JPH039235B2 - - Google Patents

Info

Publication number
JPH039235B2
JPH039235B2 JP57048394A JP4839482A JPH039235B2 JP H039235 B2 JPH039235 B2 JP H039235B2 JP 57048394 A JP57048394 A JP 57048394A JP 4839482 A JP4839482 A JP 4839482A JP H039235 B2 JPH039235 B2 JP H039235B2
Authority
JP
Japan
Prior art keywords
melting point
nonwoven fabric
fiber
wet
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57048394A
Other languages
Japanese (ja)
Other versions
JPS58169600A (en
Inventor
Kazuhiko Masuda
Hidenori Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP57048394A priority Critical patent/JPS58169600A/en
Publication of JPS58169600A publication Critical patent/JPS58169600A/en
Publication of JPH039235B2 publication Critical patent/JPH039235B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、網目状の粗密構造を有し、かつ、粗
部に蜘蛛巣構造を有する湿式不織布とその製造方
法に関する。 従来、乾燥剤の包装や使い捨て懐炉の包装等に
用いられる補強材用途、あるいは農業資材用途に
は通気性に優れ、かつ高強力、高タフネス性が要
求され、編織物や直交不織布、スパンボンド不織
布等が用いられてきた。上記の各用途には更に織
目や編目の組織の変形(いわゆる目ずれ)の無い
こと、ひいては形態的に安定であることが要求さ
れ、編織物、直交不織布あるいはスパンボンド不
織布では目付重量が少いと組織が不均一化し、密
度斑や強度斑を生じ易いため必要以上に緻密な構
造としたり、寒冷紗の如く粗い織物の場合には樹
脂加工等の方法がとられてきた。しかし、このよ
うな方法は不経済であるばかりでなく、これらの
用途に要求される空隙の多い粗い組織が失なわれ
ることになる。 又、寒冷紗の様な用途には、編目や織目が蜘蛛
の巣状に単繊維でうずめられていることが望まし
く、従来は編織物を構成する紡績糸の表面にフリ
ーな形で存在する毛羽がその役目をはたして来
た。このような毛羽は、フリーな形で存在するよ
りも、編目や織目を横断して、編織物を構成する
紡績糸相互の間に固定されて存在することが一層
好ましい。寒冷紗の製造時に施されるような樹脂
加工は、毛羽の固定には有効であるが、編目や織
目の組織の空間が樹脂で埋められるという欠点が
ある。寒冷紗類似の物として網目状の構造を有す
る紙も公知であるが、その紙力、特に湿潤強力が
弱く前記の諸用途には用いる事が出来ないのが現
状である。 本発明者等は在来の空隙の多い粗い構造の編織
物や不織布等の上記諸欠点の解消のため鋭意研究
の結果本発明に到達した。本発明の目的は粗密構
造を有する高強力湿式不織布とその製造方法を提
供することにある。 本発明の一つは、網目様の粗密構造を有する湿
式不織布であつて、密部の面積が不織布面積の20
%以上80%以下を占め、繊維形成性重合体から成
る第一成分(以下高融点成分と称することがあ
る)と融点が第一成分のそれより少くとも10℃以
上低い1種又は2種以上の重合体から成る第二成
分(以下低融点成分と称することがある)とから
成り繊維長が粗部組織(密部組織間)の最短対辺
間距離の2分の1以上である熱接着性複合繊維を
不織布重量の20%以上含有し、該熱接着性複合繊
維の熱融着によつて形態が安定化され、かつ、粗
部に蜘蛛巣構造を有することを特徴とする湿式不
織布である。 本発明の他の一つは、融点差が10℃以上ある複
合成分から成る熱接着性繊維を湿式法で抄紙し、
続いて該熱接着性繊維の低融点成分の融点以上、
高融点成分の融点以下の温度で熱処理する湿式不
織布製造方法において、閉塞目の在る部分の面積
が全体の面積の20%以上80%以下となる様に一定
の密度で網目状に分布した閉塞目を有する抄紙金
網と繊維長が上記閉塞目の在る部分で形成された
網目状の間隔の2分の1以上ある熱接着性複合繊
維を不織布全体の20重量%以上含有する繊維混合
物とを用いることを特徴とする、粗密構造を有
し、かつ、粗部に蜘蛛の巣構造を有する湿式不織
布の製造方法である。 本発明においては、湿式不織布の製造に通常用
いられる丸網、短網、傾斜長網、ロートホーマー
等の抄紙方法がいずれも使用可能であるが、抄紙
後の不織布に網目様の粗密構造を持たせるため
に、抄紙金網として一定密度で分布した閉塞目を
有する金網を用いる。このような金網としては、
例えば、通常の抄紙金網の網目の一つあるいは隣
接する一定数を樹脂等で目潰しした閉塞目を適当
な間隔で網目模様に配列したものが有効に用いら
れる。この様な金網を用いて得られる不織布は、
繊維は水の流れにしたがつて金網の開口目の部分
に集中するので、金網の開口目の部分は繊維密度
が大きく不織布の網の糸模様の骨格をなして強度
に寄与し、金網の閉塞目の部分は繊維密度が粗で
網の目模様をなして不織布の通気性に寄与する。 本発明において、不織布の密度が大な部分(以
下密部と称することがある)の面積が不織布全体
の面積の20%以上、80%以下と限定し、従つて、
抄紙機に用いる金網の閉塞目の部分の面積が金網
の面積の80%以下、20%以上と限定する理由は、
密部の面積の割合が20%未満となると不織布の強
力が同一目付で粗密構造を有しない均一な不織布
の強力以下となり、また、密部の面積の割合が80
%を超すと同一目付の均一不織布と同程度の強力
しか得られないためである。 本発明において用いられる融点を異にする成分
からなる熱接着性複合繊維は抄紙後の熱処理によ
り該複合繊維の低融点成分の熱接着により不織布
の形態を安定化させるためのものであり、このよ
うな繊維は該熱処理時に高融点成分の繊維形状が
保持されており、出来上つた不織布はポリプロピ
レンやポリエチレン等の単一組成繊維から成る不
織布より高強力でかつ良好な風合を有するものと
なる。このような熱接着性複合繊維の複合成分の
組み合せとしては、両成分の融点差が少くとも10
℃、好ましくは20℃以上あつて、少くとも高融点
成分が繊維形成性を有する熱可塑性樹脂の組み合
せが用い得るが、好ましい例として、低融点成分
がポリエチレン、高融点成分がポリプロピレンの
組に合せ、他の例として、低融点成分としてのエ
チレン−酢酸ビニル共重合体、該共重合体の任意
の鹸化度の鹸化物またはこれらとポリエチレンの
混合物等と、高融点成分としてのポリプロピレン
やポリスチレン等との組み合せが示される。複合
構造としては、低融点成分が少くとも繊維表面の
一部、好ましくは2分の1以上を占めるように並
列型または鞘芯型構造をとる。 本発明において、上記熱接着性繊維の繊維長は
不織布の粗部組織(密部組織間)の最短対辺の2
分の1以上である。繊維長が粗部組織の最短対辺
の2分の1以上であれば、粗部組織に毛羽として
存在する繊維は根元部分では密部の繊維と接着さ
れ先端部分では他の毛羽繊維と接着され、全体と
して粗部組織を横断する形で形態が安定化される
ため、該毛羽として存在する繊維の不織布強力へ
の寄与が大きくなり、良好な通気性を保持した
まゝ高強力の不織布が得られる。繊維長の上限
は、抄紙時の繊維の分散性によつて制限され、一
般には20〜25mm程度である。繊維長が粗部組織の
最短対辺の2分1未満では粗部組織を横断して固
定化される毛羽の存在量が減少するため不織布強
力が低下して好ましくない。 熱接着性複合繊維はそれ自身単独で用いること
もできるが、他の繊維と混合して用いることも可
能であり、この場合、混抄率(混合繊維中の熱接
着性複合繊維の重量%)は20%以上でなければな
らない。熱接着性複合繊維と混合される他の繊維
としては、熱接着のための熱処理時に繊維形状を
失なわず、かつ、湿式抄紙の可能な短繊維形状の
ものならいずれも使用でき、例えば、パルプ、抄
紙用レーヨン等が好ましく用いられる。更に、抄
紙を容易にするため抄紙用繊維状ポリビニルアル
コール、合繊パルプ等を添加することもできる。
熱接着性複合繊維の混抄率を20重量%以上とする
理由は、熱接着性複合繊維の様な非フイブリル性
繊維は抄紙時にフイブリルによる繊維間のからみ
合いが無いため、混抄率が20重量%未満では熱接
着によつてもなを不織布強力が不足し、パルプの
みから成る紙より弱い場合も生じ、好ましくない
為である。 かくして得られた湿式不織シートは、次工程の
乾燥工程において乾燥並びに熱処理を施され、熱
接着性複合繊維の熱接着により繊維間が固定され
た本発明の不織布となる。該乾燥並びに熱処理
は、例えば、公知のヤンキードライヤ等の乾燥機
を熱接着性複合繊維の低融点成分の融点以上、高
融点成分の融点以下で運転することにより容易に
実施される。 本発明の不織布は、網目様の粗密構造を有し、
粗部に蜘蛛の巣構造を有するもので通気性に秀
れ、かつ、高強力、高タフネスを示すものであ
る。本発明の不織布にその熱接着性複合繊維の熱
接着をより強化する目的で、熱カレンダーロール
等による二次加工を施すことも可能である。 以下に実施例によつて本発明を説明する。な
お、不織布の評価方法は、JIS L1096(一般織物
試験方法)に準じ、5cm巾のサンプルをつかみ間
隔100mm、伸長速度毎分つかみ間隔の100%で引張
つて、強度、伸度及びタフネス性(強度×伸度)
を抄紙金網の運行方向(MD)及びそれと直角の
方向(CD)の2種類のサンプルについて測定し
た。 実施例1,2、比較例1〜3 高融点成分がポリプロピレン(融点165℃)で、
低融点成分がポリエチレン(融点130℃)で繊度
が3デニールの鞘芯型熱接着性複合繊維を表に示
した所定の長さにカツトしたもの60重量%とパル
プ40重量%との混合繊維を第1図に示した均一な
網目構造(粗部l1=9mm、l2=12mm、密部t1=t2
3mm、密部面積40%)となる様に目潰した金網を
用いた丸網抄紙機で抄紙し、引続き135℃のヤン
キードライヤーで乾燥、熱処理して目付が20g/
m2前後の粗密構造を有する湿式不織布を得た(実
施例1,2、比較例1)。更に、比較のため閉塞
目を有しない通常の金網を用い同様の混合繊維よ
り均一な組織の湿式不織布を得た(比較例2,
3)。これらの不織布の強伸度特性を表に併せ示
した。 上記各例のデータより熱接着性複合繊維の繊維
長が粗部組織の最短対辺間距離(l1=9mm)の2
分の1(4.5mm)以下の場合(比較例1)は同様の
繊維組成で均一組織の不織布(比較例2)よりも
強度が低いのに対し、該複合繊維の繊維長が4.5
mmを超えた実施例1は均一組織の比較例3に比し
て強度、伸度及びタフネス性のいずれもが秀れて
いる。実施例1で得られた不織布は使い捨て懐炉
の包装材料に適当であつた。実施例1より更に長
い繊維長の複合繊維を用いた実施例2の不織布は
強度、伸度、タフネス性が一層改善され、この不
織布を寒冷紗として用いた場合、結露した水滴が
粗部組織に蜘蛛の巣状に存在する毛羽に捕捉され
落下しないという優れた効果を示した。 実施例3〜5、比較例4〜6 高融点成分がポリプロピレン(融点165℃)で、
低融点成分が低密度ポリエチレン(融点115℃)
75重量%とエチレン−酢酸ビニル共重合体(融点
96℃、酢酸ビニル含量7.53モル%)25重量%との
混合物である繊度が3デニール繊維長10mmの鞘芯
型熱接着性複合繊維50重量%と、4デニール7mm
の抄紙用レーヨン45重量%及び抄紙用ビニロンバ
インダー5重量%とから成る混合繊維を、第2図
に示した均一な網目構造となる様に表に示した所
定の粗部の大きさ(l1,l2)及び密部の巾(t1
t2)に目潰した金網を用いた丸網抄紙で抄紙し、
引続き115℃のヤンキードライヤーで乾燥、熱処
理して目付が18g/m2前後の粗密構造を有する湿
式不織布を得た(実施例3〜5、比較例4,5)。
更に閉塞目を有しない通常の金網を用い、同様の
混合繊維により均一な組織の湿式不織布を得た
(比較例6)。これらの不織布の物性を表に示し
た。上記各例のデータより、密部の面積が80%を
超した不織布は強度、伸度共に均一組織の不織布
と近似し、粗密構造の効果は現れず、又、密部の
面積が20%に達しないものは強度が小さいことが
判る。これに対し密部の面積が20%以上80%以下
の不織布は強度、伸度並びにタフネス性の全てに
おいて優れている。 実施例6,7、比較例7,8 高融点成分がポリエチレンテレフタレート(固
有粘度0.65、融点260℃)で、低融点成分がポリ
エチレン(融点130℃)である、繊度が5デニー
ル、繊維長10mmの鞘芯型熱接着性複合繊維とパル
プを表に示た所定の混抄率に配合し、実施例1で
用いた金網で抄紙し、135℃のヤンキードライヤ
ーで乾燥、熱処理して湿式不織布を得た(実施例
6,7、比較例7)。更に比較のため、パルプの
みから成り均一組織を有する紙を得た。これらの
不織布及び紙の物性を表に示した。 これらのデータから、熱接着性複合繊維の混抄
率が20重量%未満の粗密構造を有する不織布(比
較例7)は、パルプのみから成る均一組織の紙
(比較例8)よりも強度が劣るが、熱接着性複合
繊維の混抄率を20重量%以上(実施例6,7)に
することにより強度、伸度、タフネス性の全てが
改善されることが判る。実施例6及び7で得られ
た湿式不織布は、保水性、通気性に優れ、苗木の
根の保護用包装材として充分な性能を発揮した
が、比較例7及び8の製品は強力、特に湿潤強力
が弱く、使用できなかつた。
The present invention relates to a wet-laid nonwoven fabric having a mesh-like sparse structure and a spider web structure in the sparse portions, and a method for producing the same. Traditionally, knitted fabrics, orthogonal nonwoven fabrics, and spunbond nonwoven fabrics have been required to have excellent breathability, high strength, and high toughness for use as reinforcing materials for desiccant packaging, disposable pocket warmer packaging, etc., or for agricultural materials. etc. have been used. For each of the above-mentioned uses, it is further required that there is no deformation of the weave or stitch structure (so-called mesh deviation), and that it is morphologically stable, and knitted fabrics, orthogonal nonwoven fabrics, or spunbond nonwoven fabrics have a low basis weight. This tends to make the structure non-uniform and cause uneven density and strength, so methods such as resin processing have been used to make the structure more dense than necessary, or in the case of coarse fabrics such as cheesecloth. However, such methods are not only uneconomical, but also result in the loss of the coarse, porous structure required for these applications. In addition, for applications such as cheesecloth, it is desirable that the stitches or textures be embedded in single fibers like a spider's web. has fulfilled that role. It is more preferable that such fuzz exists in a fixed manner between the spun yarns constituting the knitted fabric, across stitches and weaves, rather than in a free form. Resin processing, such as that applied during the manufacture of cheesecloth, is effective in fixing fuzz, but has the disadvantage that the spaces in the stitches and textures are filled with resin. Paper having a mesh structure similar to cheesecloth is also known, but its paper strength, particularly its wet strength, is weak and it cannot be used for the above-mentioned purposes. The inventors of the present invention have arrived at the present invention as a result of intensive research to eliminate the above-mentioned drawbacks of conventional knitted fabrics and non-woven fabrics having a rough structure with many voids. An object of the present invention is to provide a high-strength wet-laid nonwoven fabric having a dense structure and a method for producing the same. One of the present invention is a wet-laid nonwoven fabric having a mesh-like sparse structure, in which the area of the dense portion is 20% of the area of the nonwoven fabric.
% or more and 80% or less, and consists of a first component consisting of a fiber-forming polymer (hereinafter sometimes referred to as a high melting point component) and one or more components whose melting point is at least 10°C lower than that of the first component. A second component (hereinafter sometimes referred to as a low melting point component) consisting of a polymer of A wet-laid nonwoven fabric containing composite fibers in an amount of 20% or more of the weight of the nonwoven fabric, whose form is stabilized by heat fusion of the heat-adhesive composite fibers, and which has a spider web structure in its coarse portions. . Another aspect of the present invention is to make paper using a wet method from heat-adhesive fibers made of composite components with a melting point difference of 10°C or more,
Subsequently, the temperature is higher than the melting point of the low melting point component of the heat-adhesive fiber,
In a wet nonwoven fabric manufacturing method in which heat treatment is performed at a temperature below the melting point of a high melting point component, occlusions are distributed in a mesh pattern with a constant density so that the area of the area where the occlusions are present is 20% or more and 80% or less of the total area. A fiber mixture containing a paper wire mesh having openings and heat-adhesive conjugate fibers having a fiber length of at least one-half of the mesh spacing formed in the portions where the closing openings are present in an amount of at least 20% by weight of the entire nonwoven fabric. This is a method for producing a wet-laid nonwoven fabric having a sparse and dense structure and a spider web structure in the coarse portions. In the present invention, any of the paper-making methods commonly used in the production of wet-laid nonwoven fabrics, such as round screen, short screen, inclined fourdrinier, and funnel homer, can be used; In order to achieve this, a wire mesh having closed meshes distributed at a constant density is used as the paper-making wire mesh. As this kind of wire mesh,
For example, one or a certain number of adjacent meshes of an ordinary paper-making wire mesh may be blinded with resin or the like and the closed meshes arranged in a mesh pattern at appropriate intervals can be effectively used. The nonwoven fabric obtained using such a wire mesh is
Fibers concentrate in the openings of the wire mesh as the water flows, so the openings of the wire mesh have a high fiber density and form the skeleton of the thread pattern of the nonwoven fabric mesh, contributing to the strength and preventing blockage of the wire mesh. The fiber density in the mesh area is coarse, creating a mesh pattern that contributes to the breathability of the nonwoven fabric. In the present invention, the area of the high-density portion of the nonwoven fabric (hereinafter sometimes referred to as a dense portion) is limited to 20% or more and 80% or less of the entire area of the nonwoven fabric, and therefore,
The reason why the area of the closed part of the wire mesh used in the paper machine is limited to less than 80% and more than 20% of the area of the wire mesh is as follows.
If the area ratio of dense areas is less than 20%, the strength of the nonwoven fabric will be less than that of a uniform nonwoven fabric with the same basis weight and no coarse structure, and the area ratio of dense areas will be less than 80%.
This is because if it exceeds %, it will only be as strong as a uniform nonwoven fabric with the same basis weight. The heat-adhesive conjugate fibers composed of components with different melting points used in the present invention are used to stabilize the form of the nonwoven fabric by thermally adhering the low-melting-point components of the conjugate fibers through heat treatment after papermaking. The fiber shape of the high melting point component is maintained during the heat treatment, and the resulting nonwoven fabric has higher strength and a better feel than a nonwoven fabric made of monocomponent fibers such as polypropylene or polyethylene. The combination of composite components for such thermally adhesive composite fibers is such that the difference in melting point between the two components is at least 10
℃, preferably 20℃ or higher, and a combination of thermoplastic resins in which at least the high melting point component has fiber-forming properties can be used, but as a preferred example, a combination of a low melting point component of polyethylene and a high melting point component of polypropylene can be used. As other examples, ethylene-vinyl acetate copolymer as a low melting point component, a saponified product of the copolymer with any degree of saponification, or a mixture of these and polyethylene, etc., and polypropylene, polystyrene, etc. as a high melting point component. combinations are shown. The composite structure is a parallel type or sheath-core type structure such that the low melting point component occupies at least a part, preferably one-half or more, of the fiber surface. In the present invention, the fiber length of the thermoadhesive fiber is 2 of the shortest opposite side of the coarse structure (between the dense structures) of the nonwoven fabric.
That's more than 1/2. If the fiber length is one-half or more of the shortest opposite side of the coarse tissue, the fibers present as fuzz in the coarse tissue will be bonded to the fibers in the dense region at the root portion, and to other fluff fibers at the tip, Since the overall morphology is stabilized across the coarse structure, the fibers present as fluff make a greater contribution to the strength of the nonwoven fabric, resulting in a high strength nonwoven fabric while maintaining good air permeability. . The upper limit of the fiber length is limited by the dispersibility of the fibers during paper making, and is generally about 20 to 25 mm. If the fiber length is less than 1/2 of the shortest opposite side of the coarse structure, the amount of fuzz that is fixed across the coarse structure will decrease, resulting in a decrease in the strength of the nonwoven fabric, which is not preferable. The thermoadhesive conjugate fiber can be used alone, but it can also be mixed with other fibers, and in this case, the mixing ratio (weight % of the thermoadhesive conjugate fiber in the mixed fiber) is Must be 20% or more. Other fibers to be mixed with the heat-adhesive composite fibers can be any short fibers that do not lose their fiber shape during heat treatment for heat-adhesion and can be used in wet papermaking, such as pulp. , papermaking rayon, etc. are preferably used. Furthermore, in order to facilitate paper making, fibrous polyvinyl alcohol for paper making, synthetic fiber pulp, etc. may be added.
The reason why the mixing ratio of heat-adhesive composite fibers is set to 20% by weight or more is that non-fibrillar fibers such as heat-adhesive composite fibers do not have entanglement between fibers due to fibrils during paper making, so the mixing ratio of thermoadhesive composite fibers is set to 20% by weight or more. This is because if it is less than that, the nonwoven fabric will not have enough strength due to thermal adhesion, and may be weaker than paper made only of pulp, which is not preferable. The thus obtained wet-laid nonwoven sheet is dried and heat-treated in the next drying step, and becomes the nonwoven fabric of the present invention in which the fibers are fixed by thermal bonding of the heat-adhesive conjugate fibers. The drying and heat treatment are easily carried out by, for example, operating a dryer such as a well-known Yankee dryer at a temperature higher than the melting point of the low melting point component and lower than the melting point of the high melting point component of the heat-adhesive conjugate fiber. The nonwoven fabric of the present invention has a mesh-like dense structure,
It has a spider web structure in its rough parts and has excellent breathability, as well as high strength and toughness. It is also possible to subject the nonwoven fabric of the present invention to secondary processing using a thermal calendar roll or the like for the purpose of further strengthening the thermal adhesion of the thermally adhesive conjugate fibers. The present invention will be explained below with reference to Examples. The evaluation method for nonwoven fabrics is based on JIS L1096 (general textile testing method), and the strength, elongation, and toughness (strength, × elongation)
was measured for two types of samples: one in the running direction (MD) of the paper wire mesh and the other in the direction perpendicular to it (CD). Examples 1 and 2, Comparative Examples 1 to 3 The high melting point component is polypropylene (melting point 165°C),
A mixed fiber of 60% by weight of sheath-core type heat-adhesive composite fiber with a low melting point component of polyethylene (melting point 130℃) and a fineness of 3 denier cut into the specified length shown in the table and 40% by weight of pulp. Uniform network structure shown in Figure 1 (coarse part l 1 = 9 mm, l 2 = 12 mm, dense part t 1 = t 2 =
The paper is made using a circular mesh paper machine using a wire mesh that has been closed to a density of 3 mm (3 mm, dense area area: 40%), then dried and heat treated in a Yankee dryer at 135°C to a paper weight of 20 g/
Wet-laid nonwoven fabrics having a dense structure of around m 2 were obtained (Examples 1 and 2, Comparative Example 1). Furthermore, for comparison, a wet nonwoven fabric with a more uniform texture than similar mixed fibers was obtained using an ordinary wire mesh without closed mesh (Comparative Example 2,
3). The strength and elongation characteristics of these nonwoven fabrics are also shown in the table. From the data of each example above, the fiber length of the thermoadhesive composite fiber is 2 of the shortest distance between opposite sides of the coarse structure (l 1 = 9 mm).
When the fiber length of the composite fiber is 4.5 mm or less (Comparative Example 1), the strength is lower than that of a nonwoven fabric with a similar fiber composition and a uniform structure (Comparative Example 2), whereas the fiber length of the composite fiber is 4.5 mm.
Example 1, which has a thickness exceeding mm, is superior to Comparative Example 3, which has a uniform structure, in terms of strength, elongation, and toughness. The nonwoven fabric obtained in Example 1 was suitable as a packaging material for disposable hand warmers. The nonwoven fabric of Example 2, which uses composite fibers with a longer fiber length than those of Example 1, has further improved strength, elongation, and toughness, and when this nonwoven fabric is used as cheesecloth, condensed water droplets form spiders in the rough tissue. It showed an excellent effect in that it was caught in the nest-like fuzz and did not fall. Examples 3 to 5, Comparative Examples 4 to 6 The high melting point component is polypropylene (melting point 165°C),
Low melting point component is low density polyethylene (melting point 115℃)
75% by weight and ethylene-vinyl acetate copolymer (melting point
96℃, vinyl acetate content 7.53 mol%) 50% by weight of sheath-core type thermoadhesive composite fiber with a fineness of 3 denier fiber length 10 mm, which is a mixture of 25% by weight of vinyl acetate (vinyl acetate content 7.53 mol%), and 4 denier 7 mm
Mixed fibers consisting of 45% by weight of rayon for papermaking and 5% by weight of vinylon binder for papermaking were mixed to the predetermined coarse part size (l 1 , l 2 ) and the width of the dense part (t 1 ,
Paper is made using circular mesh paper making using a wire mesh that has been crushed in t 2 ),
Subsequently, it was dried and heat-treated in a Yankee dryer at 115°C to obtain a wet-laid nonwoven fabric having a dense structure with a basis weight of around 18 g/m 2 (Examples 3 to 5, Comparative Examples 4 and 5).
Furthermore, a wet nonwoven fabric with a uniform structure was obtained using a similar mixed fiber using a normal wire mesh having no closed mesh (Comparative Example 6). The physical properties of these nonwoven fabrics are shown in the table. From the data of each example above, a nonwoven fabric in which the area of the dense part exceeds 80% is similar to a nonwoven fabric with a uniform structure in terms of strength and elongation, and the effect of the coarse/dense structure does not appear, and the area of the dense part is 20%. It can be seen that those that do not reach this level have low strength. On the other hand, nonwoven fabrics in which the area of dense portions is 20% or more and 80% or less are excellent in strength, elongation, and toughness. Examples 6 and 7, Comparative Examples 7 and 8 The high melting point component is polyethylene terephthalate (intrinsic viscosity 0.65, melting point 260°C), the low melting point component is polyethylene (melting point 130°C), the fineness is 5 denier, the fiber length is 10 mm. Sheath-core type thermoadhesive composite fibers and pulp were blended at the predetermined mixing ratio shown in the table, paper was made using the wire mesh used in Example 1, dried with a Yankee dryer at 135°C, and heat treated to obtain a wet nonwoven fabric. (Examples 6 and 7, Comparative Example 7). Furthermore, for comparison, a paper made only of pulp and having a uniform texture was obtained. The physical properties of these nonwoven fabrics and papers are shown in the table. From these data, it can be seen that the nonwoven fabric with a coarse structure in which the mixing ratio of thermoadhesive composite fibers is less than 20% by weight (Comparative Example 7) is inferior to the paper with a uniform structure made only of pulp (Comparative Example 8), but It can be seen that strength, elongation, and toughness are all improved by increasing the mixing ratio of heat-adhesive composite fibers to 20% by weight or more (Examples 6 and 7). The wet-laid nonwoven fabrics obtained in Examples 6 and 7 had excellent water retention and breathability, and exhibited sufficient performance as packaging materials for protecting the roots of seedlings, but the products of Comparative Examples 7 and 8 were strong, especially wet and strong. was weak and unusable.

【表】【table】

【表】 *1 タフネス性=強度×伸度
[Table] *1 Toughness = Strength x Elongation

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の網目様の粗密構
造を有し、かつ、粗部に蜘蛛巣構造を有する湿式
不織布の繊維組織の模式図である。図中、1は密
部、2は粗部、3粗部を構成する毛羽繊維同志の
接着状態を、又、l1及びl2は粗部の巾、t1及びt2
密部の巾、MDは抄紙金網の移動方向、CDは該
移動方向と直角の方向をそれぞれ示す。
FIGS. 1 and 2 are schematic diagrams of the fiber structure of the wet-laid nonwoven fabric of the present invention, which has a mesh-like sparse structure and has a spider web structure in the coarse portions. In the figure, 1 is the dense part, 2 is the coarse part, and 3 is the adhesion state of the fluff fibers that make up the coarse part, l 1 and l 2 are the widths of the coarse parts, and t 1 and t 2 are the widths of the dense parts. , MD indicates the moving direction of the paper wire mesh, and CD indicates the direction perpendicular to the moving direction.

Claims (1)

【特許請求の範囲】 1 網目様の粗密構造を有する湿式不織布であつ
て、密部の面積が不織布面積の20%以上80%以下
を占め、繊維形成性重合体から成る第一成分(以
下高融点成分と称することがある)と融点が第一
成分のそれより少くとも10℃以上低い1種又は2
種以上の重合体から成る第二成分(以下低融点成
分と称することがある)とから成り繊維長が粗部
組織(密部組織間)の最短対辺間距離の2分の1
以上である熱接着性複合繊維を不織布重量の20%
以上含有し、該熱接着性複合繊維の熱融着によつ
て形態が安定化され、かつ、粗部に蜘蛛巣構造を
有することを特徴とする湿式不織布。 2 融点差が10℃以上ある複合成分から成る熱接
着性繊維を湿式法で抄紙し、続いて該熱接着性繊
維の低融点成分の融点以上、高融点成分の融点以
下の温度で熱処理する湿式不織布製造方法におい
て、閉塞目の在る部分の面積が全体の面積の20%
以上80%以下となる様に一定の密度で網目状に分
布した閉塞目を有する抄紙金網と繊維長が上記閉
塞目の在る部分で形成された網目状の間隔の2分
の1以上ある熱接着性複合繊維を不織布全体の20
重量%以上含有する繊維混合物とを用いることを
特徴とする、粗密構造を有し、かつ、粗部に蜘蛛
の巣構造を有する湿式不織布の製造方法。
[Scope of Claims] 1. A wet-laid nonwoven fabric having a mesh-like sparse and dense structure, in which the area of the dense portion accounts for 20% or more and 80% or less of the area of the nonwoven fabric, and the first component (hereinafter referred to as a high fiber-forming polymer) is composed of a fiber-forming polymer. (sometimes referred to as melting point component) and one or two components whose melting point is at least 10°C lower than that of the first component.
A second component (hereinafter sometimes referred to as a low melting point component) consisting of at least one polymer, and the fiber length is one half of the shortest distance between opposite sides of the coarse structure (between the dense structures).
Heat-adhesive composite fibers that are more than 20% of the weight of the nonwoven fabric
A wet-laid nonwoven fabric comprising the above, whose form is stabilized by heat fusion of the heat-adhesive conjugate fibers, and which has a spider web structure in its coarse portions. 2. A wet process in which thermally adhesive fibers made of composite components with a melting point difference of 10°C or more are made into paper using a wet method, and then heat treated at a temperature higher than the melting point of the low melting point component and lower than the melting point of the high melting point component of the thermally adhesive fiber. In the nonwoven fabric manufacturing method, the area of the part with closed eyes is 20% of the total area.
A paper-making wire mesh having occlusions distributed in a mesh-like manner with a constant density such that the density is 80% or less, and a paper-making wire mesh having a fiber length of at least one-half of the interval between the meshes formed in the area where the occlusions are located. Adhesive Composite Fiber Non-Woven Whole 20
A method for producing a wet-laid nonwoven fabric having a coarse and dense structure and having a spider web structure in the coarse portions, the method comprising using a fiber mixture containing at least % by weight.
JP57048394A 1982-03-26 1982-03-26 Wet nonwoven fabric and production thereof Granted JPS58169600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57048394A JPS58169600A (en) 1982-03-26 1982-03-26 Wet nonwoven fabric and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57048394A JPS58169600A (en) 1982-03-26 1982-03-26 Wet nonwoven fabric and production thereof

Publications (2)

Publication Number Publication Date
JPS58169600A JPS58169600A (en) 1983-10-06
JPH039235B2 true JPH039235B2 (en) 1991-02-07

Family

ID=12802075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57048394A Granted JPS58169600A (en) 1982-03-26 1982-03-26 Wet nonwoven fabric and production thereof

Country Status (1)

Country Link
JP (1) JPS58169600A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2959139B2 (en) * 1991-02-13 1999-10-06 王子製紙株式会社 Manufacturing method of wet-laid nonwoven fabric mixed with heat-fused fiber

Also Published As

Publication number Publication date
JPS58169600A (en) 1983-10-06

Similar Documents

Publication Publication Date Title
US6468651B2 (en) Nonwoven fabric containing fine fiber, and a filter material
EP0409581B1 (en) Hot-melt-adhesive, micro-fiber-generating conjugate fibers and a woven or non-woven fabric using the same
JPH0219223B2 (en)
JPH0731677A (en) Blood filter material
US5443893A (en) Multilayer nonwoven thermal insulating batts
US2880111A (en) Textile-like nonwoven fabric
JPH0649762A (en) Composite nonwoven fabric
KR101275671B1 (en) Nonwoven fabric having good retaining warming and preparation method thereof
JP2002061060A (en) Nonwoven fabric and finished article of nonwoven fabric
JP3326808B2 (en) filter
JP2002105826A (en) Porous nonwoven fabric and method of producing the same
JPH039235B2 (en)
JPS63264915A (en) Hot-melt adhesive hollow conjugate fiber
JPH11170413A (en) Unwoven fabric composite low-density fabric
JP3391934B2 (en) Splittable fiber and fiber sheet using the same
JPH03287896A (en) Wet nonwoven cloth
JP3102450B2 (en) Three-layer nonwoven fabric and method for producing the same
JP4383236B2 (en) Manufacturing method of composite sheet
JPH02258007A (en) Filter paper
JP2801333B2 (en) Fiber structure
JP3674302B2 (en) Nonwoven fabric and civil engineering materials
EP0432489A2 (en) Heat-adhesive composite fiber and nonwoven fabric made by using same
JPH04100920A (en) Composite type thermal-adhesive fiber and nonwoven fabric using the same fiber
JPH1018154A (en) Laminate
DE102012017168B4 (en) Process for producing a paper composite, paper composites and use of paper composites