JPH039238B2 - - Google Patents

Info

Publication number
JPH039238B2
JPH039238B2 JP57064013A JP6401382A JPH039238B2 JP H039238 B2 JPH039238 B2 JP H039238B2 JP 57064013 A JP57064013 A JP 57064013A JP 6401382 A JP6401382 A JP 6401382A JP H039238 B2 JPH039238 B2 JP H039238B2
Authority
JP
Japan
Prior art keywords
paper
pulp
filler
added
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57064013A
Other languages
Japanese (ja)
Other versions
JPS58180696A (en
Inventor
Michinori Tsucha
Hirokazu Ishii
Yoshihiro Myamoto
Kenichi Akune
Takeshi Sekyama
Takeo Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI SAIANAMITSUDO KK
OJI SEISHI KK
Original Assignee
MITSUI SAIANAMITSUDO KK
OJI SEISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI SAIANAMITSUDO KK, OJI SEISHI KK filed Critical MITSUI SAIANAMITSUDO KK
Priority to JP6401382A priority Critical patent/JPS58180696A/en
Publication of JPS58180696A publication Critical patent/JPS58180696A/en
Publication of JPH039238B2 publication Critical patent/JPH039238B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、抄紙時における微細繊維等の歩留
り、また印刷適性等を向上した紙の製造方法に関
する。 上質紙、中質紙及び塗工原紙に代表される印刷
用紙では、一般に紙の白色度及び不透明度といつ
た光学的特性、並びに印刷後の仕上りを改良する
ために、カオリンクレー、タルク及びTiO2のよ
うな無機質填料、並びに尿素填料等の有機質填料
を使用している。この種の紙の製造には通常歩留
り向上剤、又は水性向上剤を併用して、シート
中への填料保持効率の改良、白水中への填料流出
量の減少、及び排水汚濁負荷の軽減を図つてい
る。特に近年、填料を含めて製紙原料が高騰して
おり、更に排水規準が厳しくなつており、経済的
見地、並びに環境改善の面からも填料やサイズ剤
等の歩留り改善は重要視されている。この点は機
械パルプを含有する新聞用紙等の場合も同様であ
る。また、製紙工場での製造面では、抄紙機の発
展に伴つて高速、高生産性の抄紙機(ツインワイ
ヤー等)が導入されており、ワイヤー部での脱水
の際に作用する強い水力学的剪断力のため、填料
の歩留りは悪化の傾向にある。一方、紙製品の最
近の動向についてみると、省資源、省エネルギー
及びコスト低減を目的に軽量化が指向されてい
る。紙を軽量化した場合、強度及び光学的特性が
低下するが、特に不透明度の低下は、印刷物の仕
上りに著しい欠陥となつて表れる。したがつてこ
れを改善する方法として従来より紙中の填料を増
加する方向が指向されているが、填料添加量を増
すに従つてワイヤー上での歩留りは悪化すること
が知られている。すなわち紙パ産業では、今後、
抄紙機の高速化、及び用排水規制の面から白水の
クローズド化が進行すると予想されており、その
中で省資源を目的とした軽量化に伴う填料の増配
を実施するに当り填料の歩留り向上法の改良は経
済性、品質、環境改善の面で極めて重要な技術と
なることが考えられる。 従来、填料の歩留り及び水性を改良する方法
として、凝集効果に基づくブロツク形成法が知ら
れている。すなわち填料及び微細繊維は普通、水
懸濁液の中では負に帯電しており、互いに電気的
に反ぱつし合つて微粒子として分散しフロツクを
形成しないためにワイヤー上での歩留りが低いと
考えられている。歩留りを上げる方法としては、
まず填料及び微細繊維の表面を、無機系、あるい
は有機系の低分子量のカチオン性物質(アラム
等)を加えて、負電荷を中和し、静電気的反ぱつ
力を減少させてミクロフロツクを形成させ、その
後、カチオン性又は非イオン性の高分子量の歩留
り助剤を加えてミクロフロツク間を架橋し、マク
ロフロツクを形成させる方法が一般に知られてい
る。 このような目的に低分子量カチオン性物質とし
て、アラム(硫酸アルミニウム)及びポリ塩化ア
ルミニウム等の無機系物質、カチオン性デンプ
ン、ポリアミドポリアミン及びその誘導体等の有
機系物質が、また高分子量の歩留り助剤として、
非イオン性、アニオン性、又はカチオン性のポリ
アクリルアミド誘導体が一般的に使用されてい
る。 しかしながら、抄紙白水中には、パルプ及び填
料以外に、極めて多くの不純物が存在している。
例えば、新聞用紙系では木材に由来する木材抽出
物(リグニン、樹脂酸及びヘミセルロース等)、
印刷用紙では未定着サイズ剤の変質物、あるいは
塗工原紙では損紙に由来するラテツクス及びデン
プン変性物等の不純物が、コロイド状又は溶解状
態で存在している。また、鉄、アルミニウム、カ
ルシウム、亜鉛等の多価金属塩もある。したがつ
て、前記歩留り助剤を加えた場合、これらの助剤
は、微細繊維及び填料の表面に吸着して架橋を生
ずる前に、まず不純物と反応して、例えばカチオ
ン性の歩留り助剤では、カチオン量の浪費、及び
重合体直鎖の溶液中での分子鎖の拡がりが抑制さ
れて、架橋性能が低下し、歩留り向上効果が充分
に発揮できなくなる。 このような不純物による阻害効果を排除し、且
つ歩留りを改善する方法として、ベントナイト型
クレーと非イオン性ポリアクリルアミドとを併用
する方法が知られている。すなわち、特開昭55−
152899号公報に記載されているように、新聞用紙
のような機械パルプを多量に含有する系に適用す
ると、木材系抽出物に由来する不純物の除去効果
により歩留りを改善することができることが知ら
れている。また、米国特許第3052595号には、白
水中に水膨潤性のベントナイト型クレーを1〜20
%添加し、非イオン性のポリアクリルアミドを併
用して、カオリンクレー、タルク及びTiO2等の
填料及び微細繊維の歩留りを向上する方法が開示
されている。 本発明の目的は、従来公知の方法におけるより
も、更に微細繊維、また填料を使用する場合には
該填料の歩留りを向上させた紙の製造方法を提供
するにある。 すなわち本発明を概説すれば、本発明は、紙料
懸濁液から紙を製造する方法において、紙料懸濁
液を調製する工程で、カチオン交換能を有する無
機系物質を使用し、次に得られた、下記一般式
(): (式中、R1は水素又はメチル基を示し、R2
2価の炭化水素基を示し、Mは水素又は他のカチ
オンを示す) で表される構造単位、及び50〜97モル%のアクリ
ルアミド構造単位を含有する、分子量10万〜2000
万のアニオン性の共重合体を添加し、その後に抄
紙することを特徴とする紙の製造方法に関する。 本発明で使用するカチオン交換能を有する無機
系物質の例のうち、主要なものには、ベントナイ
ト、ゼオライト、活性白土(例えば水沢化学製シ
ルトン)、ケイ藻土(例えば昭和化学工業製ラジ
オライト)、合成ケイ酸のアルミニウム(例えば
ヒユーバー社製ゼオレツクス)、カルシウム又は
マグネシウム塩があるが、抄紙白水の状態より、
カチオン交換能を有することを必要とする。カチ
オン交換能が、30〜200ミリ当量/100g、好まし
くは50〜150ミリ当量/100gであるものが、歩留
り向上効果を示す。 これら物質の添加量は、パルプに対して1〜10
重量%好ましくは1〜5重量%である。2重量%
以上添加する場合は、単独でも填料としての効果
を発現して、光学特性、印刷適性の改善に有効で
ある。したがつて本発明では、必ずしも、通常の
填料の添加を必要としない。 他方、本発明で使用する、前記式で表される
構造単位及びアクリルアミド構造単位を含有する
アニオン性の共重合体は、線状且つ水溶性の共重
合体である。 式において、R1は水素が好ましい。R2は、
脂肪族、脂環式及び芳香族の2価炭化水素基のい
ずれでもよい。その例としては、メチレン、エチ
レン、プロピレン、ブチレン、ヘキシレン、フエ
ニレン、トリレン、キシリレン、ナフチレン、シ
クロヘキシレン、
The present invention relates to a method for producing paper that improves the yield of fine fibers during paper making and printability. In printing papers such as wood-free paper, medium-quality paper, and coated paper, kaolin clay, talc, and TiO are generally used to improve optical properties such as paper whiteness and opacity, and the finish after printing. Inorganic fillers such as 2 and organic fillers such as urea fillers are used. In the production of this type of paper, retention improvers or water-based improvers are usually used in combination to improve filler retention efficiency in the sheet, reduce the amount of filler flowing into white water, and reduce wastewater pollution loads. It's on. Particularly in recent years, the prices of papermaking raw materials, including fillers, have soared, and wastewater standards have become more stringent, making it important to improve the yield of fillers, sizing agents, etc. from both an economic and environmental standpoint. This also applies to newsprint containing mechanical pulp. In addition, in terms of production at paper mills, with the development of paper machines, high-speed, high-productivity paper machines (twin wire, etc.) have been introduced. Filler yield tends to deteriorate due to shear forces. On the other hand, looking at recent trends in paper products, there is a trend toward lighter weight for the purpose of saving resources, saving energy, and reducing costs. When the weight of paper is reduced, its strength and optical properties are reduced, and in particular, the reduction in opacity is manifested as a significant defect in the finish of printed matter. Therefore, as a method to improve this problem, increasing the amount of filler in the paper has conventionally been attempted, but it is known that as the amount of filler added increases, the yield on the wire deteriorates. In other words, in the paper and pulp industry, in the future,
It is expected that paper machines will become faster and white water will become more closed due to wastewater regulations, and as we increase the amount of filler used to reduce weight in order to save resources, it is necessary to improve the yield of filler. Improving the method is considered to be an extremely important technology in terms of economy, quality, and environmental improvement. Conventionally, a block forming method based on the agglomeration effect has been known as a method for improving filler retention and water properties. In other words, fillers and fine fibers are normally negatively charged in an aqueous suspension, and are thought to have a low yield on the wire because they electrically repel each other, disperse as fine particles, and do not form flocs. It is being As a way to increase yield,
First, an inorganic or organic low molecular weight cationic substance (such as alum) is added to the surface of the filler and fine fibers to neutralize negative charges, reduce electrostatic repulsion, and form microflocs. Thereafter, a method is generally known in which a cationic or nonionic high molecular weight retention aid is added to crosslink the microflocs to form macroflocs. For this purpose, low molecular weight cationic substances include inorganic substances such as alum (aluminum sulfate) and polyaluminum chloride, organic substances such as cationic starch, polyamide polyamines and their derivatives, and high molecular weight retention aids. As,
Nonionic, anionic, or cationic polyacrylamide derivatives are commonly used. However, in addition to pulp and filler, there are many impurities present in papermaking white water.
For example, in the case of newsprint, wood extracts derived from wood (lignin, resin acids, hemicellulose, etc.),
In printing paper, impurities such as denatured products of unfixed sizing agents, or latex and modified starch derived from waste paper in coated base paper, exist in a colloidal or dissolved state. There are also polyvalent metal salts such as iron, aluminum, calcium, and zinc. Therefore, when the retention aids are added, these aids first react with impurities, e.g., with cationic retention aids, before adsorbing to the surface of the fine fibers and fillers and creating crosslinks. , the amount of cations is wasted, and the spreading of the molecular chain of the linear polymer chain in the solution is suppressed, resulting in a decrease in crosslinking performance and failure to fully exhibit the yield improvement effect. As a method of eliminating the inhibiting effect of such impurities and improving yield, a method of using bentonite clay and nonionic polyacrylamide in combination is known. In other words, JP-A-55-
As described in Publication No. 152899, it is known that when applied to systems containing a large amount of mechanical pulp such as newsprint, the yield can be improved due to the effect of removing impurities derived from wood extracts. ing. In addition, U.S. Patent No. 3,052,595 discloses that 1 to 20 water-swellable bentonite clays are mixed in white water.
A method is disclosed for improving the yield of fillers and fine fibers such as kaolin clay, talc, and TiO 2 by adding % and using nonionic polyacrylamide in combination. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing paper in which the yield of fine fibers and filler, when used, is further improved than in conventionally known methods. That is, to summarize the present invention, in a method for manufacturing paper from a paper stock suspension, an inorganic substance having a cation exchange ability is used in the step of preparing the paper stock suspension, and then The following general formula () was obtained: (In the formula, R 1 represents hydrogen or a methyl group, R 2 represents a divalent hydrocarbon group, and M represents hydrogen or another cation.) Contains acrylamide structural unit, molecular weight 100,000 to 2,000
The present invention relates to a method for producing paper, which comprises adding an anionic copolymer of 10,000 yen and then papermaking. Among the examples of inorganic substances having cation exchange ability used in the present invention, the main ones include bentonite, zeolite, activated clay (for example, Silton manufactured by Mizusawa Chemical), and diatomaceous earth (for example, Radiolite manufactured by Showa Chemical Industry). There are aluminum, calcium or magnesium salts of synthetic silicate (e.g. Zeolex manufactured by Huber), but from the state of papermaking white water,
It is necessary to have cation exchange ability. Those having a cation exchange capacity of 30 to 200 meq/100g, preferably 50 to 150 meq/100g show a yield improvement effect. The amount of these substances added is 1 to 10% per pulp.
The weight percent is preferably 1 to 5 weight percent. 2% by weight
When the above additives are added, even when they are added alone, they exhibit the effect as a filler and are effective in improving optical properties and printability. Therefore, the present invention does not necessarily require the addition of conventional fillers. On the other hand, the anionic copolymer containing the structural unit represented by the above formula and the acrylamide structural unit used in the present invention is a linear and water-soluble copolymer. In the formula, R 1 is preferably hydrogen. R2 is
Any of aliphatic, alicyclic and aromatic divalent hydrocarbon groups may be used. Examples include methylene, ethylene, propylene, butylene, hexylene, phenylene, tolylene, xylylene, naphthylene, cyclohexylene,

【式】【formula】

【式】【formula】

【式】等が あるが、低級アルキレン基が好ましい。Mのカチ
オンとしては、ナトリウム又はカリウムが好まし
い。 式の単位としては、経済性、重合の容易性及
び有効性の観点から、2−アクリルアミド−2−
メチル−プロパンスルホン酸のナトリウム又はカ
リウム塩より誘導されるものが最も望ましい。本
発明による共重合体中、式の構造単位とアクリ
ルアミド単位との割合は、式の単位が2〜90モ
ル%、アクリルアミド単位10〜98モル%でよく、
式の単位が3〜50モル%で、アクリルアミド単
位が50〜97モル%であるものが好ましい。該共重
合体の最小分子量は10万であるが、分子量が大き
いほど歩留り向上効果は高い。しかし、分子量が
あまり大き過ぎると、紙の地合いが悪くなる傾向
が認められるため、該分子量は、10万〜2000万の
範囲にあるのが望ましい。 また、本発明における共重合体には、約20モル
%までの他の水溶性の共重合性単量体、及び/又
は約10モル%までの水不溶性の共重合性単量体が
共重合されていてもよい。水溶性の共重合性単量
体の例としては、アクリル酸若しくはその塩、メ
タクリル酸若しくはその塩、メタクリルアミド、
N−メチロール化アクリルアミド、N−メチロー
ル化メタクリルアミド、N−低級アルキルアクリ
ルアミド、N−低級アルキルメタクリルアミド及
びスチレンスルホン酸塩がある。また、水不溶性
の共重合性単量体の例としては、アクリロニトリ
ル、塩化ビニル、酢酸ビニル、スチレン、アクリ
ル酸低級アルキル、メタクリル酸低級アルキル及
びジアセトアクリルアミドがある。 本発明における共重合体は、塊状重合、水溶液
重合、懸濁重合、又は乳化重合で造ることができ
る。重合は、水系で一般的に用いられる重合開始
剤、例えば過酸化物、過硫酸塩、過硫酸塩−重亜
硫酸塩等で促進される。 共重合体の添加量は、パルプに対して乾燥重合
体0.005重量%以上であり、一般に0.1重量%以下
であるが、0.01〜0.07重量%が好ましい。添加量
が、0.1重量%より多いと、地合いが悪化するの
で好ましくない。 本発明方法は、クラフトパルプ(KP)、サルフ
アイトパルプ(SP)等の化学パルプ、グラウン
ドパルプ(GP)、サーモメカニカルパルプ
(TMP)、リフアイナーグラウンドパルプ
(RGP)等の機械パルプ、セミケミカルパルプ
(SCP)、故墨パルプ(DIP)等、いずれのパルプ
にも適用可能であり、これらパルプから得られる
用紙としては新聞用紙、グラビア用紙、中質紙、
上質紙及び塗工原紙がその主要なものである。 本発明方法で、場合により添加する填料として
は、通常紙の填料として使用されるあらゆる填料
を使用することができる。すなわち、カチオンク
レー、タルク、含水ケイ酸を含む合成ケイ酸塩、
TiO2、炭酸カルシウム、炭酸マグネシウム、硫
酸バリウム及び硫化亜鉛等の無機質填料から、尿
素−ホルマリンを原料とした有機質填料まで適用
できる。このような填料の対パルプ添加率は、特
に制限はなく、一般に対パルプ1〜80%程度(絶
乾重量)の範囲である。新聞用紙系では1〜10
%、好ましくは1〜3%であり、填料を使用しな
くてもよい。中質紙、上質紙系では、一般に1〜
80%、好ましくは5〜30%である。 具体的に本発明方法の操作手順を説明すると、
原料パルプを含む0.5〜5.0重量%(好ましくは1
〜3重量%)濃度の水性濁液中に、あらかじめ工
業用水等の水で1〜10重量%濃度に分散した本発
明によるカチオン交換能を有する無機質系物質の
スラリーを所定量添加し、1〜2分間かくはんし
て不純物を充分に吸着させた後、水中に0.1〜1.0
重量%(好ましくは0.5重量%以下)の濃度に溶
解した、本発明による実質的にアニオン性の共重
合体を所定量添加し、更に全体を水で0.3〜1.0重
量%濃度に希釈して抄造する。該共重合体の添加
場所は特に限定されないが、通常、強い水力学的
剪断力のかからないフアンポンプからストツクイ
ンレツトまでの間が望ましい。また、カチオン交
換能を有する無機系物質の添加方法は、前記操作
に限定されない。本発明方方法で、既述の慣用の
填料を使用する場合には、本発明による無機系物
質の水スラリーを、まずパルプ懸濁液に加え、次
いでタルク、クレー、炭酸カルシウム又はTiO2
等の既述の填料スラリーを加えるか、あるいは、
タク、クレー、炭酸カルシウム又はTiO2等の填
料と、該物質とを、あらかじめ粉末状態で所定割
合に混合しておいて、次に水に分散して使用して
もよい。更に、填料添加後に、次いで該物質を添
加してもよい。 以下、実施例により本発明を更に説明するが、
本発明はこれらに限定されるものではない。 実施例 1 BKP20部、TMP30部、GP20部及びDIP30部
を含むパルプ原料を工業用水で1%濃度に希釈す
る。このパルプ懸濁液中に、あらかじめ水道水で
10%濃度に希釈分散したNa型ベントナイトクレ
ーを対パルプ(絶乾重量ベース、以下、B.Dと略
記する)で1%加えて、ラボスターラーで充分か
くはんして均一に魂合する。次に、あらかじめ脱
イオン水に0.5%濃度で溶解した、非イオン性重
合体又は本発明による共重合体を対パルプ0.05%
(B.D)添加して同様に均一に混合する。その後、
上記の1%紙料懸濁液を水道水で0.3%に希釈し
て、Tappi標準法に従つてフリーネスを測定す
る。フリーネス値の高いものほど歩留り向上効果
が高い。その結果を表1に示す。 なお、本実施例(比較列を含む)で使用した
Na型ベントナイトクレームは、クニミネ工業製
品(商品名クニボンド)であり、非イオン性ポリ
アクリルアミド(以下、非イオン性PAMと略記
する)は、分子量(固有粘度法のより測定、以下
同じ)800万のものであり、ポリエチレンオキシ
ド(以下、PEOと略記する)は、分子量200万の
ものであり、そして本発明による共重合体(以
下、SO3−PAMと略記する)は、アクリルアミ
ド80モル%、2−アクリルアミド−2−メチルプ
ロパンスルホン酸ナトリウム7モル%及びアクリ
ル酸ナトリウム13モル%の共重合体で、分子量約
700万のものである。
[Formula] etc., but a lower alkylene group is preferred. The cation of M is preferably sodium or potassium. As the unit of the formula, from the viewpoint of economy, ease of polymerization, and effectiveness, 2-acrylamide-2-
Most preferred are those derived from the sodium or potassium salts of methyl-propanesulfonic acid. In the copolymer according to the present invention, the proportion of the structural unit of the formula and the acrylamide unit may be 2 to 90 mol% of the unit of the formula and 10 to 98 mol% of the acrylamide unit,
Preferably, the units of the formula are 3 to 50 mol% and the acrylamide units are 50 to 97 mol%. The minimum molecular weight of the copolymer is 100,000, but the larger the molecular weight, the higher the yield improvement effect. However, if the molecular weight is too large, the texture of the paper tends to deteriorate, so the molecular weight is preferably in the range of 100,000 to 20,000,000. In addition, the copolymer of the present invention may contain up to about 20 mol% of other water-soluble copolymerizable monomers and/or up to about 10 mol% of water-insoluble copolymerizable monomers. may have been done. Examples of water-soluble copolymerizable monomers include acrylic acid or its salt, methacrylic acid or its salt, methacrylamide,
These include N-methylolated acrylamide, N-methylolated methacrylamide, N-lower alkyl acrylamide, N-lower alkyl methacrylamide and styrene sulfonate. Examples of water-insoluble copolymerizable monomers include acrylonitrile, vinyl chloride, vinyl acetate, styrene, lower alkyl acrylate, lower alkyl methacrylate, and diacetoacrylamide. The copolymer in the present invention can be produced by bulk polymerization, aqueous solution polymerization, suspension polymerization, or emulsion polymerization. Polymerization is promoted with polymerization initiators commonly used in aqueous systems, such as peroxides, persulfates, persulfate-bisulfites, and the like. The amount of the copolymer added is 0.005% by weight or more of the dry polymer based on the pulp, and generally 0.1% by weight or less, but preferably 0.01 to 0.07% by weight. If the amount added is more than 0.1% by weight, the texture will deteriorate, which is not preferable. The method of the present invention is applicable to chemical pulps such as kraft pulp (KP) and sulfite pulp (SP), mechanical pulps such as ground pulp (GP), thermomechanical pulp (TMP), and refined ground pulp (RGP), and semi-chemical pulps. It can be applied to any pulp such as (SCP), waste ink pulp (DIP), etc. Papers obtained from these pulps include newsprint, gravure paper, medium-quality paper,
The main ones are wood-free paper and coated base paper. In the method of the present invention, any filler that is commonly used as a filler for paper can be used as the optionally added filler. Namely, cationic clay, talc, synthetic silicates including hydrous silicic acid,
Applicable materials range from inorganic fillers such as TiO 2 , calcium carbonate, magnesium carbonate, barium sulfate, and zinc sulfide to organic fillers made from urea-formalin. The addition rate of such filler to the pulp is not particularly limited, and is generally in the range of about 1 to 80% (absolute dry weight) to the pulp. 1 to 10 for newsprint
%, preferably 1 to 3%, and no filler may be used. For medium quality paper and high quality paper, generally 1~
80%, preferably 5-30%. To specifically explain the operating procedure of the method of the present invention,
0.5 to 5.0% by weight (preferably 1% by weight, including raw material pulp)
A predetermined amount of slurry of an inorganic substance having cation exchange ability according to the present invention, which has been previously dispersed with water such as industrial water to a concentration of 1 to 10% by weight, is added to an aqueous suspension having a concentration of 1 to 3% by weight. After stirring for 2 minutes to sufficiently adsorb impurities, add 0.1 to 1.0
% by weight (preferably 0.5% by weight or less) of the substantially anionic copolymer according to the present invention is added, and the whole is further diluted with water to a concentration of 0.3 to 1.0% by weight to form a paper. do. The location where the copolymer is added is not particularly limited, but it is usually desirable to add the copolymer between the fan pump and the stock inlet where strong hydraulic shearing force is not applied. Further, the method of adding the inorganic substance having cation exchange ability is not limited to the above-mentioned operation. If the conventional fillers mentioned above are used in the process according to the invention, an aqueous slurry of inorganic substances according to the invention is first added to the pulp suspension and then talc, clay, calcium carbonate or TiO 2
Add the filler slurry mentioned above, or
A filler such as clay, calcium carbonate, or TiO 2 and the substance may be mixed in a predetermined ratio in powder form in advance, and then dispersed in water for use. Furthermore, the substance may be added subsequently after addition of the filler. The present invention will be further explained below with reference to Examples.
The present invention is not limited to these. Example 1 A pulp stock containing 20 parts BKP, 30 parts TMP, 20 parts GP and 30 parts DIP is diluted with industrial water to a concentration of 1%. Add tap water to this pulp suspension in advance.
Add 1% Na-type bentonite clay diluted and dispersed to a concentration of 10% to the pulp (absolutely dry weight basis, hereinafter abbreviated as BD), and stir thoroughly with a lab stirrer to uniformly combine. Next, a nonionic polymer or a copolymer according to the invention, previously dissolved in deionized water at a concentration of 0.5%, is added to the pulp at a concentration of 0.05%.
(BD) Add and mix uniformly in the same way. after that,
The above 1% stock suspension is diluted to 0.3% with tap water and the freeness is determined according to the Tappi standard method. The higher the freeness value, the higher the yield improvement effect. The results are shown in Table 1. Note that the data used in this example (including the comparison column)
The Na-type bentonite claim is a Kunimine industrial product (trade name: Kunibond), and the nonionic polyacrylamide (hereinafter abbreviated as nonionic PAM) has a molecular weight (measured by the intrinsic viscosity method, the same hereinafter) of 8 million. Polyethylene oxide (hereinafter abbreviated as PEO) has a molecular weight of 2 million, and the copolymer according to the present invention (hereinafter abbreviated as SO 3 -PAM) contains 80 mol% acrylamide, 2 -A copolymer of 7 mol% sodium acrylamide-2-methylpropanesulfonate and 13 mol% sodium acrylate, with a molecular weight of approximately
7 million.

【表】 実施例 2 前記実施例1と同一のパルプ懸濁液を用い、フ
リーネス測定後の液中の固形分量を測定して、
歩留り向上効果を判定した。液中の固形分量の
少ないものが、抄紙機ワイヤ上での原料の歩留り
の良いことを示す。評価に使用した重合体及び無
機系物質の種類、添加率は実施例1と同じであ
る。その結果を表2に示す。
[Table] Example 2 Using the same pulp suspension as in Example 1, the solid content in the liquid after freeness measurement was measured,
The yield improvement effect was determined. A lower solid content in the liquid indicates a better yield of raw material on the paper machine wire. The types and addition rates of the polymers and inorganic substances used in the evaluation were the same as in Example 1. The results are shown in Table 2.

【表】 実施例 3 NBKP及びLBKPをラボスケールホランダビ
ーターで、各各フリーネス600ml及び450mlに叩解
し、NBKP20%、LBKP80%(重量)の割合に
配合して原料パルプとした。この原料パルプを水
道水で1%濃度に希釈し、この中に、無機系物質
として、あらかじめ水道水で5%濃度に分散した
Na型ベントナイトクレー(実施例1と同じ)を
対パルプ1%(B.D)添加し、ラボスターラーで
混合した。その後、内添用填料として、あらかじ
め10%(B.D)濃度に水道水で分散した、重質炭
酸カルシウム(以下、炭カルと略記する)とタル
ク対パルプ60%(B.D)添加し、同様にかくはん
して均一に混合した。この紙料懸濁液中に、あら
かじめイオン交換水で0.5%濃度に溶解した、実
施例1に記載の非イオン性重合体又はSO3
PAMを対パルプ0.05%(B.D)添加し、ゆるや
かにかくはんして均一に混合する。その後、この
紙料懸濁液を水道水で0.8%濃度に希釈した後、
2採取し、急速かくはんしながら60メツシユの
ワイヤーを張つたトレー上に落下させ、ワイヤー
ーを抜けて流出した液を採取して、その中の填
料濃度を測定した。白水中に含まれる填料の重量
の少ない方が、抄紙機ワイヤー上での歩留りがよ
い。 なお、比較のために、填料の歩留り助剤として
一般的に用いられているカチオン系のポリアクリ
ルアミド(カチオン性PAMと略記する)(分子量
200万、カチオン化度20モル%)を使用した結果
も併記する。 これらの結果を表3に示す。
[Table] Example 3 NBKP and LBKP were beaten to respective freenesses of 600 ml and 450 ml using a lab-scale Holland beater, and blended at a ratio of 20% NBKP and 80% (by weight) LBKP to obtain raw material pulp. This raw material pulp was diluted with tap water to a concentration of 1%, and inorganic substances were previously dispersed in tap water to a concentration of 5%.
Na-type bentonite clay (same as in Example 1) was added at 1% (BD) to the pulp and mixed using a lab stirrer. Then, as an internal filler, heavy calcium carbonate (hereinafter abbreviated as charcoal) previously dispersed in tap water to a concentration of 10% (BD) and 60% talc to pulp (BD) were added and stirred in the same manner. and mixed uniformly. In this stock suspension, the nonionic polymer described in Example 1 or SO 3
Add 0.05% (BD) of PAM to the pulp and stir gently to mix uniformly. Then, after diluting this stock suspension with tap water to a concentration of 0.8%,
2 samples were taken and dropped onto a tray covered with 60 mesh wire while being rapidly stirred, and the liquid that flowed out through the wire was collected and the filler concentration therein was measured. The lower the weight of the filler contained in the white water, the better the yield on the paper machine wire. For comparison, cationic polyacrylamide (abbreviated as cationic PAM) (molecular weight
2 million, degree of cationization 20 mol%) is also shown. These results are shown in Table 3.

【表】 実施例 4 実施例1と同じパルプの1%懸濁液中に、あら
かじめ水道水で10%濃度で希釈分散した、Na型
ベントナイトクレー(実施例例1と同じ)、ゼオ
ライト(ヒユーバー社製、ゼオレツクス)又は活
性白土(水沢化学製シルトン)を対パルプ1%
(B.D)添加し、同様に均一に混した後、実施例
1に記載の非イオン性PAM又はSO3−PAMを対
パルプ0.05%(B.D)添加混合した。この紙料懸
濁液を水道水で0.3%に希釈した後、Tappi標準
法によりフリーネスを測定し、その液中の固形
分濃度を測定した。その結果を表4に示す。
[Table] Example 4 In a 1% suspension of the same pulp as in Example 1, Na-type bentonite clay (same as in Example 1) and zeolite (Huber Co., Ltd.) were diluted and dispersed in advance with tap water at a concentration of 10%. 1% of the pulp
(BD) was added and mixed uniformly in the same manner, and then 0.05% (BD) of nonionic PAM or SO 3 -PAM described in Example 1 was added and mixed relative to the pulp. After diluting this stock suspension to 0.3% with tap water, freeness was measured by the Tappi standard method, and the solid content concentration in the liquid was measured. The results are shown in Table 4.

【表】 実施例 5 実施例3と同一のパルプの1%懸濁液中に、あ
らかじめ水道水で10%濃度に分散した、実施例4
に記載のNa型ベントナイトクレー、ゼオライト
又は活性白土を対パルプ1%(B.D)添加し、均
一に混合させた後、内添填料として、あらかじめ
10%濃度に分散した炭カルを対パルプ60%(B.
D)添加し、均一に分散させた。この紙料懸濁液
中に、イオン交換水に溶解した実施例1に記載の
非イオン性PAM又はSO3−PAMを対パルプ0.05
%(B.D)添加して均一に分散させた後、0.8%
濃度に希釈し、実施例3と同様に60メツシユのワ
イヤー上を通過させ、流出した液中の填料の重
量を測定した。その結果を表5に示す。
[Table] Example 5 Example 4 was prepared by dispersing tap water to a 10% concentration in a 1% suspension of the same pulp as in Example 3.
After adding 1% (BD) of Na-type bentonite clay, zeolite or activated clay to the pulp and mixing it uniformly, as an internal filler,
Charcoal dispersed at a concentration of 10% is mixed with 60% of the pulp (B.
D) Added and uniformly dispersed. In this stock suspension, the nonionic PAM or SO 3 -PAM described in Example 1 dissolved in ion-exchanged water was added at a rate of 0.05% per pulp.
% (BD) after adding and uniformly dispersing, 0.8%
The filler was diluted to a certain concentration and passed through a 60-mesh wire in the same manner as in Example 3, and the weight of the filler in the liquid that flowed out was measured. The results are shown in Table 5.

【表】 実施例 6 実施例1におけるSO3−PAMを、アクリルア
ミド95モル%及び2−アクリルアミド−2−メチ
ルプロパンスルホン酸ナトリウム5モル%の共重
合体で代替した以外は同じ処理を行つて、フリー
ネスを測定した。フリーネス値は170mlであつた。 以上の実施例及び比較例の記載から明らかなよ
うに、本発明方法によれば、機械パルプに由来す
る微細繊維、及び印刷適性を改善する目的で紙料
懸濁液中に必要に応じ添加される填料のワイヤー
上での歩留りを改善すると共に、水切れを良好に
し、更に紙の印刷適性を向上することができると
いう、顕著な効果を奏することができる。
[Table] Example 6 The same treatment as in Example 1 was performed except that SO 3 -PAM was replaced with a copolymer of 95 mol% acrylamide and 5 mol% sodium 2-acrylamido-2-methylpropanesulfonate. Freeness was measured. The freeness value was 170ml. As is clear from the descriptions of the above Examples and Comparative Examples, according to the method of the present invention, fine fibers derived from mechanical pulp and fine fibers that are added to the stock suspension as necessary for the purpose of improving printability are used. In addition to improving the retention of the filler on the wire, it also improves water drainage and improves the printability of the paper.

Claims (1)

【特許請求の範囲】 1 紙料懸濁液から紙を製造する方法において、
紙料懸濁液を調製する工程で、カチオン交換能を
有する無機系物質を使用し、次に得られた紙料懸
濁液に、下記一般式(): (式中、R1は水素又はメチル基を示し、R2
2価の炭化水素基を示し、Mは水素又は他のカチ
オンを示す)で表される構造単位、及び50〜97モ
ル%のアクリルアミド構造単位を含有する、分子
量10万〜2000万のアニオン性の共重合体を添加
し、その後に抄紙することを特徴とする紙の製造
方法。
[Claims] 1. A method for producing paper from a stock suspension,
In the process of preparing a paper stock suspension, an inorganic substance having cation exchange ability is used, and then the following general formula () is added to the obtained paper stock suspension: (wherein, R 1 represents hydrogen or a methyl group, R 2 represents a divalent hydrocarbon group, and M represents hydrogen or another cation), and 50 to 97 mol% of A method for producing paper, which comprises adding an anionic copolymer containing an acrylamide structural unit and having a molecular weight of 100,000 to 20 million, followed by papermaking.
JP6401382A 1982-04-19 1982-04-19 Production of paper Granted JPS58180696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6401382A JPS58180696A (en) 1982-04-19 1982-04-19 Production of paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6401382A JPS58180696A (en) 1982-04-19 1982-04-19 Production of paper

Publications (2)

Publication Number Publication Date
JPS58180696A JPS58180696A (en) 1983-10-22
JPH039238B2 true JPH039238B2 (en) 1991-02-07

Family

ID=13245861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6401382A Granted JPS58180696A (en) 1982-04-19 1982-04-19 Production of paper

Country Status (1)

Country Link
JP (1) JPS58180696A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ609491A (en) 2010-10-29 2015-01-30 Buckman Lab Int Inc Papermaking and products made thereby with ionic crosslinked polymeric microparticle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845603A (en) * 1971-10-06 1973-06-29
JPS5227808A (en) * 1975-08-29 1977-03-02 Nitto Chemical Industry Co Ltd Screening method of nonwoven article
JPS551308A (en) * 1978-06-13 1980-01-08 Toa Gosei Chem Ind Paper making additives
JPS5590417A (en) * 1978-12-20 1980-07-09 Huber Corp J M Small grain diameter and uniform zeolites and their manufacture
JPS55152899A (en) * 1979-03-28 1980-11-28 Allied Colloids Ltd Production of paper and paperboard

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845603A (en) * 1971-10-06 1973-06-29
JPS5227808A (en) * 1975-08-29 1977-03-02 Nitto Chemical Industry Co Ltd Screening method of nonwoven article
JPS551308A (en) * 1978-06-13 1980-01-08 Toa Gosei Chem Ind Paper making additives
JPS5590417A (en) * 1978-12-20 1980-07-09 Huber Corp J M Small grain diameter and uniform zeolites and their manufacture
JPS55152899A (en) * 1979-03-28 1980-11-28 Allied Colloids Ltd Production of paper and paperboard

Also Published As

Publication number Publication date
JPS58180696A (en) 1983-10-22

Similar Documents

Publication Publication Date Title
EP0534656B1 (en) Papermaking process
US4913775A (en) Production of paper and paper board
CN1083509C (en) Production of filled paper and compositions for use in this
US6048438A (en) Method to enhance the performance of polymers and copolymers of acrylamide as flocculants and retention aids
EP0711371B1 (en) Manufacture of paper
KR100314900B1 (en) How to make filled paper
EP0235893B1 (en) Production of paper and paperboard
US4964955A (en) Method of reducing pitch in pulping and papermaking operations
CA2329028C (en) A process for the production of paper
CA2299201C (en) Method for reducing the polymer and bentonite requirement in papermaking
KR100326204B1 (en) How to make paper
US5798023A (en) Combination of talc-bentonite for deposition control in papermaking processes
JP2010503777A (en) Compositions and methods for paper processing
US5989392A (en) Method of using polyammonium quaternary for controlling anionic trash and pitch deposition in pulp containing broke
CA2409217C (en) Papermaking pulp and flocculant comprising acidic aqueous alumina sol
EP0468558A2 (en) Production of paper and paperboard
US5837100A (en) Use of blends of dispersion polymers and coagulants for coated broke treatment
US5532308A (en) Method for improving retention and drainage characteristics in alkaline papermaking
CA2336970A1 (en) A microparticle system in the paper making process
EP1620599B1 (en) Process for manufacturing of paper
JPH039238B2 (en)
WO2003050354A1 (en) Use of hydrophillic polymer dispersion containing a colloidal silica or an inorganic flocculant as retention and drainage aids in paper making process
AU744781B2 (en) Use of blends of dispersion polymers and coagulants for coated broke treatment
JPH07173790A (en) Cellulosic, modified lignin and cationic polymer compositionand preparation of improved paper or paperboard
EP0893538A1 (en) Use of blends of dispersion polymers and coagulants for papermaking