JPH0391661A - Refrigerator employing hydrogen storage alloy - Google Patents

Refrigerator employing hydrogen storage alloy

Info

Publication number
JPH0391661A
JPH0391661A JP22788789A JP22788789A JPH0391661A JP H0391661 A JPH0391661 A JP H0391661A JP 22788789 A JP22788789 A JP 22788789A JP 22788789 A JP22788789 A JP 22788789A JP H0391661 A JPH0391661 A JP H0391661A
Authority
JP
Japan
Prior art keywords
hydrogen storage
heat
refrigeration
storage alloy
side reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22788789A
Other languages
Japanese (ja)
Inventor
Takahiro Yonezaki
米崎 孝広
Kenji Nasako
名迫 賢二
Akio Furukawa
明男 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22788789A priority Critical patent/JPH0391661A/en
Publication of JPH0391661A publication Critical patent/JPH0391661A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To defrost effectively without affecting the cooling efficiency of a refrigerator by supplying refrigerant to a refrigeration load by way of a plurality of low temperature side reaction tanks when shifting hydrogen transfer operation. CONSTITUTION:A refrigerator comprises a plurality of high temperature side reaction tanks 1 and 1' which are built in with high temperature hydrogen storage alloy and a plurality of low temperature side reaction tanks 2 and 2' which are built in with low temperature hydrogen storage alloy, which are all connected with each other refrigerant is supplied to refrigeration load by way of a plurality of low temperature side reaction tanks 2 and 2' when shifting hydrogen transfer operation. Therefore, sensible heat collection takes place in the reaction tanks to some degree, which makes it possible to eliminate frost, preventing the in-flow of much heat into a refrigerator during operation shift. It is, therefore, possible to defrost effectively without lowering the cooling efficiency of the refrigerator.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は水素吸蔵合金を用いた冷凍装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a refrigeration system using a hydrogen storage alloy.

(ロ)従来の技術 冷凍装置の連続運転に際して、空気中の水分が冷熱発生
回路に結露し氷結して冷凍能力の低下を招くという問題
があり、何らかの除霜対策が不可欠である。従来の冷凍
装置はフロン、アンモニア等の冷媒の蒸発潜熱を利用し
たもの、半導体のベルチェ効果を利用したものなどが良
く知られている。蒸発潜熱を利用した冷凍装置では冷熱
発生回路に定期的に高温熱媒を循環したり、ヒーターに
より冷熱発生部を加熱して除霜を行っているのが現状で
ある。
(B) Conventional technology During continuous operation of a refrigeration system, there is a problem in that moisture in the air condenses and freezes on the cold heat generation circuit, leading to a decrease in the refrigeration capacity, and some kind of defrosting countermeasure is essential. Conventional refrigeration systems are well known, such as those that utilize the latent heat of vaporization of refrigerants such as fluorocarbons and ammonia, and those that utilize the Bertier effect of semiconductors. Currently, in refrigeration systems that utilize latent heat of vaporization, defrosting is performed by periodically circulating a high-temperature heat medium through a cold heat generating circuit or by heating the cold heat generating section with a heater.

またベルチェ効果を利用した冷凍装置では電流の方向を
逆転するなどして冷熱発生部を加熱して除霜している。
Furthermore, in a refrigeration system that utilizes the Beltier effect, the direction of the current is reversed to heat the cold heat generating section and defrost it.

いずれの場合においても、本来連続的な運転が可能なシ
ステムを一旦停止して、除霜運転モードに切替える必要
があり、装置の複雑化や運転制御方法の複雑化、あるい
は冷凍効率の低下を招くという問題があった。
In either case, it is necessary to temporarily stop the system, which is originally capable of continuous operation, and switch to defrosting mode, which may complicate the equipment, complicate the operation control method, or reduce refrigeration efficiency. There was a problem.

ところで冷凍装置には上記以外に、特公昭58−199
55号に示されるように新素材である水素吸蔵合金の水
素数、出の際の吸熱反応を利用した装置が開示されてい
る。
By the way, in addition to the above-mentioned refrigeration equipment, there is also a
As shown in No. 55, a device is disclosed that utilizes the endothermic reaction of the hydrogen absorbing alloy, which is a new material, when hydrogen is released.

この冷凍方式は基本的にはバッチシステムであり、通常
2組4器の水素吸蔵合金槽を用いて、交互運転すること
により連続運転化を行っている。
This refrigeration method is basically a batch system, and usually two sets of four hydrogen storage alloy tanks are used, and continuous operation is achieved by alternately operating them.

しかし、水素吸蔵合金を用いた冷凍方式は、現在研究開
発段階であり、長期連続運転における除霜の問題につい
ては十分検討されていない。
However, refrigeration systems using hydrogen storage alloys are currently in the research and development stage, and the problem of defrosting during long-term continuous operation has not been sufficiently studied.

(ハ)発明が解決しようとする課題 本発明は水素吸蔵合金を用いた冷凍装置において、冷凍
装置の冷却効率に影響を与えることなく、効果的に除霜
することを目的としている。
(c) Problems to be Solved by the Invention The present invention aims to effectively defrost a refrigeration system using a hydrogen storage alloy without affecting the cooling efficiency of the refrigeration system.

(ニ)1題を解決するための手段 本発明はこのような点に鑑みて為されたものであって、
高温用水素吸蔵合金を内蔵した複数の高温側反応槽と、
低温用水素吸蔵合金を内蔵した複数の低温側反応槽を連
結して構成した熱駆動型の熱利用装置において、水素移
動の運転切替時に複数の低温側反応槽を介して冷媒を冷
凍負荷へ供給している。
(d) Means for solving the problem The present invention has been made in view of the above points,
Multiple high-temperature side reaction tanks containing high-temperature hydrogen storage alloys,
In a heat-driven heat utilization device configured by connecting multiple low-temperature side reaction tanks containing a built-in low-temperature hydrogen storage alloy, refrigerant is supplied to the refrigeration load via the multiple low-temperature side reaction tanks when hydrogen transfer operation is switched. are doing.

(ホ)作 用 反応槽である程度の顕熱回収が行われ、切替時に多量の
熱が冷凍装置に流入することなく除霜が行えるので、冷
凍装置の冷却効率を低下させることなく、効果的な除霜
が行える。
(e) Function A certain amount of sensible heat is recovered in the reaction tank, and defrosting can be performed without a large amount of heat flowing into the refrigeration equipment at the time of switching, so the cooling efficiency of the refrigeration equipment is not reduced and the cooling efficiency is Can be defrosted.

(へ)実施例 第1図は本発明冷凍装置のブロック図であり、同図にお
いて、(1)、(工“)は再生用水素吸蔵合金M1を内
蔵する高温側合金槽であり、(2)、(2°)は冷凍熱
発生用水素吸蔵合金M2を内蔵する低温側合金槽であり
、該合金槽(IL(1’)、(21,(2°)は開閉バ
ルブ■5、V6を設けた水素流通路(3)、(3′)に
て連絡されている。(4)は高温熱源(5)は低温熱源
であり、四方バルブV1、■2を設けた熱媒体循環路に
て合金槽(1)、(1′)内の熱交換器に接続されてい
る。また、(5°)は低温熱源、(6)は冷凍負荷であ
り、四方バルブ■3、V4を設けた熱媒体循環路にて合
金槽(2)、(2゛)内の熱交換器に接続されている。
(f) Embodiment FIG. 1 is a block diagram of the refrigeration system of the present invention. In the figure, (1) and (") are the high temperature side alloy tank containing the hydrogen storage alloy M1 for regeneration, and (2) ), (2°) are the low-temperature side alloy tanks containing the hydrogen storage alloy M2 for generating refrigeration heat, and the alloy tanks (IL(1'), (21, (2°)) are the open/close valves ■5 and V6. The high temperature heat source (5) in (4) is a low temperature heat source, and is connected through the heat medium circulation path provided with four-way valves V1 and 2. It is connected to the heat exchanger in the alloy tanks (1) and (1').In addition, (5°) is the low temperature heat source, (6) is the refrigeration load, and the heat source is equipped with four-way valves ■3 and V4. It is connected to the heat exchanger in the alloy tanks (2) and (2') through a medium circulation path.

上記の冷凍装置の作動について、第2図のヒートポンプ
の圧力−温度平衡線図に基づいて説明する。同図の縦軸
は水素の平衡圧力Pを対数目盛で示し、横軸は絶対温度
をTとして、その逆数値1/Tを示す。Aは再生用水素
吸蔵合金M、の、Bは冷凍熱発生用水素吸蔵合金M2の
圧力−温度平衡線図である。
The operation of the above-mentioned refrigeration system will be explained based on the pressure-temperature equilibrium diagram of the heat pump shown in FIG. The vertical axis of the figure shows the equilibrium pressure P of hydrogen on a logarithmic scale, and the horizontal axis shows the reciprocal value 1/T, where T is the absolute temperature. A is a pressure-temperature equilibrium diagram of hydrogen storage alloy M for regeneration, and B is a pressure-temperature equilibrium diagram of hydrogen storage alloy M2 for refrigeration heat generation.

初期状態は冷凍熱発生用水素吸蔵合金M2が水素吸収状
態で、再生用水素吸蔵合金M1が水素放出状態である。
In the initial state, the hydrogen storage alloy M2 for refrigerating heat generation is in a hydrogen absorption state, and the hydrogen storage alloy M1 for regeneration is in a hydrogen release state.

いま、合金種間の開閉バルブ■5、V6を開けると、圧
力差により水素ガスは合金槽(2)(or2°)から合
金槽(1)(orlo)へ流れる。このとき(1)式に
従って、冷凍熱発生用水素吸蔵合金M2は水素を放出し
吸熱反応により冷却MH2+熱2M+Hz      
  (1)一方、再生用水素吸蔵合金M、は水素を吸収
して発熱するので、熱交換器を介して冷却する。
Now, when the on-off valves 5 and V6 between the alloy types are opened, hydrogen gas flows from the alloy tank (2) (or2°) to the alloy tank (1) (orlo) due to the pressure difference. At this time, according to equation (1), the hydrogen storage alloy M2 for refrigeration heat generation releases hydrogen and cools MH2 + heat 2M + Hz by an endothermic reaction.
(1) On the other hand, since the regenerating hydrogen storage alloy M absorbs hydrogen and generates heat, it is cooled via a heat exchanger.

(冷熱発生過程:第2図中イ→口)そして水素ガスの移
動が終了すると反応は停止する。
(Cold heat generation process: A → mouth in Figure 2) When the movement of hydrogen gas is completed, the reaction stops.

次に熱媒体循環路をバルブV1〜4により切替えて、合
金槽(1) (orl’ )に熱源より熱を供給し、合
金槽(21(or2’ )を冷却することで、冷凍熱発
生時の逆反応により水素が再び(21(or2’ )に
戻される(再生過程:第2図中ハ→二)。
Next, the heat medium circulation path is switched by valves V1 to 4, and heat is supplied from the heat source to the alloy tank (1) (orl') to cool the alloy tank (21 (or2')). Hydrogen is returned to (21 (or2')) by the reverse reaction (regeneration process: c→2 in Figure 2).

このとき合金槽を2組ずつ用意し、バルブの交互切替に
より冷凍熱発生過程と再生過程を同時に行うことにより
連続運転が行える。−例としてジルコニウム系及び希工
類系合金を用いた場合の圧力−温度平衡線図を第3図に
示す。
At this time, two sets of alloy tanks are prepared, and continuous operation can be performed by simultaneously performing the freezing heat generation process and the regeneration process by alternately switching the valves. - As an example, a pressure-temperature equilibrium diagram is shown in FIG. 3 when zirconium and rare metal alloys are used.

ここで、運転の切替時の冷媒温度に注目すると、再生過
程から冷熱発生過程へ切替った直後には合金槽温度(2
)又は(2°)が20〜40℃であるため、この温度の
冷媒が冷凍負荷(6)側に流入する。そして合金槽(2
)又は(2゛)の顕熱を奪いながら次第に温度が低下し
てゆくので、冷凍負荷(6)側への供給熱は第4図の実
線で示したように切替毎にハンチングを生ずることにな
る。冷凍機としてファン式のものを想定すると、0℃以
上の冷媒が冷凍負荷側の熱交換器内を流れている時には
除霜が行われるのでこの時ファンを停止して冷気の吹出
しは行わない。そして熱交換気内を流れる冷媒が所定の
温度以下に下がったファンを動作させて冷却を行う。
If we pay attention to the refrigerant temperature at the time of switching the operation, we can see that the temperature of the alloy tank (2
) or (2°) is 20 to 40°C, so the refrigerant at this temperature flows into the refrigeration load (6) side. And the alloy tank (2
) or (2゛), and the temperature gradually decreases, so the heat supplied to the refrigeration load (6) causes hunting every time it is switched, as shown by the solid line in Figure 4. Become. Assuming a fan-type refrigerator, defrosting is performed when refrigerant at 0° C. or higher is flowing through the heat exchanger on the refrigeration load side, so the fan is stopped at this time and no cold air is blown out. Then, when the temperature of the refrigerant flowing in the heat exchange air drops below a predetermined temperature, the fan is operated to perform cooling.

ところで、運転の切替時に単純に熱媒を切替えた場合、
上記したように冷凍負荷側の熱交換器に20〜40℃の
(冷凍負荷から見て高温の)冷媒が流れ込むため、除霜
は十分行われるものの、冷凍能力は低下する傾向にある
By the way, if you simply switch the heat medium when switching operations,
As described above, since the refrigerant at 20 to 40° C. (high temperature from the viewpoint of the refrigeration load) flows into the heat exchanger on the refrigeration load side, although defrosting is sufficiently performed, the refrigeration capacity tends to decrease.

そこで再生過程の終了後、冷却水及び冷凍負荷の出口側
の4方バルブV4だけを切替えることにより、20〜4
0℃の冷却水を直前まで冷凍熱を発生していた合金槽に
送り、合金槽の顕熱で冷却調節された冷媒を冷凍負荷へ
供給することで冷凍能力の低下を防ぐことが出来る。そ
して水素の吸・放出反応により再生側の合金槽が(1)
(1°)が所定の温度以上になるか、冷凍熱発生側の合
金槽(2) (2’ lが所定の温度以下になったとき
に冷却水及び冷凍負荷の戻り側の4方パルプV、を切替
えて、通常の運転に戻す。この場合もO″C0以上媒が
冷凍負荷(6)に流れ込むが、これを除霜に用いる。
Therefore, after the regeneration process is completed, by switching only the 4-way valve V4 on the outlet side of the cooling water and refrigeration load, the
A decrease in refrigeration capacity can be prevented by sending 0°C cooling water to the alloy tank that had been generating refrigeration heat until just before, and supplying the refrigerant, which has been cooled by the sensible heat of the alloy tank, to the refrigeration load. Then, due to the hydrogen absorption/desorption reaction, the alloy tank on the regeneration side becomes (1)
(1°) becomes above a predetermined temperature, or when the alloy tank (2) (2' l) on the refrigeration heat generation side becomes below a predetermined temperature, the cooling water and the 4-way pulp V on the return side of the refrigeration load are removed. , and return to normal operation. In this case as well, the O''C0 or higher medium flows into the refrigeration load (6) and is used for defrosting.

他の方法として、再生終了後■9、V6を閉じて水素の
移動を止めると共に冷凍負荷(6)側への冷媒の供給も
止め、冷媒を合金槽(2)と(2°)間で循環して顕然
回収した後に通常の運転を行うことも出来る。この場合
も同様に0℃以上の冷媒が冷凍負荷(6)に流れ除霜す
る。
Another method is to close V6 after completion of regeneration to stop the movement of hydrogen and also stop the supply of refrigerant to the refrigeration load (6) side, and circulate the refrigerant between the alloy tank (2) and (2°). It is also possible to carry out normal operation after clear recovery. In this case as well, the refrigerant at 0° C. or higher flows into the refrigeration load (6) and defrosts it.

単純に切替えた従来の場合を方法1、バルブの切替え時
間を切替えた本発明実施例の場合を方法2合金槽間で顕
熱回収した本発明実施例の場合を方法3として、出熱特
性を第5図に示す、この図の0℃以上の冷媒により、除
霜を行う。
Method 1 is the conventional case where the valve switching time is simply changed, Method 2 is the case of the present invention example where the valve switching time is changed, and Method 3 is the case of the present invention example where sensible heat is recovered between the alloy tanks. Defrosting is performed using the refrigerant shown in FIG. 5, which has a temperature of 0° C. or higher.

尚本実施例は冷凍装置の除霜に関してのみ述べたが、ヒ
ートポンプの他の運転モードの場合にも適用が可能であ
る。たとえば昇温モードでは運転中の高温出熱を暖房に
、切替時の中温出熱を給湯に用いる等の使用法が可能と
なり、熱の有効利用が促進される。
Although this embodiment has been described only regarding defrosting of a refrigeration system, it can also be applied to other operation modes of a heat pump. For example, in the temperature increase mode, it is possible to use high temperature heat output during operation for heating, and use medium temperature heat output during switching for hot water supply, promoting effective use of heat.

(ト)  発明の効果 以上述べた如く、本発明冷凍装置は、水素移動の運転切
換時に複数の低温側反応槽を介して冷媒を冷凍負荷へ供
給しているので冷却能率を低下させることなく除霜が行
なえ、冷凍装置の効率的な利用が図れる。
(G) Effects of the Invention As described above, the refrigeration system of the present invention supplies refrigerant to the refrigeration load via a plurality of low-temperature side reaction tanks when switching operations for hydrogen transfer, so refrigerant can be removed without reducing cooling efficiency. Freezing can be done and efficient use of the refrigeration equipment can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による冷凍装置のブロック図、第2図、
第3図は圧力−等温線図、第4図、第5図は冷凍熱の出
熱特性を示す特性図である。 <1)(1’l・・・再熱用水素吸蔵合金槽、(2)<
2’1・・・冷凍熱発生用水素吸蔵合金槽、(3)(3
°)・・・水素流通路、(4)・・・高温熱源、<51
(5’)・・・低温熱源、(6)・・−冷凍負荷。
FIG. 1 is a block diagram of a refrigeration system according to the present invention, FIG.
FIG. 3 is a pressure-isotherm diagram, and FIGS. 4 and 5 are characteristic diagrams showing heat output characteristics of refrigeration heat. <1) (1'l... hydrogen storage alloy tank for reheating, (2) <
2'1...Hydrogen storage alloy tank for freezing heat generation, (3) (3
°)...Hydrogen flow path, (4)...High temperature heat source, <51
(5')...Low temperature heat source, (6)...-Refrigerating load.

Claims (1)

【特許請求の範囲】[Claims] 1)高温用水素吸蔵合金を内蔵した複数の高温側反応槽
と、低温用水素吸蔵合金を内蔵した複数の低温側反応槽
を連結して構成した熱駆動型の冷凍装置において、水素
移動の運転切替時に複数の低温側反応槽を介して冷媒を
冷凍負荷へ供給することを特徴とした水素吸蔵合金を用
いた冷凍装置。
1) Hydrogen transfer operation in a heat-driven refrigeration system configured by connecting multiple high-temperature side reaction vessels containing hydrogen storage alloys for high temperatures and multiple low-temperature side reaction vessels containing hydrogen storage alloys for low temperatures. A refrigeration system using a hydrogen storage alloy characterized by supplying refrigerant to a refrigeration load via a plurality of low-temperature side reaction tanks at the time of switching.
JP22788789A 1989-09-01 1989-09-01 Refrigerator employing hydrogen storage alloy Pending JPH0391661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22788789A JPH0391661A (en) 1989-09-01 1989-09-01 Refrigerator employing hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22788789A JPH0391661A (en) 1989-09-01 1989-09-01 Refrigerator employing hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH0391661A true JPH0391661A (en) 1991-04-17

Family

ID=16867890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22788789A Pending JPH0391661A (en) 1989-09-01 1989-09-01 Refrigerator employing hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH0391661A (en)

Similar Documents

Publication Publication Date Title
CN102245983B (en) Operation method of heat pump hot-water supply device
CN100419349C (en) Refrigeration system
US6324860B1 (en) Dehumidifying air-conditioning system
JP2004257586A (en) Refrigerator using carbon dioxide as refrigerant
JP2006336949A (en) Heat storage type air conditioner
JPH0391661A (en) Refrigerator employing hydrogen storage alloy
JPH109709A (en) Metal hydride adsorption type thermally driven refrigerating machine
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP3233733B2 (en) Ice storage device
JPH05118696A (en) Heat pump device
CN218993753U (en) Refrigerating system
JPH03191260A (en) Air conditioning apparatus
JPH07269983A (en) Air conditioner for shop
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JP2000346483A (en) Heat pump
JP3063969U (en) Circuit type heat pipe thermal battery
JP2751695B2 (en) Heat storage type cooling device
JPH0658578A (en) Air conditioner
JPH11211259A (en) Regenerative type heat pump air conditioning equipment
JP2703360B2 (en) Heat-driven chiller using metal hydride
JP2800573B2 (en) Air conditioner
JPH02287063A (en) Apparatus and operation method for heat pump of direct-expansion heat-storage type
JPS63294437A (en) Cooling or heating apparatus
JPS62284153A (en) Refrigeration air conditioner