JPH0391515A - Molding of grafted inorganic substance - Google Patents

Molding of grafted inorganic substance

Info

Publication number
JPH0391515A
JPH0391515A JP22837189A JP22837189A JPH0391515A JP H0391515 A JPH0391515 A JP H0391515A JP 22837189 A JP22837189 A JP 22837189A JP 22837189 A JP22837189 A JP 22837189A JP H0391515 A JPH0391515 A JP H0391515A
Authority
JP
Japan
Prior art keywords
inorganic substance
molding
grafted
diacetylene compound
onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22837189A
Other languages
Japanese (ja)
Inventor
Yoshimi Kuroda
黒田 良美
Katsuyuki Nakamura
克之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP22837189A priority Critical patent/JPH0391515A/en
Publication of JPH0391515A publication Critical patent/JPH0391515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain a molding having a high velocity of propagation of ultrasonic waves, high elasticity high hardness and excellent strengths, abrasion resistance and heat resistance by molding a grafted inorganic substance prepared by grafting a specified diacetylene compound onto an inorganic substance. CONSTITUTION:A grafted inorganic substance prepared by grafting a diacetylene compound of formula I (wherein R and R' are each a 2-8C double bond- containing organic group; X and X' are each formula II or O; A and A' are each a 1-6C organic group), e.g. 1,6-diacrylato-2,4-hexadiyne) onto the surface of an inorganic substance (e.g. titanium oxide) is molded. Because the diacetylene compound is grafted onto the surface of the inorganic substance, the obtained molding is controlled in rapid decomposability and curing shrinkage which are problematic in a diacetylene compound, the molding has a high velocity of propagation of ultrasonic waves, high elasticity, high hardness, excellent strengths, abrasion resistance and heat resistance, and is very useful for precision machine parts, parts related to friction or abrasion materials ultrasonic machines, electronic field, etc.

Description

【発明の詳細な説明】 本発明は、精密機械部品やエレクトロニクス分野で利用
できる剛性、弾性、硬度、線膨張率、熱伝導率等に優れ
た材料を与えるグラフト化無機物の成形体に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a grafted inorganic molded article that provides a material with excellent rigidity, elasticity, hardness, coefficient of linear expansion, thermal conductivity, etc. that can be used in precision mechanical parts and electronics fields. .

〔従来の技術] 本発明者らは、これまでに種々の多管能性ジアセチレン
系化合物を用いて三次元的に高密度に架橋させた高弾性
率成形体の開発を行なってきた。
[Prior Art] The present inventors have so far developed high-modulus molded bodies that are three-dimensionally crosslinked with high density using various multifunctional diacetylene compounds.

共有結合を用いた架橋によって三次元的に高弾性率を発
現させるためには、架橋基密度を可能な限り高くし、且
つ架橋基を規則的にかつ高収率で反応させねばならない
。本発明者らは、これまでに、架橋基密度が高く、架橋
基の反応性に富んだジアセチレン系化合物をアミド基や
エステル基とジアセチレン基や炭素−炭素二重結合を組
合せることで可能にし、これらの素材の優れた固相反応
性を利用して、高弾性率化を達成してきた。
In order to express a high elastic modulus three-dimensionally by crosslinking using covalent bonds, the density of crosslinking groups must be made as high as possible, and the crosslinking groups must be reacted regularly and in high yield. The present inventors have previously developed diacetylene compounds that have a high density of crosslinking groups and are highly reactive, by combining amide groups or ester groups with diacetylene groups or carbon-carbon double bonds. By utilizing the excellent solid-phase reactivity of these materials, we have achieved high elastic modulus.

その中で、本発明者らは特に、特許請求の範囲に示した
構造式を有するジアセチレン化合物が二重結合もジアセ
チレン基も良好な反応性を有することを見出した。
Among these, the present inventors have particularly found that the diacetylene compound having the structural formula shown in the claims has good reactivity in both the double bond and the diacetylene group.

(発明が解決しようとする課題〕 しかしながら、該ジアセチレン化合物は、その良好な反
応性故に成形条件や反応条件によっては、急激な分野を
生じ安全な成形という面において大きな問題が生じた。
(Problems to be Solved by the Invention) However, due to the good reactivity of the diacetylene compound, depending on the molding conditions and reaction conditions, there may be sudden changes in the field, and a big problem has arisen in terms of safe molding.

又、該ジアセチレン化合物が液状の場合、成形時に金型
からしみ出しして、均質化した成形体を与えにくいこと
もしばしば起った。
Furthermore, when the diacetylene compound is in a liquid state, it often oozes out of the mold during molding, making it difficult to provide a homogenized molded product.

本発明の目的は、成形特にそのような問題を生じること
なく、剛性、弾性、硬度、線膨張率、熱伝導率等に優れ
た材料を与えるジアセチレン系化合物の成形体を提供す
ることにある。
An object of the present invention is to provide a molded article of a diacetylene compound that can be molded without causing such problems and that provides a material with excellent rigidity, elasticity, hardness, coefficient of linear expansion, thermal conductivity, etc. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、このような課題を解決するために、無機
物の表面に該ジアセチレン化合物をグラフト化すること
により解決できると考え各種無機物について検討してき
た。その結果、各種無機物に該ジアセチレン化合物をグ
ラフト化することが確認できた。又、該ジアセチレン化
合物をグラフト化した無機物の成形体は高い物性値を与
えることを見出し本発明に敗ったものである。
In order to solve such problems, the present inventors have studied various inorganic substances, believing that the problem can be solved by grafting the diacetylene compound onto the surface of the inorganic substance. As a result, it was confirmed that the diacetylene compound was grafted onto various inorganic substances. Furthermore, it was discovered that an inorganic molded article grafted with the diacetylene compound provided high physical properties, and was therefore defeated by the present invention.

すなわち本発明は、−形式(1)で示されるジアセチレ
ン化合物を無機物の表面にグラフト重合したグラフト化
無機物の成形体 R−X−^−c、 cc、c−^’−X”−R’−・−
−−−−〜〜−−(I)(ここで、R、R″は炭素数が
2〜8までの二重結合を有する有機基であり、x、x′
は一〇C−又は−〇−であり、A、A”は炭素数が1か
ら6までの有機基を示す。) である。
That is, the present invention provides a grafted inorganic molded article R-X-^-c, cc, c-^'-X"-R' in which a diacetylene compound represented by format (1) is graft-polymerized on the surface of an inorganic material. −・−
------- (I) (Here, R and R'' are organic groups having a double bond of 2 to 8 carbon atoms, x, x'
is 10C- or -0-, and A and A'' represent an organic group having 1 to 6 carbon atoms.

本発明において、用いられる無機物は金属、金属の酸化
物、硫化物、炭酸塩、リン酸塩、炭化物などカーボンブ
ラック、カーボン繊維、黒鉛、カーボンウィスカーなど
の炭素材料などが用いられ、これらが官能基を持ってい
ればより好ましく、このような官能基として、例えば水
酸基、カルボン酸基、スルホン酸基等であり、官能基を
持っている無機物としては、例えば金属酸化物、硫化物
、カーボンブラック、カーボンファイバー、カーボンウ
ィスカー等である。
In the present invention, the inorganic substances used include metals, metal oxides, sulfides, carbonates, phosphates, carbon black such as carbon black, carbon fiber, graphite, carbon whiskers, etc., and these have functional groups. It is more preferable if it has a functional group, such as a hydroxyl group, a carboxylic acid group, a sulfonic acid group, etc., and examples of inorganic substances having a functional group include metal oxides, sulfides, carbon black, Carbon fiber, carbon whiskers, etc.

本発明において、無機物の表面にジアセチレン化合物を
グラフト重合する場合、無機物の表面から触媒あるいは
活性化剤を用いて直接的にグラフト重合する方法、ある
いは、無機物の表面にある官能基を用いてこれにグラフ
ト重合する方法、更には、いったんシランカップリング
剤、チタン系カップリング剤などの官能性カップリング
剤で処理し、次いで、これからグラフト重合する方法、
特に好ましくは、アゾ基のようなラジカル開始剤を付加
し、これよりグラフト重合する方法である。
In the present invention, when a diacetylene compound is graft-polymerized onto the surface of an inorganic material, it is possible to perform graft polymerization directly from the surface of the inorganic material using a catalyst or activator, or by using a functional group on the surface of the inorganic material. A method in which the material is graft-polymerized, and a method in which the material is once treated with a functional coupling agent such as a silane coupling agent or a titanium-based coupling agent, and then graft-polymerized.
Particularly preferred is a method in which a radical initiator such as an azo group is added and graft polymerization is carried out therefrom.

シランカップリング剤を用いる方法においては、用いる
シランカップリング剤は通常用いられるシランカップリ
ング剤で良く、例えば、ビニルトリエトキシシラン、ビ
ニルトリメトキシシラン、T−メタクリロキシプロピル
トリメトキシシラン、γ−グリシドキシプロビルトリメ
トキシシラン、T−グリシドキシプロピルメチルジェト
キシシラン等である。また、ラジカル開始剤を付加する
場合には、例えば4,4′−アゾビス(4−シアノバレ
リン酸)、1.1′−アゾビス(シクロヘキサン−1−
カルボニトリル)、2.2′−アゾビス(2゜4−ジメ
チルバレロニトリル)等が用いられる。
In the method using a silane coupling agent, the silane coupling agent used may be a commonly used silane coupling agent, such as vinyltriethoxysilane, vinyltrimethoxysilane, T-methacryloxypropyltrimethoxysilane, These include cidoxypropyltrimethoxysilane, T-glycidoxypropylmethyljethoxysilane, and the like. In addition, when adding a radical initiator, for example, 4,4'-azobis(4-cyanovaleric acid), 1,1'-azobis(cyclohexane-1-
carbonitrile), 2,2'-azobis(2°4-dimethylvaleronitrile), and the like.

本発明において、無機物の表面にグラフト化するジアセ
チレン化合物としては、−形式(1)で示されるジアセ
チレン化合物であり、R,R’は炭素数が2から6まで
の二重結合を有する有機基CH。
In the present invention, the diacetylene compound to be grafted onto the surface of an inorganic substance is a diacetylene compound represented by the -format (1), where R and R' are organic compounds having a double bond of 2 to 6 carbon atoms. Base CH.

CHg=CHGHz− CH,Cl=CH− CH:1C1l=CHCHI CHz=(IICHt−CHz− CH3 (Ih=CCHz C)lz=cHcHzclI□C1l!−C1hCH=
CHC1hCHz− CH,=C− C)IgcHzcHzcIh C)I、(Il□(I(=CH 等が挙げられ、 高い反応性を有するという点にお が好ましく、 合成のしやすさも考えると、 特に CH:I CB□・C)I−、CH2=C−が好ましい。
CHg=CHGHz- CH, Cl=CH- CH:1C1l=CHCHI CHz=(IICHt-CHz- CH3 (Ih=CCHz C)lz=cHcHzclI□C1l!-C1hCH=
CHC1hCHz- CH,=C- C)IgcHzcHzcIhC)I, (Il□(I(=CH), etc., are preferred, and considering ease of synthesis, CH: I CB□・C) I-, CH2=C- are preferred.

0 111 また、X、X′は、−oc−、−0−テあり −0C−
の場合、RとA及びR′とA゛との結合様式には特に制
限はない。
0 111 Also, X and X' have -oc- and -0-te -0C-
In the case of , there is no particular restriction on the bonding mode between R and A and between R' and A'.

^、A′は炭素数が1から6までの有機基を示しその例
としては、−CHz−、−C−Ctlz −)y 、 
+CHI +r+CHz+r、+CH2−)7−、−(
−cut+−r 、 −CH( セチレン基の反応性を高め、台底しやすいという点で−
C11□−が好ましい。
^, A' represents an organic group having 1 to 6 carbon atoms, examples of which are -CHz-, -C-Ctlz -)y,
+CHI +r+CHz+r, +CH2-)7-,-(
-cut+-r, -CH (-
C11□- is preferred.

本発明において、−形式(1)で示されるジアセチレン
化合物の台底については、例えば、特開昭62−267
248号公報や特開昭62−267251号公報等に示
される合成方法を用いて容易に、高収率で台底できる。
In the present invention, for the base of the diacetylene compound represented by the form (1), for example, JP-A No. 62-267
The base can be easily produced in high yield using the synthesis methods disclosed in Japanese Patent Application Laid-open No. 248 and Japanese Patent Application Laid-Open No. 62-267251.

又、精製も通常のクロマト法、蒸留、再結晶等により行
うことができる。
Further, purification can also be carried out by conventional chromatography, distillation, recrystallization, etc.

本発明において、無機物にジアセチレン化合物をグラフ
ト重合する場合、各種の公知のグラフト重合方法が使用
できるが、ここに−例を示すと、真空封管下や不活性ガ
ス下など重合を抑制することのない雰囲気下で一定時間
熱処理することによりグラフト重合することができる。
In the present invention, when graft polymerizing a diacetylene compound onto an inorganic substance, various known graft polymerization methods can be used. Graft polymerization can be carried out by heat treatment for a certain period of time in an atmosphere free of carbon dioxide.

真空封管法としては、通常の真空封管法を用いることが
でき、少量実験の場合には、ガラスアンプル管に、無機
物とジアセチレン化合物を入れ、次いで真空封管にした
後、ガラスアンプル管を溶着して行う方法が簡便に用い
られる。工業的には、真空下あるいは、窒素、アルゴン
等の不活性ガス雰囲気下で撹拌槽を用いて行うことがで
きる。
As for the vacuum sealing method, the usual vacuum sealing tube method can be used.For small-scale experiments, put the inorganic substance and diacetylene compound into a glass ampoule tube, then vacuum seal it, and then transfer it to the glass ampoule tube. A method of welding is easily used. Industrially, it can be carried out using a stirring tank under vacuum or under an inert gas atmosphere such as nitrogen or argon.

反応温度は特に制限はなく、反応の様式によって選択で
きるが、一般に一10’C〜200°Cの範囲が好まし
く、より好ましくは、ジアセチレン化合物の反応性から
O″C〜130°Cである。また、反応時間は、特に制
限はないが、好ましくは0.5〜24時間である。反応
終了後、反応物を有機溶剤、例えばメタノール、エーテ
ル、アセトン、ジメチルスルホキシド等で抽出及び洗浄
をくり返した後、乾燥させてグラフト化無機物を得るこ
とができる。
The reaction temperature is not particularly limited and can be selected depending on the reaction mode, but is generally preferably in the range of 10'C to 200°C, more preferably 0'C to 130°C in view of the reactivity of the diacetylene compound. In addition, the reaction time is not particularly limited, but is preferably 0.5 to 24 hours.After the reaction is completed, the reaction product is repeatedly extracted and washed with an organic solvent such as methanol, ether, acetone, dimethyl sulfoxide, etc. After drying, the grafted inorganic substance can be obtained.

乾燥したグラフト化無機物を、そのまま、あるいは該ジ
アセチレン化合物や、他の樹脂、ゴム等と混合して、圧
縮成形法、射出成形法、あるいは−見付形した後、真空
バック法、オートクレーブ法等による後処理を行って成
形する方法等によりグラフト化無機物の成形体を得るこ
とができる。
The dried grafted inorganic material may be used as it is or mixed with the diacetylene compound, other resins, rubbers, etc., and then subjected to compression molding, injection molding, or after shaping, vacuum bag method, autoclave method, etc. A molded article of the grafted inorganic material can be obtained by a method of molding after post-treatment with.

得られた成形体は、弾性率が15GPa以上、好ましく
は20GPa以上、最も好ましくは30GPa以上であ
る。また該成形体のビッカース硬度は、80以上、好ま
しくは120以上、最も好ましくは150以上のもので
ある。また該成形体の超音波伝播速度は3800m/s
以上、特に4000w/s以上と極めて高いものである
The obtained molded article has an elastic modulus of 15 GPa or more, preferably 20 GPa or more, and most preferably 30 GPa or more. The Vickers hardness of the molded article is 80 or more, preferably 120 or more, and most preferably 150 or more. Moreover, the ultrasonic propagation speed of the molded body is 3800 m/s
The above is extremely high, especially 4000 w/s or more.

〔発明の効果〕〔Effect of the invention〕

本発明によるグラフト化無機物の成形体は、無機物の表
面にジアセチレン化合物をグラフト重合することにより
、ジアセチレン化合物の問題点である急激な分解性、硬
化収縮性を抑制でき、更にその成形体の特徴は、超音波
伝播速度が非常に高く、高弾性、高硬度を有しており、
又、強度、耐摩耗性、耐熱性に優れている為に、精密機
械部品、摩擦摩耗材に関する部品、超音波関連機械部品
、エレクトロニクス分野に関する部品等に極めて有用で
ある。
By graft polymerizing a diacetylene compound onto the surface of the inorganic material, the grafted inorganic molded article of the present invention can suppress rapid decomposition and curing shrinkage, which are problems of diacetylene compounds, and further improve the quality of the molded article. Features include extremely high ultrasonic propagation speed, high elasticity, and high hardness.
In addition, since it has excellent strength, wear resistance, and heat resistance, it is extremely useful for precision mechanical parts, parts related to friction and wear materials, ultrasonic-related mechanical parts, parts related to the electronics field, etc.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する為に実施例により説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

実施例1 無機物として和光純薬製の酸化チタンを用い、シランカ
ップリング剤としてT−グリシドキシプロピルトリメト
キシランの5%トルエン溶液を用いて、120″Cの温
度で8時間撹拌して処理した。
Example 1 Using titanium oxide manufactured by Wako Pure Chemical Industries as an inorganic material and a 5% toluene solution of T-glycidoxypropyltrimethoxylane as a silane coupling agent, treatment was performed by stirring at a temperature of 120"C for 8 hours. did.

更に、メタノールで洗浄後、100°Cで24時間乾燥
した。次に、アゾ基の導入を行った。アゾ化剤として4
,4′−アゾビス(4−シアノバレリン酸)を用いて、
α−ピコリン少量とジメチルスルホキシトを溶剤として
、50’Cの温度で撹拌しながら6時間反応させた。反
応終了後、メタノールで洗浄し、室温で48時間真空乾
燥を行った。このように表面処理した酸化チタン25g
と、ジアセチレン化合物として1−6ジアクリレート2
−4へキサジイン50gをフラスコに入れ、真空下、7
0’Cの温度で2時間反応させた。反応終了後、アセト
ンで洗浄し、室温で48時間真空乾燥した。
Furthermore, after washing with methanol, it was dried at 100°C for 24 hours. Next, an azo group was introduced. 4 as an azotizing agent
, 4′-azobis(4-cyanovaleric acid),
Using a small amount of α-picoline and dimethyl sulfoxide as a solvent, the mixture was reacted with stirring at a temperature of 50'C for 6 hours. After the reaction was completed, it was washed with methanol and vacuum dried at room temperature for 48 hours. 25g of titanium oxide surface treated in this way
and 1-6 diacrylate 2 as a diacetylene compound.
-4 Hexadiine 50g was placed in a flask, and under vacuum, 7
The reaction was carried out at a temperature of 0'C for 2 hours. After the reaction was completed, it was washed with acetone and vacuum dried at room temperature for 48 hours.

グラフト化の確認は、IR,、TG/ DTA熱重量分
析装置によって分析した結果、56%の収率で付着物量
が認められた。
Grafting was confirmed by analysis using an IR, TG/DTA thermogravimetric analyzer, and the amount of deposits was observed at a yield of 56%.

次に、60mmφの金型を用いて、グラフト化した酸化
チタンを25g金型に仕込み、室温下に、200 kg
/cdの圧力で圧縮成形し、60φの円板状に付形した
。更に60φの円板状に付形したものにジアセチレン化
合物を含浸させた後、オートクレーブで130°Cの温
度で5時間熱処理した。
Next, using a mold with a diameter of 60 mm, 25 g of grafted titanium oxide was charged into the mold, and 200 kg of the grafted titanium oxide was placed at room temperature.
It was compression molded at a pressure of /cd and shaped into a 60φ disc. Further, a disk shaped into a 60φ disk was impregnated with a diacetylene compound, and then heat treated in an autoclave at a temperature of 130° C. for 5 hours.

得られた成形体の力学物性を測定した結果、超音波伝播
速度4100m /s、弾性率38GPa、ビッカース
硬度200の高い物性値が得られた。
As a result of measuring the mechanical properties of the obtained molded body, high physical property values such as an ultrasonic propagation velocity of 4100 m 2 /s, an elastic modulus of 38 GPa, and a Vickers hardness of 200 were obtained.

比較例1 無機物として、実施例−1と同じ和光純薬製の酸化チタ
ンをグラフト化せずに未処理のまま、l−6ジアクリレ
ート2−4へキサジインとを重量分率で20:80の割
合で混合した0次いで該混合物25gを60φΦ金型に
仕込んで、室温下、200 kg/ aaの圧力で5分
間圧縮して60φの円板状に付形した。これを更にオー
トクレーブ中で130℃の温度で5時間熱処理した。得
られた成形体の物性を測定した結果、超音波伝播速度2
600ta/ss弾性率15GPa、ビッカース硬度6
5であり、グラフト化したものに比較して低い物性値で
あった。
Comparative Example 1 As an inorganic substance, titanium oxide manufactured by Wako Pure Chemical Industries, Ltd., which is the same as in Example-1, was left untreated without being grafted, and l-6 diacrylate 2-4 hexadiyne was added at a weight fraction of 20:80. Then, 25 g of the mixture was put into a 60 φ mold and compressed for 5 minutes at a pressure of 200 kg/aa at room temperature to form a 60 φ disc. This was further heat treated in an autoclave at a temperature of 130°C for 5 hours. As a result of measuring the physical properties of the obtained molded body, the ultrasonic propagation velocity 2
600ta/ss elastic modulus 15GPa, Vickers hardness 6
5, which was a lower physical property value than that of the grafted material.

実施例2 実施例1と同じ材料、同じグラフト化方法で実施し、得
られたグラフト化酸化チタン20gと、1−6ジアクリ
レート2−4へキサジイン5gを、エーテルを溶剤とし
て撹拌混合した後、エーテルを留去した。グラフト化酸
化チタンとジアセチレン化合物の混合物を、60φの金
型を用い、50kg/dの圧力で圧縮し円板状に付形し
た。得られた円板状のものを、更にlQQQkg/cJ
の圧力下、160℃で1時間熱処理した。得られた成形
体の物性を測定した結果、超音波伝播速度4740w/
s、弾性率45GPa、ビッカース硬度250の高い物
性値が得られた。
Example 2 20 g of grafted titanium oxide obtained by using the same materials and the same grafting method as in Example 1 and 5 g of 1-6 diacrylate 2-4 hexadiyne were mixed with stirring using ether as a solvent. The ether was distilled off. A mixture of grafted titanium oxide and a diacetylene compound was compressed into a disk shape using a 60φ mold at a pressure of 50 kg/d. The obtained disc-shaped material is further added to lQQQkg/cJ.
Heat treatment was performed at 160°C for 1 hour under a pressure of . As a result of measuring the physical properties of the obtained molded body, the ultrasonic propagation velocity was 4740w/
s, elastic modulus of 45 GPa, and Vickers hardness of 250.

比較例2 無機物として比較例1と同じ未処理の酸化チタンを用い
、実施例2と同様の混合及び成形方法で成形体を得た。
Comparative Example 2 A molded body was obtained using the same untreated titanium oxide as in Comparative Example 1 as the inorganic substance and by the same mixing and molding method as in Example 2.

得られた成形体の物性を測定した結果、超音波伝播速度
3100m八、弾性率18GPaビツ力−ス硬度78の
物性値であった。
As a result of measuring the physical properties of the obtained molded article, the physical properties were as follows: ultrasonic propagation velocity: 3100 m8, elastic modulus: 18 GPa, bit strength hardness: 78.

実施例3 無機物を酸化ジルコニウムにした他は、実施例2と同様
のグラフト化及び成形法にて実施した。
Example 3 The same grafting and molding method as in Example 2 was carried out except that zirconium oxide was used as the inorganic substance.

得られた成形体の物性を測定した結果、超音波伝播速度
4800+w/s 、弾性率54GPa、ビッカース硬
度280の高い物性値が得られた。
As a result of measuring the physical properties of the obtained molded article, high physical property values such as an ultrasonic propagation velocity of 4800+w/s, an elastic modulus of 54 GPa, and a Vickers hardness of 280 were obtained.

比較例3 無機物として、実施例3と同じ酸化ジルコニウムをグラ
フト化せずに未処理のまま使用した他は、実施例3と同
じ成形方法で実施した。得られた成形体の物性は、超音
波伝播速度2900m/s 、弾性率20GPa、ビッ
カース硬度98の物性値であった。
Comparative Example 3 The same molding method as in Example 3 was carried out, except that the same zirconium oxide as in Example 3 was used as an inorganic substance without being grafted and untreated. The physical properties of the obtained molded article were an ultrasonic propagation velocity of 2900 m/s, an elastic modulus of 20 GPa, and a Vickers hardness of 98.

実施例4 無機物を酸化アルミニウムにした他は、実施例2と同様
にグラフト化及び成形法を実施した。得られた成形体の
物性を測定した結果、超音波伝播速度468m/s、弾
性率35GPa、ビッカース硬度260の高い物性値が
得られた。
Example 4 The grafting and molding methods were carried out in the same manner as in Example 2, except that aluminum oxide was used as the inorganic material. As a result of measuring the physical properties of the obtained molded body, high physical property values such as an ultrasonic propagation velocity of 468 m/s, an elastic modulus of 35 GPa, and a Vickers hardness of 260 were obtained.

比較例4 無機物として、実施例4と同じ酸化アルミニウムをグラ
フト化せずに未処理のまま用いた他は実施例4と同じ成
形法で実施した。得られた成形体の物性を測定した結果
、超音波伝播速度3100++/s、弾性率19GPa
、ビッカース硬度90の物性値であった。
Comparative Example 4 The same molding method as in Example 4 was carried out except that the same aluminum oxide as in Example 4 was used as an inorganic substance without being grafted and untreated. As a result of measuring the physical properties of the obtained molded body, the ultrasonic propagation velocity was 3100++/s, and the elastic modulus was 19 GPa.
, the physical property value was 90 in Vickers hardness.

Claims (1)

【特許請求の範囲】 一般式( I )で示されるジアセチレン化合物を無機物
にグラフト重合したグラフト化無機物の成形体 R−X−A−C≡CC≡C−A′−X′−R′…………
( I )(ここで、R、R′は炭素数が2〜8までの二
重結合を有する有機基であり、X、X′は▲数式、化学
式、表等があります▼又は−O−であり、A、A′は炭
素数が1から6までの有機基を示す。)
[Scope of Claims] A molded product of a grafted inorganic material obtained by graft polymerizing a diacetylene compound represented by the general formula (I) onto an inorganic material R-X-A-C≡CC≡C-A'-X'-R'... ......
(I) (Here, R and R' are organic groups having a double bond with 2 to 8 carbon atoms, and X and X' are ▲There are mathematical formulas, chemical formulas, tables, etc.▼ or -O- (A and A' represent organic groups having 1 to 6 carbon atoms.)
JP22837189A 1989-09-05 1989-09-05 Molding of grafted inorganic substance Pending JPH0391515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22837189A JPH0391515A (en) 1989-09-05 1989-09-05 Molding of grafted inorganic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22837189A JPH0391515A (en) 1989-09-05 1989-09-05 Molding of grafted inorganic substance

Publications (1)

Publication Number Publication Date
JPH0391515A true JPH0391515A (en) 1991-04-17

Family

ID=16875418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22837189A Pending JPH0391515A (en) 1989-09-05 1989-09-05 Molding of grafted inorganic substance

Country Status (1)

Country Link
JP (1) JPH0391515A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300216A (en) * 1989-05-16 1990-12-12 Asahi Chem Ind Co Ltd Inorganic graft compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300216A (en) * 1989-05-16 1990-12-12 Asahi Chem Ind Co Ltd Inorganic graft compound

Similar Documents

Publication Publication Date Title
US4075186A (en) Graft copolymers of polybutadiene and substituted polyacrylate
JPH0525296A (en) Prepreg resin made of aromatic bismaleimide
US20050277745A1 (en) Impact resistant, low shrinkage reinforced molding compositions
US3845016A (en) Thermoset molding powders employing glycidyl methacrylate-functional polymers and polymeric polyanhydride crosslinking agents and moldings thereof
US3852236A (en) Homogeneous thermosettable composition of a polyanhydride and a polyepoxide
JPH02247237A (en) Resin having ultra-high heat-resistance and production thereof
EP0206383B1 (en) Bismaleimide compositions
CA1068063A (en) Method of bonding with anaerobic adhesives
US3890282A (en) Method of preparing handleable, moldable resin compositions
JPH0391515A (en) Molding of grafted inorganic substance
US4167539A (en) Styrene-grafted polyanhydride copolymer
US3717557A (en) Polymerizable intermediates containing olefin anhydride copolymer, unsaturated oxirane, and unsaturated anhydride
US3660532A (en) Castable elastomers and their manufacture
USRE31310E (en) Impact resistant vinyl ester resin and process for making same
JPH02300216A (en) Inorganic graft compound
US3733311A (en) Thermoset resin from glycidol and a cyclic anhydride
US3661828A (en) Thermoset molding powders employing glycidyl methacrylate and diphenols
JPH05500377A (en) Curing with biscitraconimide (co)polymers and anionic catalysts
EP0315089A2 (en) Curable compositions containing ethylenically unsaturated monomers, polyarylcyanate ester compositions and catalyst
JPH03140354A (en) Thermoset bismaleimide resin composition
JPH0337213A (en) Diacetylene composition
JPS6069008A (en) Dental composition
JPH02151648A (en) Composition of diacetylene compound
JP3388642B2 (en) Curable resin composition
JPS61227A (en) Reactive resin composition