JPH0391659A - Refrigerator and refrigerant gas generator without power supply used for refrigerator - Google Patents

Refrigerator and refrigerant gas generator without power supply used for refrigerator

Info

Publication number
JPH0391659A
JPH0391659A JP22699389A JP22699389A JPH0391659A JP H0391659 A JPH0391659 A JP H0391659A JP 22699389 A JP22699389 A JP 22699389A JP 22699389 A JP22699389 A JP 22699389A JP H0391659 A JPH0391659 A JP H0391659A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant gas
gas generator
refrigerator
flow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22699389A
Other languages
Japanese (ja)
Other versions
JPH0796979B2 (en
Inventor
Susumu Nakagawa
進 中川
Hidekazu Chitoku
千徳 英一
Masuhiro Takeyama
竹山 益洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22699389A priority Critical patent/JPH0796979B2/en
Publication of JPH0391659A publication Critical patent/JPH0391659A/en
Publication of JPH0796979B2 publication Critical patent/JPH0796979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide a portable refrigerant gas generator in a place where there is no power source available by using a catalyst heater as a heat source for refrigerant solution heating of a refrigerant gas generator. CONSTITUTION:A refrigerant gas generator is in double structure. An inner cylinder is used as a refrigerant solution communication pipe 9 while an outer cylinder 10 covers the surrounding of the communication pipe 9 and thereby forms a ring space 11. The refrigerant solution communication pipe 9 is connected with a solution receiver in its inlet while its outlet is connected with a vaporizer, for example, with a separator inside a system. The peripheral surface of the refrigerant solution communication pipe 9 is surrounded with a catalyst heater 13 and installed inside the ringed space 11. The catalyst heater 13 forms close catalyst 13a by allowing excellent heat proof carrier, say, silica fiber to support the catalyst. It is clamped with metal nets 13b and 13c so that it may be coiled around the peripheral surface of the refrigerant solution communication pipe 9 so that it may be turned into one piece. It is, therefore, possible to carry the device in a place there is no power supply available.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷媒ガスの発生に触媒ヒータを利用した無電源
冷凍器、並びに該冷凍器の無電源冷媒ガス発生器につい
て考えたものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a powerless refrigerator that uses a catalytic heater to generate refrigerant gas, and a powerless refrigerant gas generator for the refrigerator.

従来技術 従来より広〈実施されている拡散吸収式冷凍器は冷媒液
、例えばアンモニア水溶液を発生器で加熱し、この加熱
によって発生(気化)したアンモニアガスを凝縮器で液
化し、これを蒸発器内で水素ガスと触れさせて急激な気
化を促し、この気化に伴ない周囲の熱を奪って冷却する
方式であり、気化したアンモニアガスは再び水に吸収し
て液化し上記発生器へと再環流しており、上記冷媒ガス
の発生器の加熱源としては電気ヒータを用いている。
PRIOR TECHNOLOGY In the conventional diffusion absorption refrigerator, a refrigerant liquid, such as an aqueous ammonia solution, is heated in a generator, and the ammonia gas generated (vaporized) by this heating is liquefied in a condenser, and then transferred to an evaporator. This is a method in which the ammonia gas is brought into contact with hydrogen gas inside the tank to promote rapid vaporization, and the heat from the surrounding area is taken away as a result of this vaporization to cool the ammonia gas.The vaporized ammonia gas is absorbed into water again, liquefies it, and is returned to the generator mentioned above. An electric heater is used as a heating source for the refrigerant gas generator.

発明が解決しようとする問題点 而して、上記冷凍器は電源の存在が条件となり、電源が
存在しない場所での屋外使用、携行使用等ができず、利
用範囲が限定されている。無電源冷凍としては、携帯ク
ーラーにドライアイスや氷を入れ代用している現状にあ
り、市場では無電源で電源使用と同等の安定な冷却性能
を有する冷凍器の提供が切望されている。
The problem to be solved by the invention is that the above-mentioned refrigerator requires the presence of a power source, and cannot be used outdoors or carried around in places where a power source is not available, and its range of use is limited. Currently, dry ice or ice is used in portable coolers for refrigeration without a power supply, and there is a strong need in the market for a refrigerator that does not require a power supply and has the same stable cooling performance as one using a power supply.

本発明は上記冷凍器の冷媒ガス発生器として、触媒ヒー
タを活用した無電源冷凍器を提供するものである。
The present invention provides a powerless refrigerator that utilizes a catalytic heater as a refrigerant gas generator for the refrigerator.

又本発明は上記触媒ヒータの利用を効率良く行なう冷媒
ガス発生器に関し、具体化したものである。
The present invention also relates to a refrigerant gas generator that efficiently utilizes the catalytic heater.

上記によって無電源で電源使用に優る性能を示す冷凍器
を実現したものである。
As a result of the above, a refrigerator that does not require a power source and exhibits superior performance to that using a power source has been realized.

又これによって携行用の無電源冷凍器の市場需要に応え
ることができたものである。
This also made it possible to meet the market demand for portable, power-free refrigerators.

問題点を解決する手段 本発明は冷媒水溶液を加熱し冷媒ガスを発生する手段と
して、触媒ヒータを活用して上記冷凍器を構成したもの
である。
Means for Solving the Problems The present invention configures the above-mentioned refrigerator by utilizing a catalytic heater as a means for heating an aqueous refrigerant solution and generating refrigerant gas.

又上記冷媒ガス発生器として発生器本体を二重筒構造に
し、内筒を冷媒水溶液通流管としてその外周面を触媒ヒ
ータで包囲し、外筒に設けた燃料供給口及び採気口から
燃料と空気の混合ガスを上記通流管周囲の環状空間内に
導入し、該空間内で上記触媒ヒータと均一に接触させて
燃焼反応を促し、これにより通流管及び通流管内冷媒水
溶液を加熱し冷媒ガスの発生(気化)を促すようにした
ものである。
In addition, as the above-mentioned refrigerant gas generator, the generator main body has a double cylinder structure, the inner cylinder is used as a refrigerant aqueous solution flow pipe, and its outer peripheral surface is surrounded by a catalytic heater, and fuel is supplied from the fuel supply port and intake port provided in the outer cylinder. A mixed gas of air and gas is introduced into the annular space around the flow pipe, and is brought into uniform contact with the catalyst heater within the space to promote a combustion reaction, thereby heating the flow pipe and the refrigerant aqueous solution within the flow pipe. This is designed to encourage the generation (vaporization) of refrigerant gas.

作用 本発明は従来知られている拡散吸収式冷凍器の如き電気
ヒータで駆動する冷媒ガス発生器に代え、上記触媒ヒー
タで動作する同発生器に置き代えることにより、無電源
で電気ヒータ方式に劣らない安定な冷凍性能が得られる
無電源冷凍器を提供できた。
Function The present invention replaces the refrigerant gas generator driven by an electric heater such as the conventionally known diffusion absorption refrigerator with the generator operated by the catalytic heater described above, thereby making it possible to use an electric heater system without a power source. We have been able to provide a power-free refrigerator that provides equally stable refrigeration performance.

これによって電源の存在しない場所での軽便な携行使用
を可能にした。又上記冷媒ガス発生器は重管の環状空間
内を上記混合ガスで満たして、同環状空間内で冷媒水溶
液通流管周面を包囲する触媒ヒータと接触して活性で且
つ安定な燃焼反応を惹起する。
This makes it easy to carry and use in places where there is no power source. Further, the refrigerant gas generator fills the annular space of the heavy pipe with the mixed gas, and contacts the catalytic heater surrounding the circumferential surface of the refrigerant aqueous solution flow pipe within the annular space to generate an active and stable combustion reaction. cause

この結果、冷媒水溶液通流管は触媒ヒータにより直接的
に加熱されると同時に環状空間内を満たした高温の加熱
気体で加熱され、該通流管内に導入した冷媒水溶液を均
一に加熱し安定に冷媒ガスを発生せしめる。この冷媒ガ
スを既知のように凝縮器で液化し、これを蒸発器内で水
素ガスと触れさせることによって急激な気化を促し、気
化に伴ない周囲の熱を奪い冷却を行なうものである。
As a result, the refrigerant aqueous solution flow pipe is directly heated by the catalytic heater and at the same time heated by the high-temperature heated gas filling the annular space, which uniformly heats the refrigerant aqueous solution introduced into the flow pipe and stabilizes it. Generates refrigerant gas. As is known, this refrigerant gas is liquefied in a condenser, and then brought into contact with hydrogen gas in an evaporator to promote rapid vaporization, and as the vaporization occurs, heat from the surroundings is removed to achieve cooling.

実施例 以下本発明の実施例を第1図乃至′!J6図に基いて説
明する。
Examples Examples of the present invention are shown in Figures 1 to '! This will be explained based on Figure J6.

第1図は本発明を実施した拡散吸収式無電源冷凍器の構
造原理を平面図を以って示す、冷凍器は冷蔵庫、保冷器
、クーラーの類を含む。
FIG. 1 is a plan view showing the structural principle of a diffusion absorption type powerless refrigerator embodying the present invention. Refrigerators include refrigerators, ice packs, and coolers.

図において1は冷媒ガス発生器を示し、該冷媒ガス発生
器の冷媒水溶液加熱用熱源として触媒ヒータを用い、上
記拡散吸収式無電源冷凍器を構成している。
In the figure, reference numeral 1 denotes a refrigerant gas generator, and a catalytic heater is used as a heat source for heating an aqueous refrigerant solution in the refrigerant gas generator to constitute the above-mentioned diffusion absorption type powerless refrigerator.

2は上記冷媒ガス発生器1に冷媒水溶液を供給する受液
器、5は同発生器1の出口側に分l!R1器3、凝縮器
3を介して接続された蒸発器であり、該蒸発器5はその
出口側を吸収器6を介して上記受液器2に接続し冷媒水
溶液を回収する構造となっている。
2 is a receiver for supplying an aqueous refrigerant solution to the refrigerant gas generator 1, and 5 is a liquid receiver on the outlet side of the generator 1. This is an evaporator connected via an R1 vessel 3 and a condenser 3, and the evaporator 5 has an outlet side connected to the liquid receiver 2 via an absorber 6 to recover the refrigerant aqueous solution. There is.

而して、受液器2から上記触媒ヒータ形冷媒ガス発生器
1に冷媒水溶液、代表例としてアンモニア水溶液を供給
し、上記発生器1において触媒ヒータによる加熱を行な
う、触媒ヒータは適当な耐熱担体に白金、パラジウム等
を保持させたものであり、アルコール、ブタン等の有機
揮発剤から成る燃料と空気の混合ガスに触れ、激しく燃
焼反応する。この反応熱によって上記冷媒水溶液を加熱
し冷媒ガスの発生(気化)を促す、即ち冷媒ガスを無電
源で発生する。この冷媒ガスを分離器3に通して冷媒ガ
ス中から低濃度冷媒水溶液を回収管7を通じ受液器2に
回収しつつ、乾燥した冷媒ガスのみを凝縮器4に供給し
て液化し、この冷媒液を供給管8aを通じて供給された
水素ガスに接触させつつ蒸発器5に導入し急激な気化を
促す。この時周囲の熱を奪い冷却作用を生ずる。上記水
素ガスは蒸発器S内のガスを自然循環させるためにシス
テムに封入している。
An aqueous refrigerant solution, typically an ammonia aqueous solution, is supplied from the liquid receiver 2 to the catalytic heater type refrigerant gas generator 1, and heating is performed in the generator 1 by a catalytic heater.The catalytic heater is made of a suitable heat-resistant carrier. It contains platinum, palladium, etc., and when it comes into contact with a mixed gas of air and fuel consisting of an organic volatile agent such as alcohol or butane, it undergoes a violent combustion reaction. This heat of reaction heats the refrigerant aqueous solution and promotes generation (vaporization) of refrigerant gas, that is, refrigerant gas is generated without a power source. This refrigerant gas is passed through the separator 3 and a low-concentration refrigerant aqueous solution is collected from the refrigerant gas into the liquid receiver 2 through the recovery pipe 7, while only the dry refrigerant gas is supplied to the condenser 4 and liquefied. The liquid is introduced into the evaporator 5 while being brought into contact with hydrogen gas supplied through the supply pipe 8a to promote rapid vaporization. At this time, it absorbs heat from the surrounding area and produces a cooling effect. The hydrogen gas is sealed in the system in order to naturally circulate the gas in the evaporator S.

蒸発器S内の冷媒液は出口付近では水素ガスを多く含み
重くなり、これを比重差によって自然循環させるように
する。斯くして冷却に供された冷媒液は水素ガスと共に
吸収器6を介して受液器2に帰還し、水に解ける。受液
器2の水素ガスはバイパス管8bを通じて凝縮器4の出
口、即ち吸収器6の入口に流すようにする。この水素ガ
スは冷媒ガスの上記自然循環を助長する。
The refrigerant liquid in the evaporator S contains a large amount of hydrogen gas near the outlet and becomes heavy, and this is caused to circulate naturally due to the difference in specific gravity. The refrigerant liquid thus cooled returns to the liquid receiver 2 together with hydrogen gas via the absorber 6 and is dissolved into water. The hydrogen gas in the receiver 2 is made to flow to the outlet of the condenser 4, ie, the inlet of the absorber 6, through the bypass pipe 8b. This hydrogen gas facilitates the natural circulation of the refrigerant gas.

受液器2に回収された冷媒液は再び上記触媒ヒータ形の
冷媒ガス発生器1に供し、上記動作を繰り返す。
The refrigerant liquid collected in the liquid receiver 2 is again supplied to the catalytic heater type refrigerant gas generator 1, and the above operation is repeated.

斯くして無電源で冷却する触媒ヒータ利用の冷凍器が構
成される。
In this way, a refrigerator using a catalytic heater that performs cooling without a power source is constructed.

第2図以降は上記触媒ヒータ形冷媒ガス発生器1をより
合理的に機能させるべくした具体例を示す。
From FIG. 2 onwards, a specific example will be shown in which the catalytic heater type refrigerant gas generator 1 is made to function more rationally.

冷媒ガス発生器1は二重筒構造にする。内筒は冷媒水溶
液通流管9とし、外筒10は該通流管9の周囲を覆い該
通流管9との間に環状空間11を形成する。該冷媒水溶
液通流管9はその入口が第1図の冷凍システムにおける
受液器2と接続され、その出口が蒸発器5に通じ例えば
システム内の分離器3と接続されている。
The refrigerant gas generator 1 has a double cylinder structure. The inner cylinder is a refrigerant aqueous solution flow pipe 9, and the outer cylinder 10 surrounds the flow pipe 9 and forms an annular space 11 between it and the flow pipe 9. The inlet of the refrigerant aqueous solution flow pipe 9 is connected to the liquid receiver 2 in the refrigeration system shown in FIG. 1, and the outlet thereof communicates with the evaporator 5 and is connected, for example, to the separator 3 in the system.

上記冷媒水溶液通流管9の周面を触媒ヒータ13で包囲
し、環状空間11内に設置する。該触媒ヒータ13は通
気性に富む耐熱性担体、−例としてシリカ繊維等の繊維
に触媒を保持させクロス触媒13aを形成し、上記冷媒
水溶液通流管9の周面を覆う、該クロス触媒13aは第
5図、第6図に示すように金w413b、i3cで挟み
冷媒水溶液通流管9の周面に巻付は一体とする。
A catalytic heater 13 surrounds the circumferential surface of the refrigerant aqueous solution flow pipe 9 and is installed in the annular space 11 . The catalytic heater 13 is made of a heat-resistant carrier with high air permeability, such as fibers such as silica fibers, which hold the catalyst to form a cross catalyst 13a, which covers the circumferential surface of the refrigerant aqueous solution flow pipe 9. As shown in FIGS. 5 and 6, they are sandwiched between gold w413b and i3c and are integrally wrapped around the circumferential surface of the refrigerant aqueous solution flow pipe 9.

内側全綱13bは網自身の編組構造によって冷媒水溶液
通流管9の周面に通気F112を形成する。即ちクロス
触媒13aはその内面を通流管9の周面に対し通気でき
るように非密着状態で巻装する。又外側金網13cはク
ロス触媒13aを内側金w413bと一緒に通流管9の
周面に押さえ付は巻装状態を保持する。
The inner wire 13b forms a ventilation F112 on the circumferential surface of the refrigerant aqueous solution flow pipe 9 due to the braided structure of the net itself. That is, the cross catalyst 13a is wrapped in a non-adherent state so that its inner surface can be vented to the circumferential surface of the flow pipe 9. Further, the outer wire mesh 13c holds the cloth catalyst 13a together with the inner wire w413b on the circumferential surface of the flow pipe 9 and maintains the wrapped state.

クロス触媒13aの表面への通気性を阻害しないもので
あれば外側金網13cに代え線材や、帯材、その他の通
気性材で結縛しても良い。
Instead of the outer wire mesh 13c, wires, strips, or other air-permeable materials may be used to bind the cloth catalyst 13a as long as it does not impede the air permeability to the surface of the catalyst 13a.

上記外筒10に環状空間11と連通ずる燃料供給口14
及び採気口15を設け、更に排気口16を設ける。該燃
料供給口14と採気口15は外筒1oの一端に互いに接
近して配し、該供給口から離れた他端に排気口16を配
する。
A fuel supply port 14 communicating with the annular space 11 in the outer cylinder 10
An air intake port 15 is provided, and an exhaust port 16 is further provided. The fuel supply port 14 and the intake port 15 are arranged close to each other at one end of the outer cylinder 1o, and the exhaust port 16 is arranged at the other end remote from the supply port.

燃料供給手段として、例えば第2図に示すように液体燃
料容器17を形成し、該容器17に脱脂綿の如き吸上げ
材18を保持する吸上げ筒19を保有させ、該吸上げ筒
19の下部を容器17内の液体燃料24に浸して同下端
C設けた通液口20を通じて吸上げ材18に常時液体燃
料24を含浸させるようにすると共に、該吸上げ筒19
の上端開口面を容器外に露出させて上記採気口14と連
通状態にし、吸上げ筒19の上端開口面で露出する吸上
げ材18から揮発した燃料を環状空間11内に供給する
As a fuel supply means, for example, a liquid fuel container 17 is formed as shown in FIG. is soaked in the liquid fuel 24 in the container 17 so that the suction material 18 is constantly impregnated with the liquid fuel 24 through the liquid passage port 20 provided at the lower end C, and the suction tube 19 is immersed in the liquid fuel 24 in the container 17.
The upper end opening surface is exposed to the outside of the container and communicated with the intake port 14, and the fuel volatilized from the suction material 18 exposed at the upper end opening surface of the suction tube 19 is supplied into the annular space 11.

上記燃料容器17は、例えば上記吸上げ筒19の上端を
外筒10の燃料供給口14に嵌合する等して着脱可に接
続し発生器1と共にユニットを形成する。勿論吸上げ筒
19と燃料供給口14とをホースやバイブを介して接続
することを妨げない。
The fuel container 17 is removably connected, for example by fitting the upper end of the suction tube 19 into the fuel supply port 14 of the outer tube 10, and forms a unit with the generator 1. Of course, the suction tube 19 and the fuel supply port 14 may be connected via a hose or a vibrator.

父上記採気口15を形成する手段として、例えば第2図
に示すように上記吸上げ筒19を貫通する採気筒21を
設け、該採気筒21の下端を燃料容器17下面において
外部に開口し、容器17にはスタンドオフ22を設けて
同容器下面から採気する構造とすると共に、同採気筒2
1の上端を吸上げ材18の上端表面付近で開口させ、該
採気筒21を通じ上昇する空気が吸上げ材18表面から
の燃料24の揮発を助長しつつ、該揮発燃料と混合して
上記環状空間11内に導入されるようにする。上記燃料
容器17には嵌脱自在な蓋体23を設け、該蓋体23に
上記吸上げ筒19′HLび採気筒21を取付け、−緒に
取外しできるようにしつつ、燃料補充が行なえるように
する。
As a means for forming the intake port 15, for example, as shown in FIG. , the container 17 is provided with a standoff 22 to draw air from the bottom surface of the container, and
1 is opened near the upper end surface of the wicking material 18, and the air rising through the wicking material 18 promotes volatilization of the fuel 24 from the surface of the wicking material 18, mixes with the volatile fuel, and forms the annular shape. so as to be introduced into the space 11. The fuel container 17 is provided with a removable lid 23, and the suction tube 19'HL and the extraction tube 21 are attached to the lid 23 so that the fuel can be refilled while being removable together. Make it.

上記の如くして燃料供給源と組合せた冷媒ガス発生器1
が形成される。好ましい例として、該冷媒ガス発生器1
は第2図C示すように、軸線方向において地面に対し傾
斜するように冷凍器内に設置する。
Refrigerant gas generator 1 combined with a fuel supply source as described above
is formed. As a preferable example, the refrigerant gas generator 1
is installed in the refrigerator so as to be inclined with respect to the ground in the axial direction, as shown in FIG. 2C.

該傾斜角度は例えば5′〜30°の範囲にし、該傾斜下
端側に上記燃料供給口14及び採気口15を配し、傾斜
上端側に上記排気口16を配する。
The angle of inclination is, for example, in the range of 5' to 30 degrees, and the fuel supply port 14 and intake port 15 are arranged at the lower end of the inclination, and the exhaust port 16 is arranged at the upper end of the inclination.

又実施例として第4図に示すように発生器1を上記の如
く傾斜して設けると同時に、冷媒水容器通流管9を入口
側(傾斜下端側)において外筒10に対し第4図に示す
ように上部へ偏心して配し、同出口側(傾斜上端側)を
′j46図に示すようじ外筒10に対し同名となるよう
に配する。この実施例においては発生器の外筒10が3
42図に示すように上り傾斜するが、通流管9は水平或
は下り傾斜にすることができる。
Further, as an example, as shown in FIG. 4, the generator 1 is installed at an angle as described above, and at the same time, the refrigerant water container flow pipe 9 is installed at the inlet side (lower end side of the inclination) with respect to the outer cylinder 10 as shown in FIG. As shown, it is arranged eccentrically toward the upper part, and the outlet side (slanted upper end side) is arranged so that it has the same name as the toothpick outer cylinder 10 shown in Fig.'j46. In this embodiment, the outer cylinder 10 of the generator is 3
Although it is inclined upward as shown in Fig. 42, the flow pipe 9 can be made horizontal or inclined downward.

斯くして燃料供給口14及び採気口15から燃料と空気
の混合ガスが供給され、環状空間11内を触媒ヒータ1
3に沿いその下端から上端へと傾斜社従い上昇し、この
間開ヒータ13&:より激しく活性な燃焼反応が行なわ
れ排ガスが排気口16から排出される。
In this way, a mixed gas of fuel and air is supplied from the fuel supply port 14 and the intake port 15, and the gas mixture flows through the annular space 11 to the catalytic heater 1.
3 from the lower end to the upper end, and during this period, a more intense and active combustion reaction occurs with the open heater 13 &: and the exhaust gas is discharged from the exhaust port 16.

上記触媒ヒータ13による燃焼反応によって金網13b
が赤熱し冷媒水溶液通流管9が加熱する。同時に環状空
間11内が熱気で満たされ上記通流管9の加熱を助長す
る。該通流管9は外筒10の全長において均一に加熱さ
れ、その内部に供された冷媒水溶液を加熱し、冷媒ガス
を経常的に発生する。この冷媒ガスを第1図において説
明したように、分m器3、凝縮器4に通し、液化して蒸
発器5に供給し冷却を行なうのである。
The wire mesh 13b is caused by the combustion reaction by the catalytic heater 13.
becomes red hot, and the refrigerant aqueous solution flow pipe 9 heats up. At the same time, the annular space 11 is filled with hot air to promote heating of the flow pipe 9. The flow pipe 9 is uniformly heated over the entire length of the outer cylinder 10, heats the refrigerant aqueous solution provided therein, and regularly generates refrigerant gas. As explained in FIG. 1, this refrigerant gas is passed through the separator 3 and the condenser 4, liquefied, and supplied to the evaporator 5 for cooling.

第3図は上記冷媒ガス発生器1を縦形にした実施例を示
す、前記冷媒水mtti及び混合ガスは通流管9、外筒
10の下端から供給され、同通流管9及び環状空間11
内を縦方向に上昇し、触媒ヒータ13による上記燃焼反
応が促される。
FIG. 3 shows an embodiment in which the refrigerant gas generator 1 is made vertical. The refrigerant water mtti and the mixed gas are supplied from the lower end of the flow pipe 9 and the outer cylinder 10, and
The combustion reaction is promoted by the catalytic heater 13.

何れの実施例においても発生器1は上述の如く直管形に
する他、蛇行又は屈曲して反応効率を高めることができ
る。
In any of the embodiments, the generator 1 may have a straight tube shape as described above, or may be meandering or bent to improve reaction efficiency.

又本発明は以上説明した冷媒ガス発生器を上記冷媒ガス
発生に代え、湯等の加熱液体を得る液体加熱器として使
用し得ることを示唆している。 tff1体は水、油等
である。この場合、上記説明中における冷媒水溶液を単
に液体と読み代えれば良い。
The present invention also suggests that the refrigerant gas generator described above can be used as a liquid heater for obtaining heated liquid such as hot water instead of generating refrigerant gas. The tff1 body is water, oil, etc. In this case, the refrigerant aqueous solution in the above description may simply be read as liquid.

発明の詳細 な説明した通り、上記冷凍器における冷媒ガス発生器と
して、触媒ヒータを活用した無電源冷凍器を用いること
により、無電源で電源使用に優る性能を示す冷凍器を実
現し、携行用の無電源冷凍器の市場需要に応えることが
できたものである。
As described in detail of the invention, by using a power-free refrigerator that utilizes a catalytic heater as the refrigerant gas generator in the above-mentioned refrigerator, a refrigerator that does not require a power supply and exhibits superior performance to that using a power source has been realized, and is portable. This product was able to meet the market demand for power-free refrigerators.

本発明は従来知られている拡散吸収式冷凍器の如き電気
ヒータで駆動する冷媒ガス発生器に代え、上記触媒ヒー
タで動作する発生器を用いることができ、無電源で上記
電気ヒータ駆動形拡散吸収式冷凍器に劣らない安定な冷
凍性能が得られる無電i!li冷凍器を提供できた。
In the present invention, instead of a refrigerant gas generator driven by an electric heater such as a conventionally known diffusion absorption refrigerator, a generator operated by the catalytic heater can be used, and the electric heater-driven diffusion Electric i! provides stable refrigeration performance comparable to absorption refrigerators! We were able to provide a li refrigerator.

又上記冷媒ガス発生器は二重管の環状空間内を上記混合
ガスで満たして、同環状空間内で冷媒水溶液通流管周面
を包囲する触媒ヒータと接触して活性で且つ安定な燃焼
反応を惹起することができ、この結果、冷媒水溶液通流
管は触媒ヒータにより直接的に加熱されると同時に環状
空間内を満たした高温の加熱気体で加熱され、該通流管
内に導入した冷媒水溶液を均一に加熱し安定に冷媒ガス
を発生せしめることができ、これを凝縮器を介し蒸発器
に供給することにより、良好な冷却性能を発揮させるこ
とができる。
Further, the refrigerant gas generator fills the annular space of the double pipe with the mixed gas, and contacts the catalytic heater surrounding the circumferential surface of the refrigerant aqueous solution flow pipe within the annular space to generate an active and stable combustion reaction. As a result, the aqueous refrigerant solution flow pipe is directly heated by the catalytic heater and at the same time heated by the high-temperature heated gas filling the annular space, causing the aqueous refrigerant solution introduced into the flow pipe to It is possible to uniformly heat the refrigerant gas and stably generate refrigerant gas, and by supplying this to the evaporator via the condenser, good cooling performance can be exhibited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例として拡散吸収式無電源冷凍器
の構造原理を示す平面図、第2図は同冷凍器に用いる冷
媒ガス発生器の具体構造を例示する縦断面図、第3図は
他例を示す同縦断面図、第4図は更に他例を示す発生器
横断面図、第5図は触媒ヒータの構造例を示す縦断面図
、第6図は同横断面図である。 1・・・冷媒ガス発生器、2・・・受渡器、3・・・蒸
発器、4・・・分離器、5・・・凝縮器、6・・・吸収
器、9・・・冷媒水溶液通流管、10・・・外筒、11
・・・環状空間、13・・・触媒ヒータ、13a・・・
クロス触媒、13b、13c・・・金網、14・・・燃
料供給口、15・・・採気口、16・・・41F気口、
17・・・燃料容器、18・・・吸上げ材、 19・・・吸上げ筒、 21・・・採気 筒、 24・・・燃料。
Fig. 1 is a plan view showing the structural principle of a diffusion absorption type powerless refrigerator as an embodiment of the present invention, Fig. 2 is a longitudinal sectional view illustrating the specific structure of a refrigerant gas generator used in the refrigerator, and Fig. The figure is a vertical sectional view showing another example, FIG. 4 is a cross sectional view of the generator showing another example, FIG. 5 is a vertical sectional view showing an example of the structure of the catalytic heater, and FIG. be. DESCRIPTION OF SYMBOLS 1... Refrigerant gas generator, 2... Delivery device, 3... Evaporator, 4... Separator, 5... Condenser, 6... Absorber, 9... Refrigerant aqueous solution Flow pipe, 10... Outer cylinder, 11
... Annular space, 13... Catalyst heater, 13a...
Cross catalyst, 13b, 13c... wire mesh, 14... fuel supply port, 15... air intake port, 16... 41F air port,
17... Fuel container, 18... Suction material, 19... Suction tube, 21... Collection tube, 24... Fuel.

Claims (2)

【特許請求の範囲】[Claims] (1)冷媒ガス発生器の冷媒水溶液加熱用熱源として触
媒ヒータを用いたことを特徴とする冷凍器。
(1) A refrigerator characterized in that a catalytic heater is used as a heat source for heating an aqueous refrigerant solution in a refrigerant gas generator.
(2)冷媒水溶液通流管の周囲を外筒で覆って二重筒構
造にし、該外筒と冷媒水溶液通流管内の環状空間内に触
媒ヒータを配して冷媒水溶液通流管の周面を包囲すると
共に、外筒に燃料供給口及び採気口と排気口を設け、該
燃料供給口及び採気口を介して上記環状空間に空気と燃
料の混合ガスを供給して上記触媒ヒータによる燃焼反応
を促し、冷媒液通流管の加熱と冷媒液の気化を促す構成
としたことを特徴とする無電源冷媒ガス発生器。
(2) The periphery of the refrigerant aqueous solution flow pipe is covered with an outer cylinder to form a double cylinder structure, and a catalytic heater is arranged in the annular space inside the outer cylinder and the refrigerant aqueous solution flow pipe, so that the circumferential surface of the refrigerant aqueous solution flow pipe is At the same time, a fuel supply port, an air intake port, and an exhaust port are provided in the outer cylinder, and a mixed gas of air and fuel is supplied to the annular space through the fuel supply port and the air intake port to cause the catalytic heater to A powerless refrigerant gas generator characterized by having a configuration that promotes a combustion reaction, heats a refrigerant liquid flow pipe, and vaporizes the refrigerant liquid.
JP22699389A 1989-09-01 1989-09-01 Non-powered refrigerator Expired - Lifetime JPH0796979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22699389A JPH0796979B2 (en) 1989-09-01 1989-09-01 Non-powered refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22699389A JPH0796979B2 (en) 1989-09-01 1989-09-01 Non-powered refrigerator

Publications (2)

Publication Number Publication Date
JPH0391659A true JPH0391659A (en) 1991-04-17
JPH0796979B2 JPH0796979B2 (en) 1995-10-18

Family

ID=16853832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22699389A Expired - Lifetime JPH0796979B2 (en) 1989-09-01 1989-09-01 Non-powered refrigerator

Country Status (1)

Country Link
JP (1) JPH0796979B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960688A (en) * 1987-02-27 1990-10-02 Fuji Photo Film Co., Ltd. Silver halide color photographic material
JPH0545462U (en) * 1991-11-12 1993-06-18 株式会社日阪製作所 Plate heat exchanger
JP2011088520A (en) * 2009-10-21 2011-05-06 Mihama Kk Air conditioning system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960688A (en) * 1987-02-27 1990-10-02 Fuji Photo Film Co., Ltd. Silver halide color photographic material
JPH0545462U (en) * 1991-11-12 1993-06-18 株式会社日阪製作所 Plate heat exchanger
JP2011088520A (en) * 2009-10-21 2011-05-06 Mihama Kk Air conditioning system

Also Published As

Publication number Publication date
JPH0796979B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US5154067A (en) Portable cooler using chemical reaction
US5816069A (en) Sorption cooling unit
JP5068707B2 (en) Ammonia-based hydrogen generator and method of using the same
EP0097654B1 (en) Hair drying apparatus
US20110056234A1 (en) Thermal solar energy collector for producing heat and/or cooling
JPH0391659A (en) Refrigerator and refrigerant gas generator without power supply used for refrigerator
US5881573A (en) Refrigerating device with cooling unit working intermittently
KR100231349B1 (en) Sorption cooling unit
KR100727624B1 (en) Catalyst heater without combustion and noise
RU2347133C1 (en) Thermal compressor (versions)
CN107188119A (en) Utilize catalyst and the hydrogen producing apparatus of used heat
RU2115084C1 (en) Catalytic heat simulator
CN210568819U (en) Portable hand warming rod
JPS6357719B2 (en)
KR20130085223A (en) Portable heating apparatus
US4464911A (en) Absorption refrigeration cycle generator
JPH0386233A (en) Method and device for heat generation
CN209310302U (en) The generator of built-in mixing component and absorption refrigeration or heating system
JPS6339622A (en) Reformer for fuel cell
CN212081263U (en) Quick cooling device for catalytic combustion device
CN2220858Y (en) Multifunctional electrothermal steam producer
CN212939369U (en) Health preserving cup
JPH055418Y2 (en)
RU11865U1 (en) CATALYTIC HEATER
JPH10300003A (en) Steam generation method and hot water generation method and electric boiler using the same