as shown in FIG. 2B, the valve body 13c is moved against the valve seat 14A.
Press to close valve 13. Muren, pumping start water level W
When the water level is higher than L, the suction side casing 2
Pumping operation continues throughout the period. Valve 13 is closed during pumping operation. Therefore, even if the water level drops during the pumping operation, the pumping operation continues until the water level drops to the lowest tree level LWL corresponding to the lower open end 7 of the branch pipe 3. That is, even if the water level falls from above the pumping start water level WL to below the pumping start water level WL, the pumping operation continues. When the water level further falls below the lowest water level LWL and the water seal at the lower open end 7 of branch v3 is released,
Water that has been sucked up to a balanced height within the hanging part 10 falls from the lower open end 7 into the water suction well, and is sucked into the impeller chamber 6 from the lower open end 7 of the branch pipe 3 due to negative pressure in the impeller chamber 6. The pumped water filling the suction side casing 2 is cut off by the intake air, and the operation is switched to air operation.

気中運転に切換えられることで、弁l3に前述の揚水圧
が作用しな〈なるので、弁13が第2A図のように開戚
して、吸気口14から゜も吸気なされることになる. 即ち、気中運転から揚水運転への移行が揚水開始水位W
Lを基準にして行われるのに対して、揚水運転から気中
運転への移行が最低水位LWLを基準にして行われ、揚
水開始水位WLと最低水位(揚水遮断水位)LWLとの
間には所定の高低差があるため、前述のハンチング現象
を確実に防止できる. 第3図は本発明の第2実施例を示し,前記第1実施例と
同一もしくは相当部分には同一符号を付し、その詳しい
説明は省略する. この実施例では、逆U字状の分岐管3の折返し部8にタ
ンク16を介設し、このタンク16の天井と吐出側ケー
シング11における吐出エルポl1Bとに連通管17を
架け渡している.即ち、分岐管3の折返し部8と,吐出
側ケーシング11とを連通管17によって互いに連通さ
せた構或としている.そして、連通管17におけるタン
ク16側に片寄った位置に,例えば逆止弁によってなる
弁13を介設した吸気口l4が開設されている.弁l3
は吐出側ケーシングl1から連通管17に流入した揚水
圧が負荷された時に閉成し,揚水の遮断によって揚水圧
の負荷が解除された時に開成されて、吸気口l4よりポ
ンプ内に大気が流入するように作動する。
By switching to air operation, the above-mentioned pumping pressure no longer acts on the valve l3, so the valve 13 opens as shown in Fig. 2A, and air is also taken in from the intake port 14. .. In other words, the transition from submerged operation to pumping operation is at the pumping start water level W.
In contrast, the transition from pumping operation to submerged operation is performed based on the lowest water level LWL, and there is a Since there is a predetermined height difference, the hunting phenomenon mentioned above can be reliably prevented. FIG. 3 shows a second embodiment of the present invention, in which the same or equivalent parts as in the first embodiment are designated by the same reference numerals, and detailed explanation thereof will be omitted. In this embodiment, a tank 16 is interposed in the folded part 8 of the inverted U-shaped branch pipe 3, and a communication pipe 17 is bridged between the ceiling of the tank 16 and the discharge elbow l1B in the discharge side casing 11. That is, the folded portion 8 of the branch pipe 3 and the discharge side casing 11 are configured to communicate with each other through the communication pipe 17. An intake port 14 having a valve 13 formed of, for example, a check valve is provided at a position in the communication pipe 17 that is biased towards the tank 16 side. valve l3
is closed when the pumping pressure flowing into the communication pipe 17 from the discharge side casing l1 is loaded, and is opened when the pumping pressure load is released by shutting off the pumping water, and the atmosphere flows into the pump from the intake port l4. It operates as follows.

また、タンク16の底部から吸水井Pに排水管18が垂
下して取付けられ、この排水管l8の下部開放端18A
の位置は折返し部8の下都開放端7よりも下側に設定さ
れている. つぎに、第2実施例の作動について説明する.気中運転
中には、吐出側ケーシング1lから連通管17に揚水が
流れないので、揚水圧が弁13に作用しないから、弁1
3は開いている.そのために、気中運転時に水位は分岐
管3における垂下部10の下部開放端7を水封する最低
氷位LWLよりも下位で、かつ排水管l8の下部開放端
よりも上位にある場合には、分岐管3の下部開放端7と
、吸気口i4および連通vl7の一部を通りタンクl6
内で分岐管3に合流する経路から羽根車室6に空気が吸
込まれるので、揚水されることなく気中運転が続行され
る. そして、水位が分岐管3の下部開放端7を水封する最低
水位LWLもしくはその付近に達して、下部開放端7か
らの吸気がなされな〈なっても、吸気口l4から弁13
を通って連通管17の一部を通りタンク16内で分岐管
3に合流する経路から羽根車室6に空気が吸込まれるの
で,揚水されることなく気中運転が続行される。
In addition, a drain pipe 18 is installed hanging from the bottom of the tank 16 to the water absorption well P, and a lower open end 18A of this drain pipe l8 is installed.
The position of is set below the bottom open end 7 of the folded part 8. Next, the operation of the second embodiment will be explained. During submerged operation, pumped water does not flow from the discharge side casing 1l to the communication pipe 17, so pumping pressure does not act on the valve 13.
3 is open. Therefore, during submerged operation, if the water level is lower than the lowest ice level LWL that seals the lower open end 7 of the hanging part 10 in the branch pipe 3, and higher than the lower open end of the drain pipe 18, , through the lower open end 7 of the branch pipe 3, the intake port i4 and a part of the communication vl7 to the tank l6.
Since air is sucked into the impeller chamber 6 from the path that joins the branch pipe 3 within the tank, air operation continues without water being pumped up. Even if the water level reaches or near the lowest water level LWL that seals the lower open end 7 of the branch pipe 3 and no air is taken in from the lower open end 7, the valve 13
Since air is sucked into the impeller chamber 6 from a route that passes through a part of the communication pipe 17 and joins the branch pipe 3 in the tank 16, the air operation is continued without pumping water.

さらに水位が上昇して揚水開始水位WLに達すると,羽
根車の自吸作用によって、吸込側ケーシング2の残留空
気を吸込んで揚水が開始される。
When the water level further rises and reaches the pumping start water level WL, the self-priming action of the impeller sucks in the remaining air in the suction side casing 2 and pumping starts.

このように5揚水が開始されても、分岐管3の折返し部
8が羽根車室6に発生する最大負荷による吸込揚程より
も高い位置に設定されているから、分岐管3の垂下部1
0および排水管l8には、羽根車室6の負荷に相当する
高さだけ水が吸い上げられて釣り合った状態になってい
る.そのために、分岐管3を通って羽根車室6に水が吸
込まれないので、揚水運転中における羽根車室の水の流
れを乱れさせない. 揚水運転によって、吐出側ケーシングl1の吐出エルポ
IIBから連通/f17に揚水が流れ込んで、揚水圧に
より弁13を閉成させる.この連通管17に流れ込んだ
水はタンク16に落下し、ここから排水管18に落ちる
.排水管l8内では前述の釣り合いが保たれるために、
タンク16から排水管16に落ちて来た水量の相当分が
吸水井Pに戻される.したがって、羽根車室6に吸込ま
れることがない.当然、揚水開始水位WLよりも水位が
上位にあるときに吸込側ケーシング2を通して揚水運転
が続行される. 揚水運転中では弁l3が閉成しているので、揚水運転中
に水位が下がっても、その水位が分岐管3の下部開放端
7に相当する最低氷位LWLに低下するまでの間は、揚
水運転が続行される。
Even if water pumping is started in this way, since the turned part 8 of the branch pipe 3 is set at a position higher than the suction lift due to the maximum load generated in the impeller chamber 6, the hanging part 1 of the branch pipe 3
0 and the drain pipe l8, water is sucked up to a height corresponding to the load of the impeller chamber 6 and is in a balanced state. Therefore, water is not sucked into the impeller chamber 6 through the branch pipe 3, so that the flow of water in the impeller chamber during pumping operation is not disturbed. During the pumping operation, pumped water flows into the communication /f17 from the discharge elbow IIB of the discharge side casing l1, and the pumping pressure closes the valve 13. The water flowing into this communication pipe 17 falls into the tank 16, and from there it falls into the drain pipe 18. Since the above-mentioned balance is maintained in the drain pipe l8,
A considerable amount of water that has fallen from the tank 16 to the drain pipe 16 is returned to the water absorption well P. Therefore, it is not sucked into the impeller chamber 6. Naturally, pumping operation continues through the suction side casing 2 when the water level is higher than the pumping start water level WL. Since the valve l3 is closed during the pumping operation, even if the water level falls during the pumping operation, until the water level falls to the lowest ice level LWL corresponding to the lower open end 7 of the branch pipe 3, Pumping operation will continue.

即ち、水位が揚水開始水位WLの上位から揚水開始水位
WLの下位に低下しても揚水運転が続行される. 水位がさらに下がって、最低水位LWLよりも下位にな
って,分岐管3の下部開放端7の水封が解除されると、
垂下部10および排水管l8内で釣り合う高さに吸い上
げられていた水が、吸水井Pに落下し,羽根車室6の負
荷により分岐管3の下部開放端7から羽根車室6に吸気
され、その吸気によって吸込側ケーシング2を満たして
いた揚水が遮断され,気中運転に切換わる。
That is, even if the water level drops from above the pumping start water level WL to below the pumping start water level WL, the pumping operation continues. When the water level further falls below the lowest water level LWL and the water seal at the lower open end 7 of the branch pipe 3 is released,
Water that has been sucked up to a balanced height in the hanging part 10 and the drain pipe l8 falls into the water suction well P, and is sucked into the impeller chamber 6 from the lower open end 7 of the branch pipe 3 due to the load on the impeller chamber 6. The pumped water filling the suction side casing 2 is cut off by the intake air, and the operation is switched to air operation.

気中運転に切換えられることで、弁l3に前述の揚水圧
が作用しなくなるので、弁l3が開成して,前記同様に
吸気口l4からも吸気されることになる. 即ち、気中運転から揚水運転への移行が揚水開始水位W
Lを基型にして行われるのに対して、揚水運転から気中
運転への移行が最低水位LWLを基鵡にして行われ,揚
水開始水位WLと最低水位(揚水遮断水位)LWLとの
間には所定の高低差があるため、前述のハンチング現象
を確実に防止できる. なお、揚水運転から気中運転に切換わるときに、垂下部
10で釣り合いを保つために吸い上げられていた水の一
部が、下部開放端7からの吸気流に混合した、所謂、吸
気混合流として吸い上げられることがあるけれども、タ
ンクl6内の通過時に気水分離され、吸気から分離され
た水が排水管l8を経て吸水井Pに戻される. また、前記第1実施例の管路15(第1図参照)を吐出
側ケーシング11の吐出エルポIIBに接続しても、或
いは前記第2実施例の連通管17(第3図参照)を吐出
側ケーシング1lの揚水管11Aに接続しても、前述と
同様の作用効果を奏することができる. [発明の効果] 本発明は前述のように構成されているので、つぎに記載
する効果を奏する. 請求項(1)の立軸ポンプによれば、従来のように、水
位計,Tv.動弁や空気圧操作弁などによって構或され
る吸気弁および水位計や吸気弁を操作するためのシーケ
ンス制御装置などを必要とせず、従来より懸念されてい
た空気吸込渦や呼吸現象などの発生を回避して、ポンプ
を全速運転状態で待機させることができる. しかも、最低水位での揚水運転への移行レベルと、揚水
遮断水位での気中運転への移行レベルとの間に、所定の
高低差を持たせて、揚水運転から気中運転への移行と、
気中運転から揚水運転への移行とが、異なるレベルを基
準にして行われるので、これらの移行現象が短時間のう
ちに伺回も繰り返されることによるハンチング現象の発
生を確実に防止することができる. また、請求項(2)の立軸ポンプによっても、従来のよ
うに、水位計,電動弁や空気圧操作弁などによって構威
される吸気弁および水位計や吸気弁を操作するためのシ
ーケンス制御装置などを必要とせず、従来より懸念され
ていた空気吸込渦や呼吸現象などの発生を回避して、ポ
ンプを全速運転状態で待機させることができる. しかも、最低水位での揚水運転への移行レベルと,揚水
遮断水位での気中運転への移行レベルとの間に、所定の
高低差を持たせて、揚水運転から気中運転への移行と、
気中運転から揚水運転への移行とが,異なるレベルを基
準にして行われるので、これらの移行現象が短時間のう
ちに何回も繰り返されることによるハンチング現象の発
生を確実に防止することができる.
By switching to air operation, the above-mentioned pumping pressure no longer acts on the valve l3, so the valve l3 is opened and air is also taken in from the intake port l4 in the same manner as described above. In other words, the transition from submerged operation to pumping operation is at the pumping start water level W.
In contrast, the transition from pumping operation to submerged operation is performed based on the lowest water level LWL, and the transition between the pumping start water level WL and the lowest water level (pumping cutoff water level) LWL Since there is a predetermined height difference between the two, it is possible to reliably prevent the aforementioned hunting phenomenon. Note that when switching from pumping operation to submerged operation, part of the water that had been sucked up by the hanging part 10 to maintain balance is mixed with the intake air flow from the lower open end 7, resulting in a so-called intake air mixed flow. Although the air is sometimes sucked up as water, air and water are separated as it passes through the tank l6, and the water separated from the intake air is returned to the water intake well P via the drain pipe l8. Furthermore, even if the pipe line 15 (see FIG. 1) of the first embodiment is connected to the discharge elbow IIB of the discharge side casing 11, or the communication pipe 17 (see FIG. 3) of the second embodiment is connected to the discharge elbow IIB of the discharge side casing 11, Even if it is connected to the pumping pipe 11A of the side casing 1l, the same effects as described above can be achieved. [Effects of the Invention] Since the present invention is configured as described above, it produces the following effects. According to the vertical shaft pump of claim (1), the water level gauge, Tv. It eliminates the need for intake valves configured with valves and pneumatically operated valves, water level gauges, and sequence control devices to operate the intake valves, and eliminates the occurrence of air intake vortices and breathing phenomena that were previously a concern. This can be avoided and the pump can be left running at full speed. Moreover, a predetermined height difference is provided between the transition level to pumped storage operation at the lowest water level and the transition level to aerial operation at the pumping cutoff water level, and the transition from pumped storage operation to aerial operation is ,
Since the transition from submerged operation to pumped storage operation is performed based on different levels, it is possible to reliably prevent the hunting phenomenon caused by these transition phenomena being repeated in a short period of time. can. In addition, the vertical shaft pump of claim (2) also includes an intake valve that is controlled by a water level gauge, an electric valve, a pneumatically operated valve, etc., as well as a sequence control device for operating the water level gauge and the intake valve, as in the past. This allows the pump to operate at full speed and standby, avoiding the occurrence of air suction vortices and breathing phenomena, which were concerns in the past. Moreover, a predetermined height difference is provided between the transition level to pumped storage operation at the lowest water level and the transition level to aerial operation at the pumping cutoff water level, and the transition from pumped storage operation to aerial operation is ,
Since the transition from submerged operation to pumped storage operation is performed based on different levels, it is possible to reliably prevent the hunting phenomenon caused by these transition phenomena being repeated many times in a short period of time. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は木発明の第1実施例を示す側面図、第2A図お
よび第2B図は弁の一例を示す断面図、第3図は第2実
施例の側面図、第4図は従来の説明図、第5図は比較例
の説明図である.2・・・吸込側ケーシング 3・・・逆U字状の分岐管 6・・・羽根車室 7・・・下部開放端 8・・・折返し部 13・・・弁 l 4・・・吸気口 1 7・・・連通管 LWL・・・最低水位 特 許 出 願 人 久保田鉄工株式会社
Fig. 1 is a side view showing the first embodiment of the wooden invention, Figs. 2A and 2B are sectional views showing an example of the valve, Fig. 3 is a side view of the second embodiment, and Fig. 4 is the conventional valve. Explanatory diagram, FIG. 5 is an explanatory diagram of a comparative example. 2... Suction side casing 3... Inverted U-shaped branch pipe 6... Impeller chamber 7... Lower open end 8... Turned part 13... Valve l 4... Inlet port 1 7...Communication pipe LWL...Minimum water level patent applicant Kubota Iron Works Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)羽根車室に連通する吸込側ケーシングに下部開放
端を立軸ポンプの最低水位もしくはその付近に設定した
逆U字状の分岐管が接続され、この分岐管に空気の導入
可能な吸気口が開設され、該吸気口に立軸ポンプの揚水
圧によって閉成し、揚水遮断時に開成される弁が介設さ
れ、前記分岐管の逆U字状の折返し部が羽根車室に発生
する最大負圧による吸込揚程よりも高い位置に設定され
ていることを特徴とする立軸ポンプ。
(1) An inverted U-shaped branch pipe with its lower open end set at or near the lowest water level of the vertical shaft pump is connected to the suction side casing that communicates with the impeller chamber, and an intake port into which air can be introduced A valve that is closed by the pumping pressure of the vertical pump and opened when the pumping is cut off is installed at the intake port, and the inverted U-shaped folded portion of the branch pipe is connected to the maximum negative A vertical shaft pump characterized by being set at a position higher than the suction head due to pressure.
(2)羽根車室に連通する吸込側ケーシングに下部開放
端を立軸ポンプの最低水位もしくはその付近に設定した
逆U字状の分岐管が接続され、この分岐管と立軸ポンプ
の吐出側ケーシングとを互いに連通させる連通管が設け
られるとともに、この連通管に立軸ポンプの揚水圧によ
って閉成し揚水遮断時に開成されて該連通管を大気に開
閉させる弁が介設された吸気口を開設し、前記分岐管の
逆U字状の折返し部が前記羽根車室に発生する最大負圧
による吸込揚程よりも高い位置に設定されていることを
特徴とする立軸ポンプ。
(2) An inverted U-shaped branch pipe with its lower open end set at or near the lowest water level of the vertical shaft pump is connected to the suction side casing that communicates with the impeller chamber, and this branch pipe and the discharge side casing of the vertical shaft pump are connected to each other. A communication pipe is provided to communicate with each other, and an intake port is provided in the communication pipe, which is closed by the pumping pressure of the vertical pump, and is opened when the pumping is interrupted to open and close the communication pipe to the atmosphere. A vertical shaft pump characterized in that an inverted U-shaped folded portion of the branch pipe is set at a position higher than a suction lift due to a maximum negative pressure generated in the impeller chamber.
JP22793489A 1989-09-01 1989-09-01 Vertical shaft pump Pending JPH0392595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22793489A JPH0392595A (en) 1989-09-01 1989-09-01 Vertical shaft pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22793489A JPH0392595A (en) 1989-09-01 1989-09-01 Vertical shaft pump

Publications (1)

Publication Number Publication Date
JPH0392595A true JPH0392595A (en) 1991-04-17

Family

ID=16868573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22793489A Pending JPH0392595A (en) 1989-09-01 1989-09-01 Vertical shaft pump

Country Status (1)

Country Link
JP (1) JPH0392595A (en)

Similar Documents

Publication Publication Date Title
JPH03145596A (en) Vertical shaft pump
JPH0392595A (en) Vertical shaft pump
JPS63134897A (en) Vertical shaft pump
JPH0623756Y2 (en) Vertical pump
JPH0361696A (en) Vertical shaft type pump
JP3191102B2 (en) Vertical pump
JP3191104B2 (en) Vertical pump
JPH0385400A (en) Vertical shaft pump
JPH0385391A (en) Vertical shaft pump
JPH0385390A (en) Vertical shaft pump
JPH02294595A (en) Vertical shaft pump
JPS6390697A (en) Vertical shaft pump
JP3686194B2 (en) Vertical shaft drainage pump
JPH0361694A (en) Vertical shaft type pump
JPH0378593A (en) Vertical shaft pump
JPH0367096A (en) Vertical shaft pump
JPH08338389A (en) Horizontal shaft pump
JPS63189689A (en) Vertical shaft pump
JPS5933913Y2 (en) Lifting device
JPH0361695A (en) Vertical shaft type pump
JP2721930B2 (en) Operation method of horizontal axis pump
JPH0734228Y2 (en) Vertical pump
JPS5941506A (en) Rising and falling device for dam
JPH0361693A (en) Vertical shaft type pump
JPH0622157Y2 (en) Vertical pump