JPH0390134A - X-ray ct device - Google Patents

X-ray ct device

Info

Publication number
JPH0390134A
JPH0390134A JP1224440A JP22444089A JPH0390134A JP H0390134 A JPH0390134 A JP H0390134A JP 1224440 A JP1224440 A JP 1224440A JP 22444089 A JP22444089 A JP 22444089A JP H0390134 A JPH0390134 A JP H0390134A
Authority
JP
Japan
Prior art keywords
detector
ray
detectors
output
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1224440A
Other languages
Japanese (ja)
Other versions
JPH0716485B2 (en
Inventor
Shoji Kamata
蒲田 省司
Shigeru Izumi
出海 滋
Masahiro Kondo
正弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1224440A priority Critical patent/JPH0716485B2/en
Publication of JPH0390134A publication Critical patent/JPH0390134A/en
Publication of JPH0716485B2 publication Critical patent/JPH0716485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To improve radiation measuring accuracy of an X-ray CT detector by providing a plurality of X-ray detectors with at least one detector formed into structure shielded for X-rays. CONSTITUTION:An accelerated electron by an accelerator 1 collides against a target 2, and an X-ray beam 12 is irradiated from the target 2. A sample 14 is placed on a CT scanner 4 and translation rotation-scanned, and permeability of an X-ray is measured from all the directions by a detector arranged behind a collimator 5. The detector is such that solid or liquid scintillator 6 is combined with a photomultiplier or photoelectric transfer element 7, and its output is input to an AD converter 9 through an amplifier 8 and fetched to a computer 10. Of the detectors, the one is shielded for the X-rays to serve as a base line monitor 13. In the base line monitor 13, a fluctuation amount, in which a base line of a detector output essentially being 0, when radiation is not incident upon the detector, is changed by fluctuation and electromagnetic noise or the like of a power supply and the base line caused by a high voltage power supply 3 or the like of the accelerator 1, is measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はX線コンビューテイツドトモグラフイ装置の検
出器における、測定精度の向上のための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for improving measurement accuracy in a detector of an X-ray computed tomography device.

〔従来の技術〕[Conventional technology]

従来の検出器は、特開昭55−65174号公報に記載
のように、放射線検出器を釦等のしやへい材で梱包し、
側部に放射線入射用スリットを開けた構造において、放
射線が入射するスリット上に設けた放射線検出器以外に
一個以上の放射線検出器を前記スリット上の放射線検出
器の上方、および、下方の少なくとも一個所に設は補償
用検出器とし、補償用検出器はスリット以外のしゃへい
材部分を透過した放射線を検出するようになっていた。
Conventional detectors, as described in Japanese Patent Application Laid-open No. 55-65174, package the radiation detector with a flexible material such as a button.
In a structure in which a slit for radiation incidence is opened on the side, one or more radiation detectors other than the radiation detector provided on the slit through which radiation enters are installed above and at least one below the radiation detector on the slit. A compensating detector was installed in each location, and the compensating detector was designed to detect radiation that passed through the shielding material portion other than the slit.

スリットを通って入射した放射線を測定する放射線検出
器の出力にはスリット以外のしゃへい材部分を通過して
放射線検出器に検出される成分がバックグランド成分と
して加わっている。このバックグランド成分のみを補償
用検出器で測定し、スリットから入射した放射線の測定
精度を高めるようになっていた。
The output of a radiation detector that measures radiation incident through the slit includes a background component that is detected by the radiation detector after passing through a shielding material portion other than the slit. Only this background component was measured by a compensation detector to improve the measurement accuracy of the radiation incident through the slit.

マタ、XwACTの検出器ハ、特開昭62−72328
号公報に記載のように、試料を透過したX線を測定する
検出器以外にX線源のX線強度の変動をモニタする検出
器を設け、各X線検出器の出力をX線源モニタ検出器の
出力で補正し、X線強度の変動の影響を除去するように
なっていた。
Mata, XwACT detector, JP-A-62-72328
As described in the publication, in addition to the detector that measures the X-rays that have passed through the sample, a detector that monitors fluctuations in the X-ray intensity of the X-ray source is installed, and the output of each X-ray detector is monitored as an X-ray source monitor. It was designed to be corrected using the output of the detector to remove the effects of fluctuations in X-ray intensity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、検出器の電源の変動やアースラインの
変動、および、電磁ノイズにより検出器のベースライン
が変動することについて考慮がされておらず、検出器の
測定精度が低下する問題があった。検出器のベースライ
ンとは、検出器に入射するX線を完全にじゃへいした場
合の検出器出力のことで、本来ならば、OVででなけれ
ばならない。しかし、高エネルギのX線を測定する場合
、電子線加速器の高圧電源等に起因する電源電圧の変動
やアースラインの変動、および、電磁ノイズによりベー
スラインが変動する。この変動は電源の安定化やノイズ
フィルタの設置、および、電磁しやへいによりかなり除
去することができるが完全に除去することは不可能であ
る。このベースラインの変動の影響は検出器で測定して
いる放射線の測定値の誤差として現われ、最終的には断
層像の劣化をもたらした。
The above-mentioned conventional technology does not take into account fluctuations in the detector's power supply, fluctuations in the ground line, or fluctuations in the baseline of the detector due to electromagnetic noise, resulting in a problem in which the measurement accuracy of the detector decreases. Ta. The baseline of a detector is the output of the detector when X-rays incident on the detector are completely blocked, and originally it should be at OV. However, when measuring high-energy X-rays, the baseline fluctuates due to fluctuations in the power supply voltage caused by the high-voltage power supply of the electron beam accelerator, fluctuations in the ground line, and electromagnetic noise. These fluctuations can be significantly eliminated by stabilizing the power supply, installing noise filters, and electromagnetic shielding, but it is impossible to eliminate them completely. The influence of this baseline fluctuation appeared as an error in the radiation measurement value measured by the detector, and ultimately caused deterioration of the tomographic image.

本発明はX@CTの検出器の放射線測定精度を向上する
ことを目的としており、さらに、断層像の画質向上を目
的とする。
The present invention aims to improve the radiation measurement accuracy of an X@CT detector, and further aims to improve the image quality of tomographic images.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、xmcrの検出器を複数個
設け、そのうち、少なくとも、−個の検出器は放射線に
対してしやへいすることにより検出器のベースラインの
変動のみを測定し、他の放射線測定用検出器の測定値に
対し、ベースラインの測定値を補正するようにしたもの
である。
In order to achieve the above objective, a plurality of xmcr detectors are provided, at least - detectors are shielded against radiation to measure only the baseline fluctuations of the detectors, and the others are The baseline measurement value is corrected for the measurement value of the radiation measurement detector.

また、放射線検出器として、シンチレータと光電変換素
子を組み合わせたものを用いる場合、ベースラインを測
定するために、ベースライン検出器として光電変換素子
のみをしや光して用いた。
Further, when a combination of a scintillator and a photoelectric conversion element is used as a radiation detector, only the photoelectric conversion element is used as a baseline detector in a dim state in order to measure the baseline.

〔作用〕[Effect]

放射線検出器を複数個設は各検出器はX線源からのX線
を測定するようにXI源に向けて配置するが、放射線検
出器のうち、少なくとも、−個はX線に対してしやへい
する。放射線検出器としてシンチレータと光電変換素子
を組み合わせたものを用いる場合、放射線に対してしや
へいをする検出器はシンチレータを省いた光電変換素子
のみを光に対してしや光したものを用いることにより、
放射線に対するじゃへいを簡単にすることができる。全
ての検出器の出力はデータ収集装置に収集される。ここ
で、まず、全検出器をX線に対してしやへいした状態で
全検出器の測定値を複数回収集する。このとき、本来な
らばX線をしやへいしているために全検出器の出力が0
となるはずであるが実際にはわずかな出力が得られ、か
つ、出力が変動する。各検出器出力について同時刻に収
集した、もともと放射線に対してしやへいしである検出
器出力と、本来はX線源に向いている検出器の出力を比
較する。複数回収集した測定値において前述のように比
較することにより元々放射線に対してしやへいしである
検出器とxsvA定用検出用検出器の相関を求めておく
。XIIA測定用検出器のしゃへいを取り除いた通常の
測定において、X線測定用検出器の測定値から、放射線
をしやへいした検出器の出力を先に求めた各検出器との
相関に基づいて補正した値を引くことで真のX線測定値
を求めることができる。
When multiple radiation detectors are installed, each detector is placed facing the XI source so as to measure the X-rays from the X-ray source, but at least - of the radiation detectors are placed facing the I'm sorry. When using a combination of a scintillator and a photoelectric conversion element as a radiation detector, the detector that is resistant to radiation should be one that does not include a scintillator and only has a photoelectric conversion element that is resistant to light. According to
Radiation protection can be made easier. The output of all detectors is collected into a data acquisition device. Here, first, measurement values of all the detectors are collected multiple times with all the detectors shielded from X-rays. At this time, the output of all detectors should be 0 because the X-rays are being suppressed.
However, in reality, only a small amount of output is obtained, and the output fluctuates. For each detector output, the output of the detector that is originally resistant to radiation and the output of the detector that is originally oriented toward the X-ray source, collected at the same time, is compared. By comparing the measured values collected a plurality of times as described above, the correlation between the detector, which is originally resistant to radiation, and the xsvA regular detection detector is determined. In normal measurements where the shielding of the XIIA measurement detector is removed, the output of the radiation-shielded detector is calculated from the measured values of the X-ray measurement detector based on the correlation with each detector previously determined. By subtracting the corrected value, the true X-ray measurement value can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図においてターゲット2には加速器1により加速された
電子が衝突し、ターゲット2からX線ビーム12が照射
される。CTスキャナ4に試料14を載せ試料14を並
進・回転走査し、あらゆる方向からX線の透過率を測定
する。測定はコリメータ5の後ろに配置した検出器によ
り行なう、検出器は固体、あるいは、液体のシンチレー
タ6と光電子増倍管、あるいは、フォトダイオード等の
光電変換素子7を組み合わせたもので、光電変換素子7
の出力はプリアンプ8を通してAD変換器9に入り、計
算機10に取り込まれる。検出器のうち、少なくとも、
−個はX線に対してしやへいし、ベースラインモニタ1
3とする。ベースラインモニタ13は、検出器に放射線
が入射しないとき本来Oであるべき検出器出力のベース
ラインが加速器1の高圧電源3等に起因する電源やアー
スラインの変動、および、電磁ノイズ等により変動する
変動量を測定する。ベースラインモニタ13の出力も他
の検出器と同様にプリアンプ8を通してAD変換器9に
入り計算機10に収集される。計算機10は各検出器出
力をベースラインモニタ13の出力に基づいて補正した
後、CT断層像を求める像の再構成演算をし、デイスプ
レー11に断層像を表示する。ベースライン変動の補正
は、まず、コリメータ5の前面にX線のしゃへい材を設
け、スリットから入射するX線をしやへいする1次に、
加速器1により電子を加速しターゲット2に衝突させX
線を発生させる。X線ビーム12はコリメータ前面に設
置したじゃへい材により、しやへいされコリメータ5の
スリットを通らないため、検出器でX線は検出されない
。このときの各検出器出力とベースラインモニタ13の
出力を計算機10に収集する。このデータ収集はベース
ラインモニタ13を含む全検出器の出力を同時刻にサン
プリングする9各検出器共、X線は到達していないため
各検出器出力は0となるはずであるが、先に述べたよう
に、加速器高圧電源3等の影響により出力がOとならず
あるレベルをもち、かつ、その出力レベルが変動する。
An embodiment of the present invention will be described below with reference to FIG. 1st
In the figure, electrons accelerated by an accelerator 1 collide with a target 2, and the target 2 is irradiated with an X-ray beam 12. A sample 14 is placed on the CT scanner 4, and the sample 14 is scanned in translation and rotation, and the transmittance of X-rays is measured from all directions. Measurement is performed by a detector placed behind the collimator 5. The detector is a combination of a solid or liquid scintillator 6 and a photomultiplier tube, or a photoelectric conversion element 7 such as a photodiode. 7
The output passes through the preamplifier 8, enters the AD converter 9, and is taken into the computer 10. Of the detectors, at least
- Individuals are X-ray resistant and baseline monitor 1
Set it to 3. In the baseline monitor 13, the baseline of the detector output, which should be O when no radiation is incident on the detector, changes due to fluctuations in the power supply and ground line caused by the high-voltage power supply 3 of the accelerator 1, electromagnetic noise, etc. Measure the amount of variation. The output of the baseline monitor 13 also passes through the preamplifier 8 to the AD converter 9 and is collected by the computer 10 in the same way as other detectors. The computer 10 corrects each detector output based on the output of the baseline monitor 13, performs image reconstruction calculations to obtain a CT tomographic image, and displays the tomographic image on the display 11. To correct baseline fluctuations, first, an X-ray shielding material is installed in front of the collimator 5, and a primary shielding material is used to shield the X-rays incident from the slit.
Accelerator 1 accelerates electrons and causes them to collide with target 2
Generate a line. Since the X-ray beam 12 is shielded by a barrier placed in front of the collimator and does not pass through the slit of the collimator 5, the X-ray beam is not detected by the detector. The outputs of each detector and the output of the baseline monitor 13 at this time are collected in the computer 10. This data collection samples the output of all detectors including the baseline monitor 13 at the same time.Since the X-rays have not reached each of the nine detectors, the output of each detector should be 0. As described above, due to the influence of the accelerator high-voltage power supply 3 and the like, the output does not become O but has a certain level, and the output level fluctuates.

このベースラインレベルの変動はランダムに起こるが、
ある時間変動を観測すれば変動は一定範囲内に現われる
。従って、全検出器同時サンプリングを数千回から数百
回実行し、各検出器のベースラインレベルの変動を記録
する。このベースラインの変動は電源電圧の変動等に起
因して発生するため、全検出器で同様に変動する。つま
り、ベースラインレベルの上、下は全検出器で同時に変
動する。ただし、各検出器とプリアンプの感度は必ずし
も全検出器向等ではないため、各検出器のベースライン
レベルの変動の幅は等しくない、そこで全検出器同時に
サンプリングしたデータについてベースラインモニタ1
3の値と各検出器の値の相関を調べる。すると、第2図
に示すように、ベースラインモニタ13の値と各検出器
の出力の間に比例関係がみられ、n番目の検出器出力を
yn、ベースラインモニタの値をXとすると、 V n = a a X             ・
・・(1)の関係が求まるaalnはn番目の検出器の
出力とベースラインモニタ13の出力の間の比例係数で
ある。a、lを全検出器について求めた後は、コリメー
タ5の前面に設けたしやへい材を撤去する。
This baseline level fluctuation occurs randomly, but
If we observe a certain time variation, the variation will appear within a certain range. Therefore, simultaneous sampling of all detectors is performed thousands to hundreds of times and the fluctuations in the baseline level of each detector are recorded. This baseline fluctuation occurs due to fluctuations in the power supply voltage, etc., and therefore fluctuates in the same way in all detectors. In other words, the upper and lower baseline levels fluctuate simultaneously in all detectors. However, since the sensitivity of each detector and preamplifier is not necessarily the same for all detectors, the width of the baseline level fluctuation of each detector is not equal. Therefore, the baseline monitor 1
Examine the correlation between the value of 3 and the value of each detector. Then, as shown in FIG. 2, there is a proportional relationship between the value of the baseline monitor 13 and the output of each detector, and if the output of the nth detector is yn and the value of the baseline monitor is X, then V n = a a X ・
...Aaln, from which the relationship (1) is found, is the proportionality coefficient between the output of the n-th detector and the output of the baseline monitor 13. After determining a and l for all detectors, the shingle provided in front of the collimator 5 is removed.

通常のX線の測定では、各検出器出力がプリアンプ8、
および、AD変換器9を通って計算機10に収集される
と同時にベースラインモニタ13の出力もプリアンプ8
とAD変換器9を通って計算機10に収集される。計算
機10では各検出器出力からベースラインモニタ13の
出力と(1)式より求まる各検出器のベースラインレベ
ルを引くことにより補正し、真の検出器出力を求めるこ
とができる。前記で求めた真の測定値を基に、像再構成
演算をすることにより、鮮明な断層像を求めることがで
きる。
In normal X-ray measurements, the output of each detector is
The output of the baseline monitor 13 is also collected by the preamplifier 8 through the AD converter 9 and collected by the computer 10.
and are collected by the computer 10 through the AD converter 9. The calculator 10 corrects the output of each detector by subtracting the output of the baseline monitor 13 and the baseline level of each detector determined from equation (1), thereby obtaining the true detector output. A clear tomographic image can be obtained by performing image reconstruction calculations based on the true measurement values obtained above.

本発明の他の実施例を第3図に示す。第3図と第1図の
違いはベースラインモニタ13の構成が光電変換素子7
のみとしたことである。ベースラインモニタ13はX線
を検出せずにベースラインの変動のみを測定するために
、シンチレータ6を取りつけない光電変換素子7のみの
構成でも十分であり、安価に構成することができる。こ
のとき、ベースラインモニタ13のじや光は他の検出器
と同様に十分気をつけなければならない。ベースライン
変動の補正方法は第一の実施例と全く同様であるゆ 本実施例によれば、X線CTのX線透過データの測定値
からベースライン変動の影響を除去することで、81!
定値の精度を向上させる効果があり、断層像の画質が向
上する効果がある。
Another embodiment of the invention is shown in FIG. The difference between FIG. 3 and FIG. 1 is that the baseline monitor 13 has a photoelectric conversion element 7.
This was done only for the time being. Since the baseline monitor 13 measures only baseline fluctuations without detecting X-rays, a configuration including only the photoelectric conversion element 7 without the scintillator 6 is sufficient and can be configured at low cost. At this time, as with other detectors, sufficient care must be taken regarding the intensity and light of the baseline monitor 13. The method for correcting baseline fluctuations is exactly the same as the first embodiment.According to this embodiment, by removing the influence of baseline fluctuations from the measured values of X-ray transmission data of X-ray CT, 81!
This has the effect of improving the accuracy of fixed values, and has the effect of improving the image quality of tomographic images.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、X線CTのX線透過データからベース
ラインの変動の影響を除去できるので。
According to the present invention, the influence of baseline fluctuations can be removed from X-ray CT data.

X線透過データの精度を向上できる効果がある。This has the effect of improving the accuracy of X-ray transmission data.

これにより、断層像の画質を向上させ従来に比べてX線
透過率が高い厚物材の断層撮影が可能となる。
This improves the image quality of tomographic images and enables tomography of thick materials with higher X-ray transmittance than in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図はベースラ
インモニタと各検出器の相関図、第3図は本発明の他の
実施例の説明図である。 1・・・電子線加速器、2・・・ターゲット、3・・・
加速器高圧電源、4・・・CTスキャナ、5・・・コリ
メータ、6・・・シンチレータ、7・・・光電変換素子
、8・・・プリ第1 図 // 0 第 図 ベースラインモニア上刃 第3図
FIG. 1 is an explanatory diagram of one embodiment of the present invention, FIG. 2 is a correlation diagram between a baseline monitor and each detector, and FIG. 3 is an explanatory diagram of another embodiment of the present invention. 1... Electron beam accelerator, 2... Target, 3...
Accelerator high-voltage power supply, 4...CT scanner, 5...Collimator, 6...Scintillator, 7...Photoelectric conversion element, 8...Pre-Figure 1//0 Figure Baseline Monia Upper Blade No. Figure 3

Claims (1)

【特許請求の範囲】 1、電子線加速器とターゲットとより成るX線源と試料
、または、前記X線源と検出器を並進・回転走査させる
CTスキャナとX線検出器と検出器の出力を収集し像再
構成演算をする計算機で構成されるX線CT装置におい
て、 前記X線検出器を複数個設け少なくとも一個はX線に、
常に、しやへいされた構造となることを特徴とするX線
CT装置。 2、請求項1に記載のX線CT装置において、検出器と
してシンチレータと光電変換素子とを組み合わせたもの
を複数個設け、そのうち少なくとも一個は前記光電変換
素子のみとすることを特徴とするX線CT装置。 3、請求項1に記載のX線CT装置において、前記X線
検出器の全てにX線が入射しない場合の常時しやへいさ
れた検出器出力と、他の前記X線検出器の相関を比例係
数として求め、X線透過データ測定の際に各検出器出力
から、常時、しやへいされた検出器出力と前記相関で求
めた比例係数の積を引くことを特徴とするX線CT装置
。 4、請求項1に記載のX線CT装置において、線源にγ
線や中性子線を用いたことを特徴とするX線CT装置。
[Claims] 1. An X-ray source consisting of an electron beam accelerator and a target and a sample, or a CT scanner, an X-ray detector, and the output of the detector that scans the X-ray source and detector in translation and rotation. In an X-ray CT apparatus comprising a computer that collects images and performs image reconstruction calculations, a plurality of the X-ray detectors are provided, and at least one detects X-rays;
An X-ray CT device characterized by always having a shrunken structure. 2. The X-ray CT apparatus according to claim 1, wherein a plurality of combinations of scintillators and photoelectric conversion elements are provided as detectors, and at least one of the detectors includes only the photoelectric conversion element. CT device. 3. In the X-ray CT apparatus according to claim 1, the correlation between the constantly suppressed detector output when no X-rays are incident on all of the X-ray detectors and the other X-ray detectors is calculated. An X-ray CT apparatus characterized in that the product of the suppressed detector output and the proportionality coefficient obtained by the correlation is always subtracted from each detector output when measuring X-ray transmission data. . 4. In the X-ray CT apparatus according to claim 1, the radiation source includes γ.
An X-ray CT device characterized by using radiation or neutron beams.
JP1224440A 1989-09-01 1989-09-01 X-ray CT system Expired - Fee Related JPH0716485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224440A JPH0716485B2 (en) 1989-09-01 1989-09-01 X-ray CT system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224440A JPH0716485B2 (en) 1989-09-01 1989-09-01 X-ray CT system

Publications (2)

Publication Number Publication Date
JPH0390134A true JPH0390134A (en) 1991-04-16
JPH0716485B2 JPH0716485B2 (en) 1995-03-01

Family

ID=16813806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224440A Expired - Fee Related JPH0716485B2 (en) 1989-09-01 1989-09-01 X-ray CT system

Country Status (1)

Country Link
JP (1) JPH0716485B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105112A (en) * 2005-10-11 2007-04-26 Hitachi Medical Corp X-ray imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105112A (en) * 2005-10-11 2007-04-26 Hitachi Medical Corp X-ray imaging apparatus

Also Published As

Publication number Publication date
JPH0716485B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
US5181234A (en) X-ray backscatter detection system
EP2462431B1 (en) Method and system for extracting spectroscopic information from images and waveforms
EP0793804B1 (en) Detecting explosives or other contraband by employing transmitted and scattered x-rays
US20080260094A1 (en) Method and Apparatus for Spectral Computed Tomography
JP5911585B2 (en) Radioactivity analyzer
EP1875276B1 (en) Energy distribution reconstruction in ct
JP2001004560A (en) X-ray inspecting device
Ponchut Characterization of X-ray area detectors for synchrotron beamlines
CA1134066A (en) Device for determining internal body structures by means of scattered radiation
WO2015146691A1 (en) X-ray imaging apparatus
JPH11352233A (en) Nuclear medicine diagnostic equipment
GB2217009A (en) Detection system for explosives
CA2083064C (en) X-ray backscatter detection system
JPH02147883A (en) Multichannel radiation detecting device
US4250387A (en) Medical radiographic apparatus and method
US5489781A (en) Dual modality detector
CN1422414A (en) Method for operating a radiation examination device
JPH0390134A (en) X-ray ct device
JPH09211133A (en) Radiation monitor
JP2998362B2 (en) Measurement data correction method
JPH0866388A (en) Radiation image pick-up device
JP3333940B2 (en) Apparatus and method for calibrating apparatus for measuring layer thickness using X-rays
US20240374232A1 (en) Method for detecting and handling detector pixels with intermittent behavior for a small pixelated photon counting computed tomography (ct) system
US9841390B2 (en) Identification of materials from a hydrogen to electron ratio
EP4462160A1 (en) Photon counting computed tomography scanner and update method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees