JPH03903A - Nozzle diaphragm of axial-flow turbine - Google Patents

Nozzle diaphragm of axial-flow turbine

Info

Publication number
JPH03903A
JPH03903A JP13136089A JP13136089A JPH03903A JP H03903 A JPH03903 A JP H03903A JP 13136089 A JP13136089 A JP 13136089A JP 13136089 A JP13136089 A JP 13136089A JP H03903 A JPH03903 A JP H03903A
Authority
JP
Japan
Prior art keywords
nozzle diaphragm
nozzle
guide vanes
flow
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13136089A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamazaki
義昭 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13136089A priority Critical patent/JPH03903A/en
Publication of JPH03903A publication Critical patent/JPH03903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To decrease the loss due to mixing the flow near a wall surface with a main flow by forming the inlet angle of plural guide vanes disposed in the peripheral direction so that they may be directed toward the center of a flow passage from the wall surface side of a nozzle diaphragm and change from the peripheral direction to the axial direction. CONSTITUTION:In the outer race 3 and the inner race 4 of a nozzle diaphragm, respective guide vanes 7, 8 are disposed on the upstream side of a nozzle blade 5, whereas the respective guide vanes 7, 8 are formed into a blade shape and are arranged at the inner race 4 and the outer race 3 at regular intervals in the peripheral direction, and an outlet portion is positioned parallel to a turbine rotating shaft. The inlet angle of respective guide vanes 7, 8 is formed so that they may be directed toward the center of a flow passage from the wall surface side of the nozzle diaphragm and change from the peripheral direction to the axial direction. It is thus possible to change the flow with large turning angle near the wall surface in the axial direction by the respective guide vanes, decreasing the loss due to mixing with a main flow.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軸流タービンのノズル・ダイヤフラムの改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in nozzle diaphragms for axial flow turbines.

〔従来の技術〕[Conventional technology]

軸流タービンでは、高温高圧の流体を低温低圧の状態ま
で、有効、かつ、安全に動翼に導くためにノズル・ダイ
ヤフラムが設けられる。第7図はノズル・ダイヤフラム
部の概略の構造を示す。ノズル・ダイヤフラム1は、ケ
ーシング2の所定位置に支持されたノズル・ダイヤフラ
ム外軸3と、その内周側に配置されたノズル・ダイヤフ
ラムの内輪4と、このノズル・ダイヤフラム内外@3゜
4の間に挾持され、放射状に配置された複数枚のノズル
翼5とによって構成され、作動流体は矢印で示すように
、ノズル・ダイヤフラム1のノズル翼5の間で形成され
る流路を通過して動翼6に導かれ、ロータ7を回転させ
る。
In an axial flow turbine, a nozzle diaphragm is provided to effectively and safely guide high temperature, high pressure fluid to a low temperature, low pressure state to the rotor blades. FIG. 7 shows a schematic structure of the nozzle diaphragm section. The nozzle diaphragm 1 consists of a nozzle diaphragm outer shaft 3 supported at a predetermined position in a casing 2, an inner ring 4 of the nozzle diaphragm arranged on the inner circumference side, and an inner and outer space of the nozzle diaphragm @3°4. The working fluid passes through the flow path formed between the nozzle blades 5 of the nozzle diaphragm 1, as shown by the arrow, and is moved. It is guided by the blades 6 and rotates the rotor 7.

ところで、一般の軸流タービンでは5動X6の出口にお
ける流体の絶対流出方向は軸方向に流れるように設計さ
れている。しかし、流路の内外壁面の近傍では、ノズル
翼5、および、動翼6の翼列流路での二次流れ損失等に
より動翼6の出口における相対流出速度が低下して、第
8図に破線で示すように周方向成分が大きい旋回流とな
る。
By the way, a general axial flow turbine is designed so that the absolute outflow direction of the fluid at the outlet of the five-stroke X6 is axial. However, near the inner and outer wall surfaces of the flow path, the relative outflow velocity at the outlet of the rotor blade 6 decreases due to secondary flow loss in the nozzle blade 5 and the blade cascade flow path of the rotor blade 6, as shown in FIG. As shown by the broken line, the flow becomes a swirling flow with a large circumferential component.

この流出方向、および、速度の大きく異った壁近傍と流
路中央部の流れは下流に移動するに従って混合され、混
合損失を発生させる。特に、第7図に示すようにノズル
・ダイヤフラム外輪3の内周壁面が流体の流れの方向に
沿って急激に広がっている場合は、次段落のノズル翼入
口までの距離が長くなり、混合損失が大きくなる。この
ため、時にはノズル翼5に流入する前に壁面ではく離を
生じることもある。
The flows near the wall and in the center of the channel, which have greatly different speeds in the outflow direction, are mixed as they move downstream, causing a mixing loss. In particular, if the inner circumferential wall surface of the nozzle diaphragm outer ring 3 widens rapidly along the direction of fluid flow as shown in Figure 7, the distance to the inlet of the nozzle blade in the next stage becomes long, resulting in a mixing loss. becomes larger. For this reason, sometimes peeling occurs on the wall surface before flowing into the nozzle blade 5.

そこで、従来では、例えば、実開昭55−1.5430
1号公報のように、ノズル翼の根元部、および、先端部
前方にそれぞれ個々に仕切板を、没け、これらの仕切板
の後縁部から生成されろうず流れを利用して混合の改善
が行なわれている。
Therefore, in the past, for example,
As in Publication No. 1, partition plates are sunk individually at the root and in front of the tips of the nozzle blades, and the flow of wax generated from the trailing edges of these partition plates is used to improve mixing. is being carried out.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

」二記従来技術により、壁面におけるはく離は防ぐこと
ができるが、混合損失を低減するための考慮は未だ不十
分であった。
Although peeling on the wall surface can be prevented by the prior art described in Section 2, consideration has not been given to reducing mixing loss.

本発明は、ノズル・ダイヤフラム内外輪の壁面近傍での
混合損失を低減し、タービンの性能を向」;させること
を目的とする。
An object of the present invention is to reduce the mixing loss near the wall surfaces of the inner and outer rings of the nozzle diaphragm and to improve the performance of the turbine.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、壁面近傍の旋回流を案内羽
根により主流の流れと同じ方向に流れるようにしたもの
である。
In order to achieve the above object, the swirling flow near the wall surface is made to flow in the same direction as the main flow using guide vanes.

〔作用〕[Effect]

第8図に示すように、動翼6出口における流体の相対流
出速度は、主流のUに対してノズルダイヤフラム内外輪
の壁面近傍ではU′と遅くなっている。しかし、絶対流
出速度は主流のVに対して壁面近傍ではV′と主流より
もむしろ速くなっている。
As shown in FIG. 8, the relative outflow velocity of the fluid at the outlet of the rotor blade 6 is slower than U in the mainstream to U' near the wall surfaces of the inner and outer rings of the nozzle diaphragm. However, the absolute outflow velocity is V' in the vicinity of the wall compared to V in the mainstream, which is faster than in the mainstream.

従って、壁面近傍の流れを案内羽根により主流の流れと
同じ方向に転向させると、両方の流れの運動量の差が小
さくなり、運動量の変化によって発生する混合損失を小
さくすることができる。
Therefore, if the flow near the wall surface is diverted in the same direction as the mainstream flow by the guide vane, the difference in momentum between the two flows will be reduced, and the mixing loss caused by the change in momentum can be reduced.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第4図を参照し
て説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 4.

この実施例に係る軸流タービンでは、ノズル・ダイヤフ
ラム外輪3.および、ノズル・ダイヤフラム内輪4に、
ノズルX5の上流に位置してそれぞれ案内羽根7,8を
設置する。この場合、案内羽根7,8は、第2図に示す
ように、翼壁形状となっており、ノズル・ダイヤフラム
内輪4、および、ノズル・ダイヤフラム外輪3に、周方
向等間隔に、それぞれ、配置すると共に、案内羽根出口
部をタービン回転軸とほぼ平行に設置する。また、案内
羽根7,8の出口部高さは、第9図に示すδが一側に急
変している部分までであり、通常前段動翼6の翼弦長の
1〜1.5 倍である。第3図は案内羽根8の斜視図で
あり、入口端は根元から先端になるにつれて後退してい
る。
In the axial flow turbine according to this embodiment, the nozzle diaphragm outer ring 3. and the nozzle diaphragm inner ring 4,
Guide vanes 7 and 8 are installed upstream of the nozzle X5, respectively. In this case, the guide vanes 7 and 8 have a wing wall shape, as shown in FIG. At the same time, the guide vane outlet portion is installed approximately parallel to the turbine rotation axis. Furthermore, the height of the exit portion of the guide vanes 7 and 8 is up to the point where δ shown in FIG. be. FIG. 3 is a perspective view of the guide vane 8, in which the inlet end recedes from the root to the tip.

すなわち、第3図のIV−IV断面を根元側から順に示
したのが第4図の(a)〜(e)である。−番根元で案
内羽根8の入口角αが一番大きくなっており、先端にな
るにつれて、第9図のδに対応して小さくなっている。
That is, FIG. 4 (a) to (e) show the IV-IV cross section of FIG. 3 in order from the root side. - The entrance angle α of the guide vane 8 is the largest at the root, and becomes smaller toward the tip, corresponding to δ in FIG.

次に、本発明の詳細な説明する。翼壁断面の案内羽根7
,8がノズル・ダイヤフラム外輪3、および、ノズル・
ダイヤフラム内輪4に取付けられると、第9図に示すよ
うに、壁面近傍で大きな旋回角(−δ)をもった流れは
案内羽根7,8で効率よく軸方向に転向される。これに
より、主流と同方向の流れとなるため、主流との混合が
減り。
Next, the present invention will be explained in detail. Guide vane 7 of wing wall cross section
, 8 are the nozzle diaphragm outer ring 3 and the nozzle diaphragm outer ring 3;
When attached to the diaphragm inner ring 4, as shown in FIG. 9, the flow having a large turning angle (-δ) near the wall surface is efficiently diverted in the axial direction by the guide vanes 7 and 8. This causes the flow to flow in the same direction as the mainstream, reducing mixing with the mainstream.

壁面近傍での損失が減る。しかも、案内羽根7゜8は根
元側から先端側に位置が変るにつれて案内羽根の入口端
は下流側に移って案内羽根の翼弦長が小さくなるために
、案内羽根による損失は必要以上には大きくならない。
Loss near the wall is reduced. Moreover, as the position of the guide vane 7°8 changes from the root side to the tip side, the inlet end of the guide vane moves to the downstream side and the chord length of the guide vane becomes smaller, so the loss due to the guide vane is less than necessary. It doesn't get bigger.

本発明の変形例として、その断面形状が第5図および第
6図に示すように、鋼板で製作した案内羽根、さらには
案内羽根の入口角のみが変り、入口端は下流側に変化し
ない場合もあり、何れも本発明の意図する効果を達成す
ることができる。
As a modification of the present invention, as shown in FIGS. 5 and 6, a guide vane is made of a steel plate, and only the inlet angle of the guide vane changes, but the inlet end does not change toward the downstream side. Both methods can achieve the intended effects of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軸流タービンのノズル・ダイヤフラム
外軸およびノズル・ダイヤフラム内輪に周方向等間隔に
翼形断面の案内羽根を取りつけ、壁面近傍の旋回流が主
流と同じタービン回転軸方向に転向し、主流との混合が
減り、タービンの性能を向上することができる。
According to the present invention, guide vanes having an airfoil cross section are attached to the outer shaft of the nozzle diaphragm and the inner ring of the nozzle diaphragm of an axial flow turbine at equal intervals in the circumferential direction, so that the swirling flow near the wall surface is diverted in the same direction as the turbine rotation axis as the main stream. However, mixing with the main stream is reduced and turbine performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は第1図の
■−■矢視図、第3図は案内羽根の斜視図、第4図は第
3図のIV−TV矢視断面の長さ方向断面形状の変化を
示す断面図、第5図および第6図は変形例の案内羽根の
断面図、第7図は軸流タービンの一般例の断面図、第8
図は動翼出口の流れの状態を表わす速度三角形図、第9
図は動翼出口の絶対流出角の半径方向分布図である。 第2 図 第3図 ■ 第4図 +(L+ +a+ +(,1 +d+ el (ユ) (八) (従) 第6図 (■) (f、+ fQ) 第7図 第8図 図
Fig. 1 is a cross-sectional view of one embodiment of the present invention, Fig. 2 is a view from the ■-■ arrow in Fig. 1, Fig. 3 is a perspective view of the guide vane, and Fig. 4 is the IV-TV shown in Fig. 3. 5 and 6 are cross-sectional views of guide vanes of modified examples. FIG. 7 is a cross-sectional view of a general example of an axial flow turbine.
The figure is a velocity triangle diagram representing the flow state at the rotor blade outlet.
The figure is a radial distribution diagram of the absolute outflow angle at the rotor blade outlet. Figure 2 Figure 3 ■ Figure 4 +(L+ +a+ +(,1 +d+ el (YU) (8) (Sub) Figure 6 (■) (f, + fQ) Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、一対のノズル・ダイヤフラム内輪および外輪により
挾持されたノズル翼の根元部および先端部前方にそれぞ
れ個々に案内羽根を設けた軸流タービンノズルダイヤフ
ラムにおいて、 周方向に複数枚配置された前記案内羽根の入口角を前記
ノズル・ダイヤフラムの壁面側から流路の中央に向つて
、周方向から軸方向に変るように形成したことを特徴と
する軸流タービンのノズル・ダイヤフラム。 2、前記案内羽根の出口角が軸方向に形成されているこ
とを特徴とする請求項1に記載の軸流タービンのノズル
・ダイヤフラム。 3、前記案内羽根の入口端が前記ノズル・ダイヤフラム
の壁面側から前記流路の中央に向つて、前記流路の下流
側に後退していることを特徴とする請求項1に記載の軸
流タービンのノズル・ダイヤフラム。
[Claims] 1. A pair of nozzle diaphragms In an axial flow turbine nozzle diaphragm in which guide vanes are individually provided at the root and forward ends of nozzle blades held by an inner ring and an outer ring, a plurality of guide vanes are provided in the circumferential direction. A nozzle diaphragm for an axial flow turbine, characterized in that the inlet angle of the arranged guide vanes is formed so as to change from the circumferential direction to the axial direction from the wall side of the nozzle diaphragm toward the center of the flow path. 2. The nozzle diaphragm for an axial flow turbine according to claim 1, wherein the exit angle of the guide vane is formed in the axial direction. 3. The axial flow according to claim 1, wherein the inlet end of the guide vane is retreated from the wall side of the nozzle diaphragm toward the center of the flow path toward the downstream side of the flow path. Turbine nozzle diaphragm.
JP13136089A 1989-05-26 1989-05-26 Nozzle diaphragm of axial-flow turbine Pending JPH03903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13136089A JPH03903A (en) 1989-05-26 1989-05-26 Nozzle diaphragm of axial-flow turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13136089A JPH03903A (en) 1989-05-26 1989-05-26 Nozzle diaphragm of axial-flow turbine

Publications (1)

Publication Number Publication Date
JPH03903A true JPH03903A (en) 1991-01-07

Family

ID=15056107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13136089A Pending JPH03903A (en) 1989-05-26 1989-05-26 Nozzle diaphragm of axial-flow turbine

Country Status (1)

Country Link
JP (1) JPH03903A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825001A (en) * 2009-03-03 2010-09-08 株式会社日立制作所 Axial flow turbine
JP2014074404A (en) * 2012-10-02 2014-04-24 General Electric Co <Ge> Turbine intrusion loss reduction system
CN106256994A (en) * 2015-06-18 2016-12-28 三菱日立电力系统株式会社 Axial-flow turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825001A (en) * 2009-03-03 2010-09-08 株式会社日立制作所 Axial flow turbine
JP2014074404A (en) * 2012-10-02 2014-04-24 General Electric Co <Ge> Turbine intrusion loss reduction system
CN106256994A (en) * 2015-06-18 2016-12-28 三菱日立电力系统株式会社 Axial-flow turbine
CN106256994B (en) * 2015-06-18 2020-08-25 三菱日立电力系统株式会社 Axial flow turbine

Similar Documents

Publication Publication Date Title
US3861826A (en) Cascade diffuser having thin, straight vanes
JP3578769B2 (en) Flow orientation assembly for the compression region of rotating machinery
US4502837A (en) Multi stage centrifugal impeller
JP5911677B2 (en) Turbine assembly having end wall profiled airfoils and selective clocking
US7665964B2 (en) Turbine
US4013377A (en) Intermediate transition annulus for a two shaft gas turbine engine
US5342170A (en) Axial-flow turbine
US4653976A (en) Method of compressing a fluid flow in a multi stage centrifugal impeller
JP2007120494A (en) Variable geometry inlet guide vane
US2915279A (en) Cooling of turbine blades
JP3779360B2 (en) Supersonic distributor for turbomachine inlet stage.
JP2002213202A (en) Gas turbine blade
EP3106615B1 (en) Axial turbine
JPH03903A (en) Nozzle diaphragm of axial-flow turbine
CN114423926B (en) Multi-spherical hub for a variable pitch blade turbine
KR20030063369A (en) Axial flow turbo compressor
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
JPH07332007A (en) Turbine stationary blade
JPH0738641Y2 (en) Multi-stage axial turbine
JP3570438B2 (en) Method of reducing secondary flow in cascade and its airfoil
JPH01318790A (en) Flashing vane of multistage pump
JPH0874603A (en) Fluid extraction mechanism for compressor
JPH0615878B2 (en) High-speed centrifugal compressor diffuser
JPH11200802A (en) Moving blade for turbomachinery
JP2000179303A (en) Axial-flow turbine nozzle and axial-flow turbine