JPH0391725A - Novel organic nonlinear optical material and method for converting light wavelength by using this material - Google Patents

Novel organic nonlinear optical material and method for converting light wavelength by using this material

Info

Publication number
JPH0391725A
JPH0391725A JP22891089A JP22891089A JPH0391725A JP H0391725 A JPH0391725 A JP H0391725A JP 22891089 A JP22891089 A JP 22891089A JP 22891089 A JP22891089 A JP 22891089A JP H0391725 A JPH0391725 A JP H0391725A
Authority
JP
Japan
Prior art keywords
group
nonlinear optical
compound
optical material
light wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22891089A
Other languages
Japanese (ja)
Inventor
Nobuhiko Uchino
内野 暢彦
Masaki Okazaki
正樹 岡崎
Yasushi Matsuo
康司 松尾
Yoji Okazaki
洋二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP22891089A priority Critical patent/JPH0391725A/en
Publication of JPH0391725A publication Critical patent/JPH0391725A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Abstract

PURPOSE:To provide the org. nonlinear optical material which exhibits high org. non-responsiveness by using a specific benzotriazole compd. CONSTITUTION:The compd. expressed by general formula is used as the org. nonlinear optical response compd. The group expressed by R<1> is a hydrogen atom, alkyl group, aryl group and the alkyl group is examplified as, for example, a methyl group, ethyl group and propyl group. The aryl group is exemplified by a phenyl group, tolyl group, 4-chlorophenyl group. The hydrogen atom is more preferable among the above-mentioned groups. The group expressed by R<2> is an electron donative group. The electron donative group is exemplified by a methyl group, phenyl group, amino group, dimethyl amino group, acetyl amino group, hydroxy group, methoxy group, methylthio group, etc. The nonlinear optical materia of this invention is particularly useful as the material for light wavelength conversion of a laser beam.

Description

【発明の詳細な説明】 (産業上の利用分野) ?発明は波長変換素子等の非線形光学効果を利用する各
種素子に用いるに適した非線形光学材料に関する。また
、非線形光学材料を用いた光波長の変換方法に関する. (従来の技術) 近年、非線形光学効果−レーザー光のような強い光電界
を与えたときに表われる、分極と電界との間の非線形性
■を有した材料が注目を集めている。
[Detailed description of the invention] (Industrial application field)? The present invention relates to nonlinear optical materials suitable for use in various devices that utilize nonlinear optical effects, such as wavelength conversion devices. It also relates to a method of converting optical wavelength using nonlinear optical materials. (Prior Art) In recent years, materials with a nonlinear optical effect - nonlinearity (1) between polarization and electric field that appears when a strong optical electric field such as that of a laser beam is applied have attracted attention.

かかる材料は、−Sに非線形光学材料として知られてお
り、例えば次のものなどに詳しく記載されている,  
’Nonliner Optical Propert
ies ofOrganic and Poly+le
ric Material″ACS SYMPOSIt
lMSERIES   2  3  3  David
  J.  lI1目1iams[  (  Amer
jcanChemical Society、1983
年刊)、「有機非線形光学材料」加藤正雄、中西八郎監
修(シー・エム・シー社、1985年刊)“Nonli
near OpticalProperttes of
 Organic Molecules and er
yStals”Vol1およびVol2 D.S.Ch
emla and Zyssm( Acaclemie
 Press社 1987年刊).非線形光学材料の用
途の1つに、2次の非線形効果に基づいた第2高調波発
生(SHG)および和周波、差周波を用いた波長変換デ
バイスがある.これまで実用上用いられているものは、
ニオブ酸リチウムに代表される無機質のべロブスカイト
類である。しかし近年になり、電子供与基および電子吸
引基を有するπ電子共役系有機化合物は前述の無機質を
大きく上回る、非線形光学材料としての諸性能を有して
いることが知られるようになった. 従って、この材料に用いるべき非線形光学応答を示す有
機化合物としては、まず分子状態での非線形感受率が高
いもの程望ましい。
Such materials are known as nonlinear optical materials and are described in detail in e.g.
'Nonliner Optical Property
ies of Organic and Poly+le
ric Material″ACS SYMPOSIt
lMSERIES 2 3 3 David
J. lI1st1iams [(Amer
jcanChemical Society, 1983
(published in 1985), "Organic Nonlinear Optical Materials" supervised by Masao Kato and Hachiro Nakanishi (CMC, published in 1985) "Nonli
near Optical Properties of
Organic molecules and er
yStals"Vol1 and Vol2 D.S.Ch
emla and Zyssm (Acaclemie
Press, 1987). One of the applications of nonlinear optical materials is second harmonic generation (SHG) based on second-order nonlinear effects and wavelength conversion devices using sum frequency and difference frequency. What has been used in practice so far is
It is an inorganic berovskite represented by lithium niobate. However, in recent years, it has become known that π-electron conjugated organic compounds with electron-donating and electron-withdrawing groups have various properties as nonlinear optical materials that far exceed those of the inorganic materials mentioned above. Therefore, as an organic compound exhibiting a nonlinear optical response to be used in this material, the higher the nonlinear susceptibility in the molecular state, the more desirable it is.

しかしながら、2次の非線形光学材料として有用である
には、分子状態での性能のみでは不十分であり、集合状
態での分子配列に反転対称性の無いことが必須である。
However, in order to be useful as a second-order nonlinear optical material, performance in the molecular state alone is insufficient, and it is essential that the molecular arrangement in the aggregate state has no inversion symmetry.

しかるに現状では分子配列を予測することは極めて困難
であり、また全有機化合物中での存在確率も高いもので
はない。
However, currently it is extremely difficult to predict the molecular arrangement, and the probability of its existence among all organic compounds is not high.

(発明が解決しようとする課題) 従って本発明の第一の目的は、高い有機非応答性を示す
有機非線形光学材料を提供することにある。第二の目的
は非線形応答性のうち光波長の変換に関する応答性を利
用した方法を提供することにある. (課題を解決するための手段) 本発明者らは、鋭意研究を重ねた結果、下記一般式で表
わされる化合物を有機非線形光学応答性化合物として用
いることにより、本発明の目的が達戒可能なことを見出
した。
(Problems to be Solved by the Invention) Therefore, the first object of the present invention is to provide an organic nonlinear optical material exhibiting high organic non-responsiveness. The second purpose is to provide a method that utilizes the nonlinear response related to optical wavelength conversion. (Means for Solving the Problem) As a result of extensive research, the present inventors have found that the object of the present invention can be achieved by using a compound represented by the following general formula as an organic nonlinear optically responsive compound. I discovered that.

一般式 R1 (式中、R■は水素原子、アルキル基、アリール基を表
わす R2は電子供与性基を表わす.)R’で表わされ
る基は水素原子、アルキル基、アリール基であるがアル
キル基としては例えばメチル基、エチル基、プロビル基
が挙げられる。アリール基としては、フエニル基、トリ
ル基、4一クロロフエニル基が挙げられる。これらのう
ち水素原子が好ましい。
General formula R1 (In the formula, R represents a hydrogen atom, an alkyl group, or an aryl group. R2 represents an electron-donating group.) The group represented by R' is a hydrogen atom, an alkyl group, or an aryl group, and an alkyl group. Examples include methyl group, ethyl group, and proyl group. Examples of the aryl group include a phenyl group, a tolyl group, and a 4-chlorophenyl group. Among these, hydrogen atoms are preferred.

R2で表わされる基は電子供与性基であるが、電子供与
性基としてはメチル基、フヱニル基、アミノ基、ジメチ
ルアミノ基、アセチルアミノ基、ヒドロキシ基、メトキ
シ基、メチルチオ基などが挙げられる。なお上述の電子
供与性基とはSwainLuptonの置換基定数Rが
負の置換基を指す。
The group represented by R2 is an electron-donating group, and examples of the electron-donating group include a methyl group, a phenyl group, an amino group, a dimethylamino group, an acetylamino group, a hydroxy group, a methoxy group, and a methylthio group. Note that the above-mentioned electron-donating group refers to a substituent having a negative Swain Lupton substituent constant R.

上述の置換基定数は、構造活性相関懇話会曙「化学の領
域」増刊122号の「薬物の構造活性相関−ドラックデ
ザインと作用機作研究への指針」95〜111頁 南江
堂社刊やコルビン・/’%ンシュ(Corwin − 
Hansch) 、アルバート・レオ(Albert・
Lea) 著、「サブステイチューアント・コンスタン
ツ・フォー・コーリレーション・アナリシス・イン・ケ
ミストリー・アンド・バイオロジー」(Substit
uent Constants for Correl
ation^nalysts iri Chesist
ry and Biology) 6 9 〜1 61
頁 ジョン・ワイリー・アンド・サンズ(JohnWi
ley and Sons)社刊に示された値を表わす
The above-mentioned substituent constants can be found in "Structure-Activity Relationships of Drugs - Guidelines for Drug Design and Mechanism Research," published by Akebono Society for Structure-Activity Relationships, Akebono, "Region of Chemistry," Special Issue No. 122, pp. 95-111, published by Nankodo Publishing Co., Ltd., and Colvin. /'% Nshu (Corwin -
Hansch), Albert Leo
Lea), ``Substituent Constance for Correlation Analysis in Chemistry and Biology'' (Substit.
uent Constants for Correl
ation^nalysts iri Chesist
ry and Biology) 6 9 ~ 1 61
Page John Wiley & Sons
ley and Sons).

以下に本発明に用いられる化合物の具体例を示すが、本
発明は、これらのみに限られるものではない。
Specific examples of compounds used in the present invention are shown below, but the present invention is not limited to these.

化合物l       化合物2 化合物3 化合物4 化合物5 化合11116 CHs 化合物7 化合物9 化合物11 化合物8 化合物10 化合物12 化合物13 化合物14 C.HS 化合物15 S 本発明の化合物はペンゾトリアゾール類の一般的合戊法
(例えば、アール・イー・エルダーフィールド( R.
E.Elderfield )&iヘテロサイクリック
コンパウンズ、ボリューム7、ベージ384、ジジン・
ワイリー・アンド・サンズ(Heterocyclic
Compounds. Vol ’?、P 3 8 4
 , John Wiley andSons)196
1)に従って合戒することができる.後述の実施例より
明らかなように、本発明の非線形光学材料は、レーザー
光の光波長変換用の材料として特に有用なものである。
Compound l Compound 2 Compound 3 Compound 4 Compound 5 Compound 11116 CHs Compound 7 Compound 9 Compound 11 Compound 8 Compound 10 Compound 12 Compound 13 Compound 14 C. HS Compound 15 S The compound of the present invention can be prepared by a general synthesis method of penzotriazoles (for example, by R.E. Elderfield (R.
E. Elderfield) & i Heterocyclic Compounds, Volume 7, Page 384, Jijin・
Wiley and Sons (Heterocyclic
Compounds. Vol'? , P 3 8 4
, John Wiley and Sons) 196
1). As is clear from the Examples described below, the nonlinear optical material of the present invention is particularly useful as a material for converting the optical wavelength of laser light.

しかしながら本発明の非線形光学の用途は波長変換素子
にかぎられるものではなく、非線形光学効果を利用する
ものであればいかなる素子にも使用可能である.本発明
の非線形光学材料が用いられうる素子の具体例として、
波長変換素子以外に、光双安定素子(光記憶素子、光パ
ルス波形制御素子、光リミタ、微分増幅素子、光トラン
ジスター、A/D変換素子、光論理素子、光マルチバイ
ブレーター光フリップフロンプ回路等)、光変調素子お
よび位相共役光学素子等が挙げられる. 本発明の化合物は、例えば粉末の形、宿主格子(ボリマ
ー、包接化合物、固溶体、液晶)中の分子の包有物の形
、支持体上に沈積した薄層の形(ラングミーア・プロジ
ェット膜など)、単結晶の形、溶液の形等、種々の形で
非線形光学材料として用いることができる。
However, the application of the nonlinear optics of the present invention is not limited to wavelength conversion elements, but can be used for any element that utilizes nonlinear optical effects. Specific examples of elements in which the nonlinear optical material of the present invention can be used include:
In addition to wavelength conversion elements, optical bistable elements (optical storage elements, optical pulse waveform control elements, optical limiters, differential amplification elements, optical transistors, A/D conversion elements, optical logic elements, optical multivibrators, optical flip-flop circuits, etc.) ), light modulation elements, phase conjugate optical elements, etc. The compounds of the invention may be present, for example, in the form of a powder, in the form of molecular inclusions in a host lattice (bolimers, clathrates, solid solutions, liquid crystals), in the form of thin layers deposited on a support (Langmeer-Prodgett membranes), etc. It can be used as a nonlinear optical material in various forms such as single crystal form, solution form, etc.).

また本発明の化合物をペンダントの形でポリマ、ポリジ
アセチレンなどに結合させて用いることもできる。
The compound of the present invention can also be used in the form of a pendant bonded to a polymer, polydiacetylene, etc.

これらの方法について詳しくは前述のD,J.Wtll
ia■s曙の著作などに記載されている。
For details on these methods, see D.J. Wtll
It is described in the works of ia■s Akebono.

(実施例) 次に本発明を実施例に基づいて詳しく説明する.実施例
1 分子状態での2次の非線形感受率βを計算した。
(Example) Next, the present invention will be explained in detail based on an example. Example 1 The second-order nonlinear susceptibility β in the molecular state was calculated.

βの計算にはPPP法(Pariser−Parr−P
ople)及びWardの式( J.P.Ward, 
Rev. Mod. Phys., 37、1(196
5)参照)を用いた. 結果を表3に示す。
β is calculated using the PPP method (Pariser-Parr-P
ople) and Ward's formula (JP Ward,
Rev. Mod. Phys. , 37, 1 (196
5)) was used. The results are shown in Table 3.

なおこの方法により得られる値は実験的にdc−SHG
により求める値とよく一致することが知られている. 表1 (化合物A) H 本発明の化合物は特開昭62−210430号に記載の
化合物Aに比ぺβが著しく大きい優れた非線形光学材料
であることがわかる。
Note that the value obtained by this method is experimentally calculated from dc-SHG.
It is known that the value obtained by Table 1 (Compound A) H It can be seen that the compound of the present invention is an excellent nonlinear optical material with significantly larger β than Compound A described in JP-A No. 62-210430.

実施例2 第2高調波発生の測定をエス・ケー・クルツ(S.K.
κurLz)、ティー・ティー・ベリー(T.T.Pe
rry)著、ジャーナル オプ アブライト フイジン
クス(J.Appl,Phys.) 3 9巻、379
8頁(1968年刊)中に記載されている方法に準じて
、本発明の化合物の粉末に対して行った. 第1図に示した装置により測定を行った.すなわち、測
定は、パルスYAGレーザー光(λ−1,064μm,
ビーム径!:t1閣φ、ビークバワーζIQMw/cj
)を基本波に用い、第l図に示す評価装置にて、その第
2高調波の強度を測定した。測定は、尿素の第2高調波
の強度との相対比較で行った。また強度が弱い場合には
目視による観測を行った.特に、基本波の2光子吸収に
よる発光(おもに黄、赤の発光)と第2高調波とを区別
するために、分光器を入れ、第2高調波のみを測定する
様にした。さらに粉末法の測定は、その物質の非線形性
の有無を判断することが主目的であり、その強度比は非
線形性の大きさの、参考値である。
Example 2 Second harmonic generation was measured by S.K. Kurz (S.K.
κurLz), T.T.Berry (T.T.Pe
J. Appl, Phys., Volume 3 9, 379
This was carried out on the powder of the compound of the present invention according to the method described on page 8 (published in 1968). Measurements were performed using the equipment shown in Figure 1. That is, the measurement was performed using pulsed YAG laser light (λ-1,064 μm,
Beam diameter! :t1kakuφ, beakbowerζIQMw/cj
) was used as the fundamental wave, and the intensity of its second harmonic was measured using the evaluation device shown in FIG. The measurement was performed by relative comparison with the intensity of the second harmonic of urea. In addition, when the intensity was weak, visual observation was performed. In particular, in order to distinguish between light emission due to two-photon absorption of the fundamental wave (mainly yellow and red light emission) and second harmonics, a spectrometer was installed to measure only the second harmonics. Furthermore, the main purpose of powder method measurement is to determine the presence or absence of nonlinearity in the substance, and the intensity ratio is a reference value for the magnitude of nonlinearity.

結果を表2に示した. 表2 実施例3 青色光の透過性を調べるために下記化合物の吸収端を測
定した。
The results are shown in Table 2. Table 2 Example 3 In order to investigate the transmittance of blue light, the absorption edge of the following compound was measured.

結果を表3に示した. 1)4X10−’霞o1/lのエタノール溶液において
、 95%の透過率を示す波長。
The results are shown in Table 3. 1) Wavelength showing 95% transmittance in ethanol solution of 4×10-' haze o1/l.

MNA 表3から明らかなように本発明の化合物は青色光透過性
において優れている。
MNA As is clear from Table 3, the compounds of the present invention are excellent in blue light transmittance.

(発明の効果) これら粉末法により、 SHG活性を示した化合 物は下記に示す方法により、波長変換素子としての使用
が可能である。
(Effects of the Invention) Compounds that exhibit SHG activity by these powder methods can be used as wavelength conversion elements by the method described below.

1.ファイバーのコア部分に上記化合物を単結晶化し、
クラッド材料としてガラスを用いた波長変換素子を作威
し、YAGレーザー光を入力しその第二高調波の発生が
可能である。さらに、他の方法として同様にして、導波
路型の波長変換素子を作威し、第二高調波の発生が可能
である。この時の位相整合方法には、チェレンコフ放射
方式を用いる.ただし、これらに限定されるだけでなく
、導波一導波の位相整合も可能である.波長変換波は第
二高調波に限定されるだけでなく、第三高調波、和およ
び差周波発生にも用いられる.2.次に上記化合物を単
結晶化し、そこからバルクの単結晶を切り出し、YAG
レーザー光を入力しその第二高濶波の発生が可能である
。この時の位相整合方法には角度位相整合を用いる。こ
れらの、バルク単結晶はレーザーのキャビティ外で用い
られるだけでなく、LD励起固体レーザー等の固体レー
ザーのキャビティ内で用いる事で、波長変換効率を高め
ることが出来る.さらには、外部共振器型のLDの共振
器内に配置することでも、波長変換効率を高めることが
出来る。
1. The above compound is single-crystalized in the core part of the fiber,
It is possible to create a wavelength conversion element using glass as the cladding material, input YAG laser light, and generate its second harmonic. Furthermore, as another method, it is possible to similarly generate a second harmonic by using a waveguide type wavelength conversion element. The phase matching method used at this time is the Cerenkov radiation method. However, it is not limited to these, and phase matching between waveguides is also possible. Wavelength converted waves are not only limited to second harmonics, but can also be used to generate third harmonics, sum and difference frequencies. 2. Next, the above compound is single-crystalized, a bulk single crystal is cut out from it, and YAG
It is possible to generate a second high wave by inputting laser light. Angular phase matching is used as the phase matching method at this time. These bulk single crystals can be used not only outside the laser cavity, but also inside the cavity of a solid-state laser such as an LD-pumped solid-state laser to improve wavelength conversion efficiency. Furthermore, the wavelength conversion efficiency can also be increased by placing it within the resonator of an external resonator type LD.

以上の単結晶化には、ブリッジマン法、溶媒蒸発法等が
用いられる。
The Bridgman method, solvent evaporation method, etc. are used for the above single crystallization.

波長変換波は第二高調波に限定されるだけでなく、第三
高調波、和差周波発生にも用いられる。
The wavelength-converted wave is not limited to second harmonics, but can also be used to generate third harmonics and sum-difference frequencies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に粉末法の測定装置を示すが、図中の番号は下記
を示す.
Figure 1 shows the powder method measuring device, and the numbers in the figure indicate the following.

Claims (1)

【特許請求の範囲】[Claims] (1)下記一般式で表わされる化合物からなる有機非線
形光学材料。 一般式 ▲数式、化学式、表等があります▼ (式中、R^1は水素原子、アルキル基、アリール基を
表わす。R^2は電子供与性基を表わす。)(2)レー
ザー光と非線形光学材料とを用いて光波長の変換を行う
際に、非線形光学材料として請求項(1)記載の有機非
線形光学材料を用いる光波長の変換方法。
(1) An organic nonlinear optical material comprising a compound represented by the following general formula. General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, R^1 represents a hydrogen atom, an alkyl group, or an aryl group. R^2 represents an electron-donating group.) (2) Laser light and nonlinearity A method of converting a light wavelength using the organic nonlinear optical material according to claim 1 as a nonlinear optical material when converting a light wavelength using an optical material.
JP22891089A 1989-09-04 1989-09-04 Novel organic nonlinear optical material and method for converting light wavelength by using this material Pending JPH0391725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22891089A JPH0391725A (en) 1989-09-04 1989-09-04 Novel organic nonlinear optical material and method for converting light wavelength by using this material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22891089A JPH0391725A (en) 1989-09-04 1989-09-04 Novel organic nonlinear optical material and method for converting light wavelength by using this material

Publications (1)

Publication Number Publication Date
JPH0391725A true JPH0391725A (en) 1991-04-17

Family

ID=16883769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22891089A Pending JPH0391725A (en) 1989-09-04 1989-09-04 Novel organic nonlinear optical material and method for converting light wavelength by using this material

Country Status (1)

Country Link
JP (1) JPH0391725A (en)

Similar Documents

Publication Publication Date Title
JPS61296332A (en) High performance non-linear type optical substrate
Nivetha et al. Evaluation of structural, spectral, thermal and optical properties of an efficient centrosymmetric organic single crystal 2-[2-(4-diethylamino-phenyl)-vinyl]-1-methyl pyridinium tetrafluoroborate for nonlinear optical applications
Kawabe et al. Second-order non-linear optical properties of new organic conjugated molecules
Kwon et al. Pyrrole-based hydrazone organic nonlinear optical crystals and their polymorphs
JPH0227A (en) Third-order nonlinear optical material and element
Jain et al. Optically non-linear organic materials
JPH04121717A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
Bincy et al. Structure, growth and characterization of a new naphthalene family crystal for fluorescence and third order nonlinear optical applications
Kwon et al. New organic nonlinear optical verbenone-based triene crystal for terahertz applications
JPH03164722A (en) Organic nonlinear optical material and method for converting wavelength of light with same
JPH0391725A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
US5167000A (en) Optical wavelength converter
JPH04348326A (en) Organic nonlinear optical material
JPH03215835A (en) Molecular crystal and method for converting light wavelength by using this crystal
JPH03188425A (en) Organic nonlinear optical element
Jauhar et al. Investigations on the growth, linear, nonlinear, dielectric tensor and thermal properties of an acidic molecule: diphenylacetic acid single crystal
Sahraoui et al. Novel nonlinear optical organic materials: Dithienylethylenes
Yamamoto et al. Linear and nonlinear optical properties of a new organic crystal, N-(4-aminobenzenesulfonyl) acetamide
JPH0355529A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
JPH0355528A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
JPH04277724A (en) Organic nonlinear optical material
JPH0355527A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
JPH035732A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
Zong et al. Third-order nonlinear optical response of enzothiazole derivative doped Polymethyl methacrylate C18H15N3SFe
Pavlovetc et al. Organic noncentrosymmetric complexes of 4-nitrophenol for second harmonic generation