JPH0390892A - Accident and fault relapse prevention assisting device - Google Patents
Accident and fault relapse prevention assisting deviceInfo
- Publication number
- JPH0390892A JPH0390892A JP1224469A JP22446989A JPH0390892A JP H0390892 A JPH0390892 A JP H0390892A JP 1224469 A JP1224469 A JP 1224469A JP 22446989 A JP22446989 A JP 22446989A JP H0390892 A JPH0390892 A JP H0390892A
- Authority
- JP
- Japan
- Prior art keywords
- accident
- failure
- cause
- event
- fault
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002265 prevention Effects 0.000 title claims abstract description 9
- 238000004458 analytical method Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims description 21
- 230000009897 systematic effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000001364 causal effect Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は発電プラントや化学プラントのようなプロセス
プラントにおいて事故・故障が発生した場合に、その原
因分析および再発防止対策を提供する事故・故障再発防
止支援装置に関する。[Detailed Description of the Invention] [Objective of the Invention] (Field of Industrial Application) The present invention is designed to analyze the cause and take measures to prevent recurrence when an accident or failure occurs in a process plant such as a power plant or a chemical plant. Regarding the accident/failure recurrence prevention support equipment we provide.
(従来の技術)
一般に、プロセスプラント例えば原子力発電プラントで
は、設計段階から安全性・信頼性の考慮を払い必要な対
策を施しており、運用段階においても日常的に十分な運
転管理がなされている。(Conventional technology) Generally, in process plants, such as nuclear power plants, safety and reliability are taken into consideration from the design stage and necessary measures are taken, and sufficient operation management is carried out on a daily basis even during the operation stage. .
しかしながら、このような万全と考えられる各種対策の
間隙を縫って機器の故障などの異常事象が発生する。こ
のような異常事象に対しては、その原因を究明し、類似
の事象を含めた事故・故障の再発防止対策を講すること
が必要である。わが国の中枢エネルギー源として成長し
つつある原子力発電プラントの場合には、その社会的影
響を考慮すると、事故・故障の再発防止は、極めて重要
な課題と言える。However, abnormal events such as equipment failures occur between various measures that are considered to be perfect. For such abnormal events, it is necessary to investigate the cause and take measures to prevent recurrence of accidents and failures, including similar events. In the case of nuclear power plants, which are growing as Japan's central energy source, preventing the recurrence of accidents and breakdowns is an extremely important issue when considering their social impact.
従来は、プラントで事故・故障が発生すると、関連する
プラントデータの収集・原因の究明・再発防止のための
機械部品の交換判断などは、すべて当該分野の専門家が
過去の経験に基づき行って来た。Traditionally, when an accident or breakdown occurs in a plant, experts in the relevant field would collect related plant data, investigate the cause, and decide to replace mechanical parts to prevent recurrence, all based on past experience. It's here.
(発明が解決しようとする課題)
しかしながら、プラントが大型化し、複雑になるに従い
、プラントを構成する機器の数が増え、故障事例も多岐
に亘るようになってきた。そのため従来のように専門家
が経験に基づいて行ってきた判断のみでは、適切な判断
が次第に困難になってきた。(Problems to be Solved by the Invention) However, as plants have become larger and more complex, the number of devices that make up the plants has increased, and failure cases have become more diverse. For this reason, it has become increasingly difficult to make appropriate judgments based solely on the judgments that experts have traditionally made based on their experience.
本発明は、上記事情に鑑みてなされたもので、その目的
はプラントに発生した異常事象の原因分析を行い、事故
・故障の再発防止のための対策を備えた事故・故障再発
防止支援装置を提供することにある。The present invention has been made in view of the above circumstances, and its purpose is to analyze the causes of abnormal events that occur in plants, and to provide an accident/failure recurrence prevention support system that is equipped with measures to prevent the recurrence of accidents/failures. It is about providing.
[発明の構成コ
(課題を解決するための手段および作用)上記目的を達
成するために、本発明の事故・故障再発防止支援装置は
事故・故障データを格納した事故・故障データベースと
、プロセスプラントからのプラント信号および前記事故
・故障データベースからの情報を入力し、プラントに発
生した事故・故障の原因を分析する原因分析部と、前記
原因分析部からの事故・故障原因および前記事故・故障
データベースからの情報を入力し、再発防止のための対
策を決定する対策決定部と、新たな事故・故障事例を前
記事故・故障データベースに登録する事象登録部と、前
記原因分析部、前記対策決定部および前記事象登録部と
に共通し利用者とのデータ入出力を行うユーザインタフ
ェースとから構成されたことを特徴とするものである。[Configuration of the Invention (Means and Actions for Solving the Problem) In order to achieve the above object, the accident/failure recurrence prevention support device of the present invention has an accident/failure database storing accident/failure data and a process plant. a cause analysis unit that inputs plant signals from the plant and information from the accident/failure database and analyzes the causes of accidents/failures occurring in the plant; and causes of accidents/failures from the cause analysis unit and the accident/failure database. a countermeasure determining unit that inputs information from the computer and determines countermeasures to prevent recurrence; an event registration unit that registers new accident/failure cases in the accident/failure database; the cause analysis unit; and the countermeasure determining unit. and a user interface that is common to the event registration section and that inputs and outputs data with the user.
したがって、本発明の事故・故障再発防止支援装置によ
ると、プラントに発生した異常事象の原因分析を行い、
事故・故障の再発防止のための対策を提供することがで
きる。Therefore, according to the accident/failure recurrence prevention support device of the present invention, the causes of abnormal events occurring in the plant are analyzed,
It is possible to provide measures to prevent recurrence of accidents and breakdowns.
(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例の機能構成図であり、原子力
発電プラントを例にとり以下説明する。FIG. 1 is a functional configuration diagram of an embodiment of the present invention, which will be explained below by taking a nuclear power plant as an example.
第1図に示すように、ユーザインタフェース2(例えば
CRT・キーボード)を介し、ユーザ1からの指示を受
け、事故・故障発生時の原子力発電プラントからのプロ
セス信号(例えば、パラメータのトレンド・機器動作状
態の変化など)は、原因分析部4に入力される。原因分
析部4では事故・故障データベース3に格納されたデー
タに基づき、事故・故障原因の分析を行う。事故・故障
データベース3には、例えば、事故・故障を原因とする
事象の因果関係を論理的に表現したフォールトッリー、
事故・故障時の対策方法・手順、事象の重要度、事象に
関連したプラントプロセスの変化(トレンド・事象シー
ケンス)、事象に関連したプラント系統図・制御回路ブ
ロック図などが格納されている。フォールトッリーは過
去に発生した事故・故障事例を基に作成するが、かって
経験していない事象への適応を実現するために、経験ベ
ースの事象以外にプラントの設計情報(例えば機器の構
成・接続関係・インタロックなど)から得られる“設計
ベース事象”も含むものとする。As shown in Figure 1, instructions are received from a user 1 via a user interface 2 (e.g. CRT/keyboard), and process signals (e.g. parameter trends, equipment operation) from the nuclear power plant at the time of an accident or failure are received. (changes in status, etc.) are input to the cause analysis section 4. The cause analysis unit 4 analyzes the causes of accidents and failures based on the data stored in the accident and failure database 3. The accident/failure database 3 includes, for example, a fault tree that logically expresses the causal relationship of events caused by accidents/failures,
It stores information such as countermeasure methods and procedures in the event of an accident or failure, the importance of the event, changes in plant processes related to the event (trends and event sequences), plant system diagrams and control circuit block diagrams related to the event, etc. Faultry is created based on accidents and failure cases that have occurred in the past, but in order to realize adaptation to events that have never been experienced before, in addition to experience-based events, it also uses plant design information (e.g. equipment configuration, etc.). It also includes "design-based events" obtained from connection relationships, interlocks, etc.).
原因分析部4では事故・故障データベース3内の事象の
因果関係を記述したフォールトッリーを検索し、プラン
トプロセス信号と同一の事象の連鎖を探索する。入力し
たプラントプロセス信号と同一の事象の連鎖を探索され
れば、事故・故障の原因が判明したことになり、この場
合は対策決定部5において、事故・故障データベース3
内に格納されている原因に対応した対策(例えば、再発
防止を含めた関連部品の交換・保守手順の改良など)を
選択し、ユーザインタフェース2を介しユーザ1に提供
する。The cause analysis unit 4 searches for a fault tree that describes the causal relationship of events in the accident/failure database 3, and searches for a chain of events that is the same as the plant process signal. If the same chain of events as the input plant process signal is searched, the cause of the accident/failure has been found, and in this case, the countermeasure determining unit 5
A countermeasure (for example, replacement of related parts, improvement of maintenance procedures, etc., including prevention of recurrence) corresponding to the cause stored in the user interface 2 is selected and provided to the user 1 via the user interface 2.
プラントプロセス信号と同一の事象の連鎖が、事故・故
障データベース3内に見出せない場合は、類似事例の検
索を行う。類似事例の検索は、プラントプロセス信号の
連鎖と良く似た事象を事故・故障データベース3から探
すことが目的であり、例えば以下に説明する方法で行う
。すなわち、事故・故障データベース3内に格納されて
いるフォルトツリーは、最上位事象(例えば原子炉スク
ラム・主要ポンプ停止など)の発生に至る各種事象の因
果関係をANDloR等の論理素子を用いて表現したも
のである。従ってフォルトツリー上で最下位(事象の流
れから言えば最上流)に相当する事象は、最上位事象を
生起させる原因事象と言える。一般に、フォルトツリー
上で最上位事象を生起させる事象シーケンスは複数存在
し、各事象シーケンスは因果関係に基づく複数の事象に
よって構成される。If the same chain of events as the plant process signal cannot be found in the accident/failure database 3, a search for similar cases is performed. The purpose of searching for similar cases is to search the accident/failure database 3 for events that are very similar to the chain of plant process signals, and is performed, for example, by the method described below. In other words, the fault tree stored in the accident/failure database 3 expresses the causal relationship of various events leading to the occurrence of the top-level event (for example, reactor scram, main pump stoppage, etc.) using logical elements such as ANDloR. This is what I did. Therefore, the event corresponding to the lowest level on the fault tree (the highest level in terms of the flow of events) can be said to be the causative event that causes the highest level event to occur. Generally, there are multiple event sequences that cause the highest event on a fault tree, and each event sequence is composed of multiple events based on causal relationships.
ところで、最上位事象(T)を生起させる可能性のある
事象シーケンスをSji (1:1.N 但しN:T
内に含まれる事象シーケンスの総数)とし、Stを構成
する事象をEt+7とする。即ち、5ji=E目1傘E
ti2・・・ENm・・・E jiM(但しMis口
を構成する事象の総数)各Etiiは類似度を計算する
ための得点G11mを有する。さらに、Elimが生起
したか否かを示す論理変数LIiI11を考える。即ち
、Llim =1 (Ejimが生起した場合)=O
(Elimが生起しなかった場合)以上の準備の基で類
似度を次のように計算する。By the way, the event sequence that may cause the top event (T) is Sji (1:1.N, where N:T
(the total number of event sequences included in St), and the events that make up St are Et+7. That is, 5ji=E eye 1 umbrella E
ti2...ENm...E jiM (however, the total number of events forming the Mis mouth) Each Etii has a score G11m for calculating the similarity. Furthermore, consider a logical variable LIiI11 that indicates whether Elim has occurred. That is, Llim = 1 (if Ejim occurs) = O
(If Elim does not occur) Based on the above preparations, the degree of similarity is calculated as follows.
データベース内のすべてのSliを対象に、ある与えら
れたプラントプロセス信号列との比較を行い、各Sti
との類似度pt+を以下のように計算する。All Slis in the database are compared with a given plant process signal sequence, and each Sli is
The degree of similarity pt+ with is calculated as follows.
P 【1=ΣGjii傘Lfim/Σ G t im
(m=l、M)以上の計算で、Ptiの最大値を
与える事象シーケンス (1)が最も類似していると判
断する。上記計算式で明らかなように、O≦PI+≦1
となり、P ti= 1では、完全に一致していること
になる。P [1=ΣGjii umbrella Lfim/ΣG t im
(m=l, M) Based on the above calculations, it is determined that the event sequence (1) that gives the maximum value of Pti is the most similar. As is clear from the above calculation formula, O≦PI+≦1
Therefore, when P ti = 1, there is a complete match.
現実的な事象シーケンスは、プラント状況に応じ種々変
化するため、一般的には、Q<Pji<1となるため、
類似と判断するためのしきい値εを設け、P目の最大値
≧ε の時に類似事例と判断する。Since the realistic event sequence varies depending on the plant situation, generally Q<Pji<1,
A threshold value ε is set for determining similarity, and a case is determined to be similar when the maximum value of the Pth case is ≧ε.
原因分析部4において、類似事例有と判断された場合は
、関連した再発防止のための対策を提供する。類似事例
がないと判断された場合は、ユーザインタフェース2を
介しユーザ1に関連した事象シーケンスなどの情報を提
供し、当該分野の専門家に分析を委ね、分析結果を事象
登録部6を介し事故◆故障データベース3に登録する。If the cause analysis unit 4 determines that there is a similar case, it provides related countermeasures to prevent recurrence. If it is determined that there are no similar cases, information such as the event sequence related to the user 1 is provided via the user interface 2, the analysis is entrusted to an expert in the field, and the analysis results are sent to the event registration unit 6 to report the accident. ◆Register in the failure database 3.
事象登録部6では、専門家の分析した事象シーケンスを
新たな事故・故障事例としてデータベース3内にフォー
ルトフリーの形式で登録する。The event registration unit 6 registers the event sequence analyzed by the expert in the database 3 in a fault-free format as a new accident/failure case.
次に、本発明による処理の流れを第2図を参照して説明
する。Next, the flow of processing according to the present invention will be explained with reference to FIG.
プラントの事故・故障発生時に事故・故障情報(プロセ
ス信号)が原因分析部4に入力されると(第1ステツプ
11)、原因分析部4では事故・故障データベース3内
の事象の因果関係を記述したフォールトッリーを検索し
、プラントプロセス信号と同一の事象の連鎖を探索する
(第2ステツプ12)。入力したプラントプロセス信号
と同一の事象の連鎖を探索されれば(第3ステツプ13
)、事故・故障の原因が判明したことになり、対策決定
部5において、事故・故障データベース3内に格納され
ている原因に対応した対策を選択し、ユーザインタフェ
ース2を介しユーザ1に提供する(第6ステツプ16)
。プラントプロセス信号と同一の事象の連鎖が、事故・
故障データベース3内に見出せない場合は、類似事例の
検索を行う(第4ステツプ14)。原因分析部4におい
て、類似事例有と判断された場合は(第5ステツプ15
)、関連した再発防止のための対策を提供する(第6ス
テツプ16)。類似事例がないと判断された場合は、ユ
ーザインタフェース2を介しユーザ1に関連した事象シ
ーケンスなどの情報を提供しく第7ステツプ17)、当
該分野の専門家に分析を委ね、分析結果を事象登録部6
を介し事故・故障データベース3内にフォールトフリー
の形式で登録する(第8ステツプ18)。When accident/failure information (process signals) is input to the cause analysis unit 4 when an accident/failure occurs in a plant (first step 11), the cause analysis unit 4 describes the cause-and-effect relationship of events in the accident/failure database 3. A search is made for a chain of events that is the same as the plant process signal (second step 12). If the same chain of events as the input plant process signal is searched (third step 13
), the cause of the accident/failure has been determined, and the countermeasure determining unit 5 selects a countermeasure corresponding to the cause stored in the accident/failure database 3 and provides it to the user 1 via the user interface 2. (6th step 16)
. The same chain of events as a plant process signal can lead to accidents and
If it cannot be found in the failure database 3, a similar case is searched (fourth step 14). If the cause analysis unit 4 determines that there is a similar case (fifth step 15)
), and provide related measures to prevent recurrence (Sixth Step 16). If it is determined that there are no similar cases, provide information such as the event sequence related to the user 1 via the user interface 2. Seventh step 17) Entrust the analysis to an expert in the field and register the analysis results as an event. Part 6
is registered in the accident/failure database 3 in a fault-free format (eighth step 18).
[発明の効果]
以上説明したように、本発明によれば、専門家が経験に
基づき行ってきた事故・故障の原因分析・再発防止対策
の判断が体系的かつ網羅的に行えるという利点があり、
プロセスプラントにおける事故・故障の再発防止に効果
を奏する。[Effects of the Invention] As explained above, the present invention has the advantage that experts can systematically and comprehensively analyze the causes of accidents and failures and determine measures to prevent recurrence based on their experience. ,
Effective in preventing recurrence of accidents and breakdowns in process plants.
第1図は本発明の一実施例の機能構成図、第2図は本発
明の処理手順を示した図である。
1・・・ユーザ
2・・・ユーザインタフェース
3・・・事故・故障データベース
4・・・原因分析部
5・・・対策決定部
6・・・事象登録部
(8733)代理人 弁理士 猪 股 祥 晃(ほか
1名)
第
図FIG. 1 is a functional configuration diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing a processing procedure of the present invention. 1... User 2... User interface 3... Accident/failure database 4... Cause analysis section 5... Countermeasure determination section 6... Event registration section (8733) Agent Patent attorney Sho Inomata Akira (and others)
1 person) Figure
Claims (1)
、プロセスプラントからのプラント信号および前記事故
・故障データベースからの情報を入力し、プラントに発
生した事故・故障の原因を分析する原因分析部と、前記
原因分析部からの事故・故障原因および前記事故・故障
データベースからの情報を入力し、再発防止のための対
策を決定する対策決定部と、新たな事故・故障事例を前
記事故、故障データベースに登録する事象登録部と、前
記原因分析部、前記対策決定部および前記事象登録部と
に共通し利用者とのデータ入出力を行うユーザインタフ
ェースとから構成されたことを特徴とする事故・故障再
発防止支援装置an accident/failure database storing accident/failure data; a cause analysis unit that inputs plant signals from the process plant and information from the accident/failure database to analyze causes of accidents/failures occurring in the plant; A countermeasure determination unit inputs accident/failure causes from the cause analysis department and information from the accident/failure database to determine measures to prevent recurrence, and registers new accident/failure cases in the accident/failure database. and a user interface that is common to the cause analysis section, the countermeasure determination section, and the event registration section and that inputs and outputs data with a user. Prevention support device
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1224469A JPH0390892A (en) | 1989-09-01 | 1989-09-01 | Accident and fault relapse prevention assisting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1224469A JPH0390892A (en) | 1989-09-01 | 1989-09-01 | Accident and fault relapse prevention assisting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0390892A true JPH0390892A (en) | 1991-04-16 |
Family
ID=16814284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1224469A Pending JPH0390892A (en) | 1989-09-01 | 1989-09-01 | Accident and fault relapse prevention assisting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0390892A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030063068A (en) * | 2002-01-22 | 2003-07-28 | 미츠비시 쥬고교 가부시키가이샤 | Nuclear emergency countermeasure system and nuclear emergency countermeasure training system |
CN104627385A (en) * | 2014-12-01 | 2015-05-20 | 中国民航大学 | Process visualization decision making diagnostic system and inference control method of process visualization decision making diagnostic system |
WO2016088180A1 (en) * | 2014-12-01 | 2016-06-09 | 東京電力ホールディングス株式会社 | Facility maintenance and management method |
JP2021189982A (en) * | 2020-06-04 | 2021-12-13 | 株式会社日立製作所 | Failure countermeasure proposal system, failure countermeasure proposal method, and failure countermeasure proposal program |
-
1989
- 1989-09-01 JP JP1224469A patent/JPH0390892A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030063068A (en) * | 2002-01-22 | 2003-07-28 | 미츠비시 쥬고교 가부시키가이샤 | Nuclear emergency countermeasure system and nuclear emergency countermeasure training system |
CN104627385A (en) * | 2014-12-01 | 2015-05-20 | 中国民航大学 | Process visualization decision making diagnostic system and inference control method of process visualization decision making diagnostic system |
WO2016088180A1 (en) * | 2014-12-01 | 2016-06-09 | 東京電力ホールディングス株式会社 | Facility maintenance and management method |
JPWO2016088180A1 (en) * | 2014-12-01 | 2017-04-27 | 東京電力ホールディングス株式会社 | Equipment maintenance management method |
JP2021189982A (en) * | 2020-06-04 | 2021-12-13 | 株式会社日立製作所 | Failure countermeasure proposal system, failure countermeasure proposal method, and failure countermeasure proposal program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1254402B1 (en) | Method and system for analyzing continuous parameter data for diagnostics and repairs | |
US6988011B2 (en) | Method and system for analyzing operational parameter data for diagnostics and repairs | |
ERIK | Human reliability assessment in context | |
US6650949B1 (en) | Method and system for sorting incident log data from a plurality of machines | |
CA2387929C (en) | Method and apparatus for diagnosing difficult to diagnose faults in a complex system | |
US6732063B2 (en) | Method of identifying abnormal behavior in a fleet of vehicles | |
Macwan et al. | A methodology for modeling operator errors of commission in probabilistic risk assessment | |
US20080114574A1 (en) | Complex event evaluation systems and methods | |
CA2101927A1 (en) | Knowledge based machine initiated maintenance system | |
CN109669844A (en) | Equipment obstacle management method, apparatus, equipment and storage medium | |
JPS6014303A (en) | Knowledge-based diagnosis system | |
Thompson et al. | The application of ATHEANA: a technique for human error analysis | |
WO2020216718A1 (en) | System for action determination | |
Weiss | Predicting telecommunication equipment failures from sequences of network alarms | |
CN118154186A (en) | Method, device and server for determining abnormal operation of transaction service | |
AU2023203898B2 (en) | Method For Managing Plant, Plant Design Device, And Plant Management Device | |
JPH0390892A (en) | Accident and fault relapse prevention assisting device | |
JPS62216008A (en) | Plant information processing system | |
JPH04136795A (en) | Abnormality diagnosis method | |
Behrens et al. | ZEX/spl minus/an expert system for ZEUS | |
JPH04359640A (en) | Method of diagnosing abnormal cause | |
Sabri et al. | Analytical modeling of nuclear power station operator reliability | |
EP4231104A1 (en) | Interactive proposal system for determining a set of operational parameters for a machine tool, control system for a machine tool, machine tool and method for determining a set of operational parameters | |
JPH0524521B2 (en) | ||
Kim et al. | Estimating recovery failure probabilities in off-normal situations from full-scope simulator data |