JPH0391290A - Manufacturing method of flexible printed circuit board - Google Patents

Manufacturing method of flexible printed circuit board

Info

Publication number
JPH0391290A
JPH0391290A JP1224618A JP22461889A JPH0391290A JP H0391290 A JPH0391290 A JP H0391290A JP 1224618 A JP1224618 A JP 1224618A JP 22461889 A JP22461889 A JP 22461889A JP H0391290 A JPH0391290 A JP H0391290A
Authority
JP
Japan
Prior art keywords
metal
circuit board
polyamic acid
printed circuit
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1224618A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Yamamori
義之 山森
Toshio Nakao
中尾 俊夫
Yoshitaka Okugawa
良隆 奥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP1224618A priority Critical patent/JPH0391290A/en
Publication of JPH0391290A publication Critical patent/JPH0391290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve heat resistance, low-temperature resistance, electrical characteristics, mechanical characteristics, wear-resistance property, chemical resistance, radioactive ray resistance, etc., and to prevent curling by applying a specific polyamic aid, curing to a semi-cured state, and then pressing continuously using a metal tube for complete curing. CONSTITUTION:A polyamic acid mixed varnish is prepared by mixing a polyamic acid solution (A) which is obtained by enabling 3,3',4,4'- biphenyltetracarbon acid dianhydride and paraphenirange amine to react each other and a polyamic acid solution (B) which is obtained by enabling pyromellitic dianhydride and 4,4'-diaminodiphenyleter to react each other in the ratio of A/B=55/45-75/25 on a metal foil. This varnish is applied, turned into semi-cured state at a temperature above 80 deg.C and below 250 deg.C and then this semi-cured state varnish is wound on the metal foil 1. Further, this roll- shaped printed circuit board 4 is fixed to a metal frame 2 by a metal bolt 3 and is heated to a temperature above 300 deg.C and below 450 deg.C while applying pressure, thus performing press and heating utilizing the difference in linear expansion coefficients between a metal frame 2, a metal bolt 3 and the printed circuit board for complete curing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリアミック酸溶液を金属箔上に直接流延塗
布し、半硬化状態とし、金属管に圧定し完全硬化させる
ことによって得られる回路板に関するものであり、耐熱
性、耐寒性、電気特性、機械特性、耐摩耗性、耐薬品性
、耐放射線性等が優れた、カールのないフレキシブルプ
リンfに電の製造方法に係るものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is obtained by directly casting a polyamic acid solution onto a metal foil, bringing it to a semi-cured state, and pressing it onto a metal tube to completely cure it. It relates to circuit boards, and relates to a method for producing curl-free flexible printed circuit boards with excellent heat resistance, cold resistance, electrical properties, mechanical properties, abrasion resistance, chemical resistance, radiation resistance, etc. be.

(従来の技術) 従来、フレキシブルプリント回路板はポリイミドフィル
ムと金属箔とを、低温硬化可能な接着剤で貼合わせて製
造されていた。高温硬化の接着剤であると、熱圧着時の
熱履歴により、常温に戻したときに、回路板のカール、
ネジレ、反りなどが発生し、その後のバターニング等の
作業が不可能な為である。ところが低温硬化の接着剤を
使用しても、接着剤はもともと耐熱性に劣るため、回路
板として耐熱性の良いポリイ稟ドフィルム本来の耐熱性
を発揮させることが出来なかった。そこで接着剤を使用
しないでフレキシブルプリント回路板を製造する方法が
検討された。例えば米国特許3.179,634号に示
されている様なピロメリット酸等のテトラカルボン酸と
4,4′−ジアミノジフェニルエーテル等の芳香族第一
級アミンとの重合により得られたポリアミック酸溶液を
銅箔に直接塗布し、次いで加熱する事により溶媒の除去
及びポリアミック酸の縮合反応によるボリイくドの生起
により、ポリイミド銅張板を製造する方法である。とこ
ろがこの方法では、上記の縮合反応が脱水縮合反応であ
る為に体積収縮が発生するが、その前後の分子の再配列
のためと思われる膨張による銅箔とイミド層との応力の
緩和が不十分なため従来からの汎用のボリア多ツク酸で
製造した回路基板は、接着力が弱くさらに、カールや、
シワ、チヂレ等が発生し、この方法でフレキシブルプリ
ント回路板を製造する事は、実際上不可能とされていた
(Prior Art) Conventionally, flexible printed circuit boards have been manufactured by bonding a polyimide film and metal foil together using an adhesive that can be cured at low temperatures. If the adhesive cures at a high temperature, the thermal history during thermocompression bonding may cause the circuit board to curl or curl when returned to room temperature.
This is because twisting, warping, etc. occur, making subsequent work such as buttering impossible. However, even if a low-temperature curing adhesive is used, the heat resistance of the adhesive is inherently poor, so it has not been possible to utilize the inherent heat resistance of polyimide film, which has good heat resistance, as a circuit board. Therefore, a method of manufacturing flexible printed circuit boards without using adhesives was investigated. For example, a polyamic acid solution obtained by polymerizing a tetracarboxylic acid such as pyromellitic acid and an aromatic primary amine such as 4,4'-diaminodiphenyl ether as shown in U.S. Pat. No. 3,179,634. This is a method for producing a polyimide copper clad board by directly coating copper foil on copper foil and then heating to remove the solvent and generate a polyamide through a condensation reaction of polyamic acid. However, in this method, volume shrinkage occurs because the above-mentioned condensation reaction is a dehydration condensation reaction, but the stress between the copper foil and the imide layer is not relaxed due to expansion, which is thought to be due to rearrangement of molecules before and after the shrinkage. Circuit boards manufactured with conventional general-purpose boria polyscinic acid have weak adhesion and are prone to curling and
Wrinkles, jiggling, etc. occur, and it has been considered practically impossible to manufacture flexible printed circuit boards using this method.

(発明が解決しようとする課題) 本発明は、これまでにかかる欠点を克服すべく鋭意検討
した結果、特定のポリアミック酸を塗布し、半硬化状態
まで硬化させ引続き金属管を用いて圧定し、完全硬化す
る方法でフレキシブルプリント回路板を製造する方法で
あり、耐熱性が非常に良好で、カールやシワがなく、し
かも接着性および強度が優れているとの知見を得、本発
明を完成するに至ったものである。
(Problems to be Solved by the Invention) As a result of intensive studies to overcome the above-mentioned drawbacks, the present invention has been developed by coating a specific polyamic acid, curing it to a semi-cured state, and then compressing it using a metal tube. The present invention was completed based on the knowledge that this is a method of manufacturing a flexible printed circuit board by completely curing it, has very good heat resistance, is free from curls and wrinkles, and has excellent adhesion and strength. This is what I came to do.

(課題を解決するための手段) 本発明は、金属箔上に耐熱性樹脂を直接流延塗布してフ
レキシブルプリント回路板を得るに当たって、80℃以
上から250℃以下までの加熱を行い半硬化状態にある
耐熱性樹脂を金属管上に巻取り300″C以上で450
℃以下までの加熱硬化させるが、このときロール状の基
板を円筒形の金属枠に金属ボルトで固定した状態で加熱
する事により、金属枠および金属ボルトと基板との線膨
張係数の違いを利用して加圧加熱し完全硬化させること
を特徴とするフレキシブルプリント回路板の製造方法で
ある。
(Means for Solving the Problems) The present invention provides a semi-cured state by heating from 80°C to 250°C to obtain a flexible printed circuit board by directly casting a heat-resistant resin on metal foil. The heat-resistant resin in
It is cured by heating to below ℃, but at this time, by heating the rolled substrate fixed to a cylindrical metal frame with metal bolts, the difference in linear expansion coefficient between the metal frame and metal bolts and the substrate is utilized. This is a method for manufacturing a flexible printed circuit board, which is characterized by completely curing the printed circuit board by applying pressure and heating.

(作用) 本発明で使用されるフレキシブルプリント回路板の製造
方法は、まず金属箔上に上記のポリアミック酸溶液を直
接流延塗布し80℃〜250℃まで連続的に、または段
階的に0. 5時間以上かけて昇温または保持加熱を行
い、フィルム表面を乾燥させ、金属管上に巻取り、M1
図のような金属枠に固定し350以上450℃以下まで
加圧しながら加熱イミド化することによってフレキシブ
ルプリント回路板を製造する方法である。
(Function) The method for manufacturing the flexible printed circuit board used in the present invention involves first directly casting the above-mentioned polyamic acid solution onto a metal foil, and then continuously or stepwise applying the polyamic acid solution to a temperature of 80°C to 250°C. The temperature is raised or maintained for 5 hours or more to dry the film surface, wound onto a metal tube, and M1
This is a method of manufacturing a flexible printed circuit board by fixing it on a metal frame as shown in the figure and heating and imidizing it while applying pressure to 350 to 450°C.

ポリアミック酸溶液を金属箔上に流延塗布してベース用
フレキシブルプリント回路板を得る方法は、ロータリー
コーター、ナイフコーター ドクターブレード、フロー
コーター等の公知の塗布手段で50〜1000μの均一
な厚さに流延塗布する方法がとられる。
A method for obtaining a base flexible printed circuit board by casting a polyamic acid solution onto a metal foil is to apply a uniform thickness of 50 to 1000μ using known coating means such as a rotary coater, knife coater, doctor blade, or flow coater. A method of casting is used.

次に加熱によりボリアピンク酸の溶媒を除去を行うが、
ボリイビド皮膜が形成される以前に、始めから強い加熱
を行うと、粗面となったりひきつったりするので、加熱
は低温から徐々に高くする様にした方が好ましい。例え
ば、100℃から250℃まで0. 5時間以上かけて
連続的に加熱する。0. 5時間未満であると膜厚にも
よるが、脱溶媒が不十分でフィルム表面が乾ききらない
ことがある。また例えば、100℃で30分、ついで工
50℃で30分、 200℃で30分、 250℃で3
0分、という具合いに段階的に昇温しでもよい。加熱雰
囲気も空気中でさしつかえない場合もあるが減圧下ない
しは不活性ガスを流しながら非酸化性状態下に行う方が
好ましい場合が多い。この様にして形成されたボリイビ
ド皮膜層は一般的に10〜200μである。この基板を
金属管上にロール状に巻き付ける。
Next, the solvent of boria pink acid is removed by heating.
If strong heating is applied from the beginning before the polyibide film is formed, the surface will become rough or twitchy, so it is preferable to heat the film gradually from a low temperature. For example, from 100°C to 250°C, 0. Heat continuously for 5 hours or more. 0. If the time is less than 5 hours, depending on the film thickness, solvent removal may be insufficient and the film surface may not be completely dry. For example, at 100℃ for 30 minutes, then at 50℃ for 30 minutes, at 200℃ for 30 minutes, and at 250℃ for 3 minutes.
The temperature may be raised stepwise such as 0 minutes. Although the heating atmosphere may be in the air in some cases, it is often preferable to conduct the heating under reduced pressure or under non-oxidizing conditions while flowing an inert gas. The polyibide coating layer thus formed typically has a thickness of 10 to 200 microns. This substrate is wound in a roll onto a metal tube.

この金属−七に巻かれたロール状基板は11図に示すよ
うな金属l(固定し300℃以上45O″C以下まで加
圧しながら加熱により溶媒の除去ル状の基6円筒形の金
属枠に金属ボルトで固定した状態で加熱する事により、
金属♂fよび金属ポルずφ基板との線膨張係数の違いを
利用して加圧加熱し完全硬化させる。
This metal-7 roll-shaped substrate is fixed to a cylindrical metal frame as shown in Figure 11, and the solvent is removed by heating while applying pressure from 300°C to 45°C. By heating while fixed with metal bolts,
Utilizing the difference in linear expansion coefficient between the metal ♂f and metal porcelain φ substrates, the material is heated under pressure to be completely cured.

ポリイミド皮膜が形成される以前に、始めから強い加熱
を行うと、粗面となったりひきつったりするので、加熱
は徐々に高くする様にした方が好ましい。例えば、20
0℃から350℃まで0゜5時間以上かけて連続的に加
熱する。0.5時間未満であると膜厚にもよるが、十分
にイミド化が遠戚されない可能性がある。また例えば、
200℃で30分、ついで250℃で30分、300℃
で30分、350℃で30分、という具合いに段階的に
昇温しでもよい。加熱雰囲気も空気中でさしつかえない
場合もあるが減圧下ないしは不活性ガスを流しながら非
酸化性状態下に行う方が好ましい場合が多い。この様に
して形成されたポリイ冨ド皮膜層は一般的に10〜20
0μである。
If strong heating is applied from the beginning before the polyimide film is formed, the surface will become rough or twitchy, so it is preferable to gradually increase the heating temperature. For example, 20
Continuously heat from 0°C to 350°C over 0°5 hours. If the time is less than 0.5 hours, imidization may not be sufficiently carried out, although it depends on the film thickness. For example,
30 minutes at 200℃, then 30 minutes at 250℃, then 300℃
The temperature may be increased stepwise, such as at 350° C. for 30 minutes and at 350° C. for 30 minutes. Although the heating atmosphere may be in the air in some cases, it is often preferable to conduct the heating under reduced pressure or under non-oxidizing conditions while flowing an inert gas. The polyamide film layer formed in this manner generally has a thickness of 10 to 20
It is 0μ.

本発明で用いる耐熱性樹脂は、フィルム形成能があり、
金属箔との密着性があればよいが、つぎに示すようなポ
リイミドが最も目的にかなっている。
The heat-resistant resin used in the present invention has film-forming ability,
It only needs to have good adhesion to the metal foil, but the polyimide shown below is most suitable for the purpose.

すなわち、テトラカルボン酸二無水物成分とジアミン成
分とを、酸成分/アよン成分(モル比)を0.90−1
.00として反応させるに当たり、3.3’、4.4’
−ビフエニルテトラカルボン酸二無水物とパラフェニレ
ンジアミンとを反応させて得られたボリア栗ツク酸溶液
(A)と、ピロメリット酸二無水物と4,4′−ジアミ
ノジフェニルエーテルを反応させて得られたポリアミッ
ク酸溶液(B)とを、A/B=55/45〜75 / 
25の割合で混合攪拌して得られるポリアミック酸混合
溶液を加熱硬化させて得られるボリイくドである。
That is, the tetracarboxylic dianhydride component and the diamine component are mixed at an acid component/amine component (molar ratio) of 0.90-1.
.. When reacting as 00, 3.3', 4.4'
- A boria chestnut acid solution (A) obtained by reacting biphenyltetracarboxylic dianhydride and paraphenylenediamine, and a solution obtained by reacting pyromellitic dianhydride with 4,4'-diaminodiphenyl ether. and the polyamic acid solution (B), A/B=55/45 to 75/
This is a polyamide obtained by heating and curing a polyamic acid mixed solution obtained by mixing and stirring at a ratio of 25%.

本発明に言うテトラカルボン酸二無水物とは、3.3’
、4,4ξビフエニルテトラカルボン酸二無水物と、ピ
ロメリット酸二無水物であるが、この他の酸、例えば2
,3.3’ 、4’−ビフエニルテトラカルボン酸二無
水物、3.3’、4.4’−ベンゾフェノンテトラカル
ボン酸二無水物、3.3’、4.4’−P−テルフェニ
ルテトラカルボン酸二無水物、2,3,6.7−ナフタ
レンテトラカルボン酸二無水物、3.3’、4.4’−
ベンゾフェノンテトラカルボン酸二無水物、3.3’、
4.4’−P−テルフェニルテトラカルボン酸二無水物
、4.4’−ヘキサフルオロイソプロピリデンビス(フ
タル酸無水物)等も併用することが出来る。
The tetracarboxylic dianhydride referred to in the present invention is 3.3'
, 4,4ξbiphenyltetracarboxylic dianhydride, and pyromellitic dianhydride, but other acids such as 2
, 3.3', 4'-biphenyltetracarboxylic dianhydride, 3.3', 4.4'-benzophenonetetracarboxylic dianhydride, 3.3', 4.4'-P-terphenyl Tetracarboxylic dianhydride, 2,3,6.7-naphthalenetetracarboxylic dianhydride, 3.3', 4.4'-
Benzophenone tetracarboxylic dianhydride, 3.3',
4.4'-P-terphenyltetracarboxylic dianhydride, 4.4'-hexafluoroisopropylidene bis (phthalic anhydride), etc. can also be used in combination.

本発明に言うジアミンとは、パラフェニレンジアミンと
4,4′−ジアミノジフェニルエーテルであるがこの他
のア主ン例えば4,4′−ジアミノジフェニルメタン、
3,3′−ジメチルベンジジン、4,42−ジアミノ−
P−テルフェニル、4,4′−シア稟ノーP−クォータ
ーフェニル、2,8−ジアミノジフェニレンオキサイド
なども併用することができる。
The diamines referred to in the present invention include para-phenylene diamine and 4,4'-diaminodiphenyl ether, but other diamines such as 4,4'-diaminodiphenylmethane,
3,3'-dimethylbenzidine, 4,42-diamino-
P-terphenyl, 4,4'-cyano-P-quarterphenyl, 2,8-diaminodiphenylene oxide, etc. can also be used in combination.

テトラカルボン酸二無水物成分とジアミン成分との反応
は酸成分/アミン成分(モル比)0.90〜1.OOで
行うのが好ましく、0.90より低いと重合度が上がら
ず硬化後の皮膜特性が悪い。
The reaction between the tetracarboxylic dianhydride component and the diamine component is carried out at an acid component/amine component (molar ratio) of 0.90 to 1. It is preferable to use OO, and if it is lower than 0.90, the degree of polymerization will not increase and the properties of the film after curing will be poor.

1.00より大きいと、硬化時にガスを発生し、平滑な
皮膜を得ることが出来ない。
If it is larger than 1.00, gas will be generated during curing, making it impossible to obtain a smooth film.

反応は通常、テトラカルボン酸二無水物またはジアミン
類と反応しない有機極性溶媒中で行われる。この有機極
性溶媒は、反応系に対して不活性であり、かつ生成物に
対して溶媒であること以外に、反応成分の少なくとも一
方、好ましくは両者に対して良溶媒でなければならない
。この種の溶媒として代表的なものは、N、N−ジメチ
ルホルムアミド、N、N−ジメチルアセトアミド、ジメ
チルスルホン、ジメチルスルホキシド、N−メチル−2
−ピロリドン等があり、これらの溶媒は単独または組み
合わせて使用される。この他にも溶媒として組み合わせ
て用いられるものとしてベンゼン、ジオキサン、キシレ
ン、トルエン、シクロヘキサン等の非極性溶媒が、原料
の分散媒、反応調節剤あるいは生成物からの揮散調節剤
、皮膜平滑剤等として使用される。
The reaction is usually carried out in an organic polar solvent that does not react with the tetracarboxylic dianhydride or diamines. In addition to being inert to the reaction system and being a solvent for the product, this organic polar solvent must be a good solvent for at least one, preferably both, of the reaction components. Typical solvents of this type include N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfone, dimethylsulfoxide, and N-methyl-2
-pyrrolidone, etc., and these solvents may be used alone or in combination. In addition, non-polar solvents such as benzene, dioxane, xylene, toluene, and cyclohexane are also used in combination as solvents, as dispersion media for raw materials, reaction regulators, volatilization regulators from products, film smoothing agents, etc. used.

反応は一般的に無水の条件下で行うことが好ましい。こ
れはテトラカルボン酸二無水物が水により開環し、不活
性化し、反応を停止させる恐れがあるためである。この
ため仕込原料中の水分も溶媒中の水分も除去する必要が
ある。しかし一方、反応の進行を調節し、樹脂重合度を
コントロールするためにあえて水を添加することも行わ
れる。
It is generally preferred that the reaction be carried out under anhydrous conditions. This is because the tetracarboxylic dianhydride may be ring-opened by water, inactivated, and the reaction may be stopped. Therefore, it is necessary to remove both the moisture in the raw materials and the moisture in the solvent. However, on the other hand, water is intentionally added in order to adjust the progress of the reaction and control the degree of resin polymerization.

また反応は不活性ガス雰囲気中で行われることが好まし
い。これはジアミン類の酸化を防止するためである。不
活性ガスとしては一般的に乾燥窒素ガスが使用される。
Moreover, it is preferable that the reaction is carried out in an inert gas atmosphere. This is to prevent oxidation of diamines. Dry nitrogen gas is generally used as the inert gas.

本発明で用いるポリイよド樹脂の合成反応は以下の様な
方法で行われる。即ち、3,3″、4.4’−ビフエニ
ルテトラカルボン酸二無水物とパラフェニレンジアミン
とを反応させて得られたポリアミック酸(Aとする)と
ピロメリット酸二無水物と4,4′−ジアミノジフェニ
ルエーテルとを反応させて得られたポリアミックl(B
とする)とをA/B=55/45〜75/25の割合で
混合攪拌することによってポリアミツタ酸(Cとする)
を得る方法である。
The synthesis reaction of the polyimide resin used in the present invention is carried out in the following manner. That is, a polyamic acid (referred to as A) obtained by reacting 3,3'',4,4'-biphenyltetracarboxylic dianhydride and paraphenylenediamine, pyromellitic dianhydride, and 4,4 '-Diamino diphenyl ether obtained by reacting polyamic l(B
By mixing and stirring A/B=55/45 to 75/25, polyamitsutaic acid (referred to as C) is obtained.
This is the way to obtain.

Aの比率が上述の割合よりも少ないときにはカールが発
生し、逆に多いときには剛直になりすぎ、柔軟性がなく
なる。
When the ratio of A is less than the above-mentioned ratio, curling occurs, and on the other hand, when it is larger than the above ratio, the material becomes too rigid and loses flexibility.

A、  Bを合成し、また、これらを混合してCを得る
反応温度は0〜100℃であることが望ましい。
The reaction temperature for synthesizing A and B and mixing them to obtain C is preferably 0 to 100°C.

0℃以下だと反応の速度が遅く、100℃以上であると
生成したポリアミック酸の閉環反応および解重合反応が
開始するためである。通常、反応は20℃前後で行われ
る。
This is because if the temperature is below 0°C, the reaction rate will be slow, and if it is above 100°C, the ring-closing reaction and depolymerization reaction of the produced polyamic acid will start. Usually, the reaction is carried out at around 20°C.

本発明により製造されたポリアミック酸生成物11− は、使用するに当たって各種のシランカップリング剤、
ボランカップリング剤、チタネート系カップリング剤1
、アルミニウム系カップリング剤その他キレート系の接
着性・密着性向上剤や各種溶剤、フローエージェントを
加えてもよく、またこれらに加えて通常の酸硬化剤、ア
ミン硬化剤やイ尖ダゾール、3級ア主ン等の硬化促進剤
の少量を加えてもよく、またゴムや低分子エポキシ等の
可とう性状与剤や粘度調整剤、あるいはポリアミドイミ
ド、ポリエーテルイミド、ポリエステルイミド等をブレ
ンドしてもよくタルク、マイカ、石英粉末等の充填剤、
カーボンブラック、フタロシアニンブルー等の着色剤、
テトラブロモフェニルメタン等の難燃剤、二酸化アンチ
モン等の難燃助剤の少量を加えてもよい。
When using the polyamic acid product 11- produced according to the present invention, various silane coupling agents,
Borane coupling agent, titanate coupling agent 1
, aluminum-based coupling agents, chelate-based adhesion/adhesion improvers, various solvents, and flow agents may be added. A small amount of a curing accelerator such as A-based resin may be added, or a flexibility agent or viscosity modifier such as rubber or low-molecular epoxy, or a blend of polyamideimide, polyetherimide, polyesterimide, etc. Fillers such as talc, mica, and quartz powder,
Colorants such as carbon black and phthalocyanine blue,
Small amounts of flame retardants such as tetrabromophenylmethane and flame retardant aids such as antimony dioxide may also be added.

本発明で使用される金属箔は、一般に銅箔が用いられる
が、アル稟箔、ニッケル箔、ステンレス箔、タングステ
ン箔なども用いることが出来る。
The metal foil used in the present invention is generally copper foil, but aluminum foil, nickel foil, stainless steel foil, tungsten foil, etc. can also be used.

金属箔は3〜200μの厚さのものが使用され、表面は
粗面化処理を施されているものが好ましい。
The metal foil used has a thickness of 3 to 200 microns, and preferably has a roughened surface.

12− 本発明で使用される金属枠および金属ボルトは、一般に
鉄製のものが使用されるが、機械的強度に優れ線膨張係
数が比較的小さいステンレス、チタン等の金属製も使用
することもできる。
12- The metal frame and metal bolt used in the present invention are generally made of iron, but metals such as stainless steel and titanium, which have excellent mechanical strength and a relatively small coefficient of linear expansion, can also be used. .

(実施例) 実施例1 温度計、攪拌装置、環流コンデンサーおよび乾燥窒素ガ
ス吹き込み口を備えた4つロセバラブルフラスコに精製
した無水のパラフェニレンジアミン108gをとり、こ
れに無水のN−メチル−2−ピロリドン90重量%とト
ルエン10重量%の混合溶剤を、全仕込原料中の固形分
割合が20重量%になるだけの量を加えて溶解した。乾
燥窒素ガスは反応の準備段階より生成物取り出しまでの
全行程にわたり流しておいた。ついで精製した無水の3
゜3’、4.4’−t’フェニルテトラカルボン酸二無
水物294gを攪はんしながら少量ずつ添加するが発熱
反応であるため、外部水槽に約15℃の冷水を循環させ
てこれを冷却した。添加後、内部温度を20℃に設定し
、5時間攪拌し反応を終了してボリアピンク酸溶液(A
とする)を得た。次に上記と同様の装置及び方法で無水
の4,4′−ジアミノジフェニルエーテル200gと精
製した無水のピロメリット酸二無水物218gを反応さ
せてポリアミック酸(Bとする)を得た。次にAおよび
Bを、モル比がA/B = 60/40になるように混
合攪拌した。得られた生成物は、黄色透明の極めて粘稠
なポリアミック酸溶液であり、N−メチル−2−ピロリ
ドン中0.5重量%溶液の固有粘度は0.81(30℃
)であった。
(Example) Example 1 108 g of purified anhydrous para-phenylenediamine was placed in a four-piece variable flask equipped with a thermometer, a stirrer, a reflux condenser, and a dry nitrogen gas inlet, and anhydrous N-methyl- A mixed solvent of 90% by weight of 2-pyrrolidone and 10% by weight of toluene was added and dissolved in an amount sufficient to make the solid content ratio in the total raw materials 20% by weight. Dry nitrogen gas was allowed to flow throughout the reaction from the preparatory stage to the product removal. Then purified anhydrous 3
゜294 g of 3', 4.4'-t' phenyltetracarboxylic dianhydride was added little by little while stirring, but since it was an exothermic reaction, cold water at about 15°C was circulated in an external water tank. Cooled. After the addition, the internal temperature was set at 20°C and stirred for 5 hours to complete the reaction, and the boriapinic acid solution (A
) was obtained. Next, 200 g of anhydrous 4,4'-diaminodiphenyl ether and 218 g of purified anhydrous pyromellitic dianhydride were reacted using the same apparatus and method as described above to obtain a polyamic acid (referred to as B). Next, A and B were mixed and stirred so that the molar ratio was A/B = 60/40. The product obtained is a transparent yellow, extremely viscous polyamic acid solution with an intrinsic viscosity of 0.81 as a 0.5% by weight solution in N-methyl-2-pyrrolidone (at 30 °C
)Met.

圧延銅箔上にこのポリアミック酸溶液を流延塗布した後
、乾燥器にいれ100℃から200℃まで連続的に1時
間かけて昇温した後、金属管上に巻取り第1図に示す鉄
枠で固定して乾燥器にいれ200℃から380℃まで連
続的に1時間かけて昇温した。
After this polyamic acid solution was cast onto rolled copper foil, it was placed in a dryer and the temperature was raised continuously from 100°C to 200°C over 1 hour, and then wound onto a metal tube to form the iron shown in Figure 1. It was fixed with a frame and placed in a dryer, and the temperature was raised continuously from 200°C to 380°C over 1 hour.

この様にして製造されたフレキシブルプリント回路板は
接着強度が1.2Kg/amで寸法変化率が0. 1%
でまったくカールがなく、銅箔をエツチングした後のフ
ィルムだけの耐熱性は500℃、引っ張り強度は21 
Kg/mm2、伸びは31%と優れた物であった。
The flexible printed circuit board manufactured in this manner has an adhesive strength of 1.2 Kg/am and a dimensional change rate of 0. 1%
There is no curling at all, and the heat resistance of the film alone after etching the copper foil is 500℃, and the tensile strength is 21
Kg/mm2 and elongation were excellent at 31%.

実施例2 実施例1と同様な装置及び方法で、パラフェニレンジア
ミンと3.3’、4.4’−ビフエニルテトラカルボン
酸二無水物からなるポリアミック酸溶液(Aとする)と
、4,4′−ジアミノジフェニルエーテルとピロメリッ
ト酸二無水物からなるボリアミンク酸溶液(Bとする)
を合成した。つぎに、AとBをモル比が70/3.0に
なるように混合攪拌した。
Example 2 Using the same apparatus and method as in Example 1, a polyamic acid solution (referred to as A) consisting of paraphenylenediamine and 3.3',4.4'-biphenyltetracarboxylic dianhydride, 4, Polyamine chloride solution consisting of 4'-diaminodiphenyl ether and pyromellitic dianhydride (referred to as B)
was synthesized. Next, A and B were mixed and stirred so that the molar ratio was 70/3.0.

生成物の固有粘度は0.90であった。The product had an intrinsic viscosity of 0.90.

180℃に加熱した電解銅箔上にこのボリア主ツク酸溶
液を流延塗布した後、乾燥器に入れ、100℃で30分
間、150℃で30分間、200℃で30分間、それぞ
れ加熱した後、金属管上に巻取り第1図に示す鉄枠で固
定して乾燥器にいれ200℃で30分間、250℃で3
0分間、300℃で30分間、380℃で20分間加熱
した。
After casting this boria-based succinic acid solution onto electrolytic copper foil heated to 180°C, it was placed in a dryer and heated at 100°C for 30 minutes, 150°C for 30 minutes, and 200°C for 30 minutes. It was rolled up onto a metal tube, fixed with the iron frame shown in Figure 1, and placed in a dryer at 200°C for 30 minutes and then at 250°C for 30 minutes.
0 minutes, 30 minutes at 300°C, and 20 minutes at 380°C.

この様にして製造されたフレキシブルプリント回路板は
接着強度が1.3Kg/cmで寸法変化率15− が0.1%でまったくカールがなく、銅箔をエツチング
した後のフィルムだけの耐熱性は500℃、引っ張り強
度は20Kg/mm2、伸びは30%と優れた物であっ
た。
The flexible printed circuit board manufactured in this way has an adhesive strength of 1.3 kg/cm, a dimensional change rate of 0.1%, and no curling at all, and the heat resistance of the film alone after etching the copper foil is At 500°C, the tensile strength was 20 kg/mm2 and the elongation was 30%, which were excellent.

比較例1 実施例1と同様な装置及び方法で、実施例1と同様なボ
リアミンク酸溶液を作製し、圧延銅箔上にこのポリアミ
ック酸溶液を流延塗布した後、乾燥器にいれ100℃か
ら380℃まで連続的に2時間かけて昇温した。
Comparative Example 1 A polyamic acid solution similar to that of Example 1 was prepared using the same apparatus and method as that of Example 1, and this polyamic acid solution was cast onto a rolled copper foil, and then placed in a dryer and heated from 100°C. The temperature was raised continuously to 380°C over 2 hours.

この様にして製造されたフレキシブルプリント回路板は
金属枠に固定して加圧しなかったためか接着強度がQ、
4Kg/cmであり、回路板としては不適当であった。
The adhesive strength of the flexible printed circuit board manufactured in this way was Q, probably because it was fixed to the metal frame and no pressure was applied.
The weight was 4 kg/cm, making it unsuitable for use as a circuit board.

比較例2 実施例1と同様な装置及び方法で、バラフェニレンシア
多ンと3.3’、4.4’−ビフエニルテトラカルボン
酸二無水物からなるボリアミンク酸溶液(Aとする)と
、4,4′−ジアミノジフェニルエーテルとピロメリッ
ト酸二無水物からなるボリア多ツク酸16− 溶液(Bとする)を合成した。つぎに、AとBをモル比
が80/20になるように混合攪拌した。
Comparative Example 2 Using the same apparatus and method as in Example 1, a polyamine chloride solution (referred to as A) consisting of rose phenylene thiamine and 3.3',4.4'-biphenyltetracarboxylic dianhydride, A boria polysuccinic acid 16-solution (referred to as B) consisting of 4,4'-diaminodiphenyl ether and pyromellitic dianhydride was synthesized. Next, A and B were mixed and stirred so that the molar ratio was 80/20.

実施例1と同様な方法で圧延箔を用いてフレキシブル回
路板を作成したが、この様にして製造されたフレキシブ
ルプリント回路板は接着強度が0゜5 K g / c
 mであり、剛直で柔軟性がなく、耐折性も悪く、回路
板としては不適当であった。
A flexible printed circuit board was produced using rolled foil in the same manner as in Example 1, but the flexible printed circuit board produced in this way had an adhesive strength of 0°5 Kg/c.
It was rigid, inflexible, and had poor folding durability, making it unsuitable for use as a circuit board.

比較例3 実施例1と同様な装置及び方法で、パラフェニレンジア
ミンと3.3’、4.4’−ビフエニルテトラカルボン
酸二無水物からなるボリアミンク酸溶液(Aとする)と
、4,4′−ジアミノジフェニルエーテルとピロメリッ
ト酸二無水物からなるボリアミンク酸溶液(Bとする)
を合成した。つぎに、AとBをモル比が40/60にな
るように混合攪拌した。
Comparative Example 3 Using the same apparatus and method as in Example 1, a polyamine chloride solution (referred to as A) consisting of paraphenylenediamine and 3.3',4.4'-biphenyltetracarboxylic dianhydride, and 4, Polyamine chloride solution consisting of 4'-diaminodiphenyl ether and pyromellitic dianhydride (referred to as B)
was synthesized. Next, A and B were mixed and stirred so that the molar ratio was 40/60.

実施例1と同様な方法で電解箔を用いてフレキシブル回
路板を作成したが、著しくカールしてしまい回路板とし
ては不適当であった。
A flexible circuit board was made using electrolytic foil in the same manner as in Example 1, but it curled significantly and was unsuitable as a circuit board.

(発明の効果) 本発明の方法により、従来不可能とされていた、接着層
のないフレキシブルプリント回路板を製造することが可
能になり、こうして得られたフレキシブルプリント回路
板は、接着層がないために耐熱性に優れ、カールがない
ために加工性も良く、またフィルムとしての特性も優れ
た回路板であった。
(Effects of the Invention) The method of the present invention makes it possible to manufacture a flexible printed circuit board without an adhesive layer, which was previously considered impossible, and the flexible printed circuit board thus obtained has no adhesive layer. Therefore, the circuit board had excellent heat resistance, was easy to process due to no curling, and had excellent properties as a film.

本発明で得られたフレキシブルプリント回路板は各種の
電気、電子機器用配線基板のみならずフラットモータ、
テープキャリヤー、フロッピーディスクヘッド、高周波
アンテナ、電磁シールド板などにも利用される。
The flexible printed circuit board obtained by the present invention can be used not only for wiring boards for various electrical and electronic devices, but also for flat motors,
It is also used in tape carriers, floppy disk heads, high frequency antennas, electromagnetic shielding plates, etc.

4、図の簡単な説明 金属管上にロール状に巻き付は鉄枠内に挟み込みバラン
スよくボルトで締めあげて使用する。
4. Brief explanation of the figure When used, it is wrapped in a roll on a metal tube, sandwiched within an iron frame, and tightened with bolts for good balance.

Claims (1)

【特許請求の範囲】[Claims] (1)金属箔上に3,3’,4,4’−ビフエニルテト
ラカルボン酸二無水物とパラフェニレンジアミンとを反
応させて得られたポリアミック酸溶液(A)と、ピロメ
リット酸二無水物と4,4’−ジアミノジフェニルエー
テルを反応させて得られたポリアミック酸溶液(B)と
を、A/B=55/45〜75/25の割合で混合して
得られたポリアミック酸混合ワニスを流延塗布し、80
℃以上で250℃以下の温度で半硬化状態とし、次いで
該半硬化状態のものを金属管上に巻取り、さらにその上
から円筒型の金属枠で押え、この金属枠を金属ボルトで
固定した状態で300℃以上で450℃以下の温度に加
熱し、完全硬化させることを特徴とするフレキシブルプ
リント回路板の製造方法。
(1) A polyamic acid solution (A) obtained by reacting 3,3',4,4'-biphenyltetracarboxylic dianhydride and paraphenylenediamine on a metal foil, and pyromellitic dianhydride. A polyamic acid mixed varnish obtained by mixing a polyamic acid solution (B) obtained by reacting a substance with 4,4'-diaminodiphenyl ether in a ratio of A/B = 55/45 to 75/25. Cast coating, 80
It was semi-hardened at a temperature of ℃ or higher and 250℃ or lower, and then the semi-hardened product was wound onto a metal tube, which was further pressed with a cylindrical metal frame, and this metal frame was fixed with metal bolts. A method for producing a flexible printed circuit board, which comprises heating the substrate to a temperature of 300° C. or higher and 450° C. or lower to completely cure the board.
JP1224618A 1989-09-01 1989-09-01 Manufacturing method of flexible printed circuit board Pending JPH0391290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224618A JPH0391290A (en) 1989-09-01 1989-09-01 Manufacturing method of flexible printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224618A JPH0391290A (en) 1989-09-01 1989-09-01 Manufacturing method of flexible printed circuit board

Publications (1)

Publication Number Publication Date
JPH0391290A true JPH0391290A (en) 1991-04-16

Family

ID=16816534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224618A Pending JPH0391290A (en) 1989-09-01 1989-09-01 Manufacturing method of flexible printed circuit board

Country Status (1)

Country Link
JP (1) JPH0391290A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334087A (en) * 1991-05-09 1992-11-20 Sumitomo Bakelite Co Ltd Manufacture of flexible board for printed circuit
JPH04363089A (en) * 1991-05-09 1992-12-15 Sumitomo Bakelite Co Ltd Polyamic acid film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334087A (en) * 1991-05-09 1992-11-20 Sumitomo Bakelite Co Ltd Manufacture of flexible board for printed circuit
JPH04363089A (en) * 1991-05-09 1992-12-15 Sumitomo Bakelite Co Ltd Polyamic acid film

Similar Documents

Publication Publication Date Title
JPH0362988A (en) Flexible printed circuit board and its manufacturing method
JPS63166287A (en) Manufacture of flexible printed circuit substrate
JPS63161023A (en) Production of flexible printed circuit board
JPH02115265A (en) Heat-resistant film and its laminate
JPS62236732A (en) Manufacture of substrate for flexible printed circuit
EP0456515B1 (en) Polyimides and thermosetting resin compositions containing the same
JP2958051B2 (en) Flexible printed circuit board and method of manufacturing the same
JP3001061B2 (en) Heat-resistant film with low linear expansion coefficient and method for producing the same
JPH0391290A (en) Manufacturing method of flexible printed circuit board
JPS6384089A (en) Manufacture of flexible printed circuit substrate
JP2815668B2 (en) Manufacturing method of flexible printed circuit board with cover coat
JP2787955B2 (en) Manufacturing method of flexible printed circuit board
JPH0390348A (en) Manufacture of flexible printed circuit board
JP2730652B2 (en) Protective coating-coated wiring member and its manufacturing method
JPH03291986A (en) Manufacture of board for flexible printed circuit with cover coating
JP2787954B2 (en) Manufacturing method of flexible printed circuit board
JP2804304B2 (en) Manufacturing method of flexible printed circuit board
JP2746643B2 (en) Flexible printed circuit board and method of manufacturing the same
JP2958045B2 (en) Manufacturing method of flexible printed circuit board
JPH03145185A (en) Flexible printed circuit board
JPH03197530A (en) Emulsion polyamic acid resin composition
JPS6222830A (en) Silicon-containing polyimide resin and its production
JP2742103B2 (en) Manufacturing method of flexible printed circuit board
JPH0682892B2 (en) Method for manufacturing flexible printed circuit board
JPH03291988A (en) Manufacture of flexible printed circuit board