JPH0389727A - Communication satellite - Google Patents

Communication satellite

Info

Publication number
JPH0389727A
JPH0389727A JP22680089A JP22680089A JPH0389727A JP H0389727 A JPH0389727 A JP H0389727A JP 22680089 A JP22680089 A JP 22680089A JP 22680089 A JP22680089 A JP 22680089A JP H0389727 A JPH0389727 A JP H0389727A
Authority
JP
Japan
Prior art keywords
earth
transmission
earth station
information
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22680089A
Other languages
Japanese (ja)
Inventor
Akira Okamoto
章 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22680089A priority Critical patent/JPH0389727A/en
Publication of JPH0389727A publication Critical patent/JPH0389727A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain inexpensive communication through the use of one satellite moving round the earth by providing a reception part receiving a transmission signal designating a transfer destination earth station from an earth station, an accumulation part storing received information and a transmission part transmitting stored information from the sky above the transfer destination earth station. CONSTITUTION:The satellite 1 moving round the earth consists of the reception part 2 receiving a transmission wave from an earth station on the earth and demodulating transmission data, the accumulation part 3 which temporarily stores transmission data, the transmission part 4 transmitting accumulated data to the designated earth station from the sky over a designated position and a control part 5 controlling the reception part 2, the accumulation part 3 and the transmission part 4 in accordance with request information on data transmission and reception of the earth station. Thus, simultaneous informations are eliminated compared to a geostationary communication satellite, and bidirectional information permitting transmission delay time can inexpensively be transmitted by temporarily accumulating reception information and transmitting it from the sky over the designated point.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は通信衛星に関し、特に地球周回型の人工衛星を
利用して地球上の離れた2点間で双方向通信を行う際に
主にデータ通信の蓄積機能を有する通信衛星に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to communication satellites, and is particularly useful when performing two-way communication between two distant points on the earth using an earth-orbiting artificial satellite. This invention relates to a communication satellite having a data communication storage function.

〔従来の技術〕[Conventional technology]

通常、通信衛星の大多数は赤道上空36,000Kmに
ある静止軌道を利用した静止型通信衛星がほとんどであ
った。静止衛星は、地表の各地点から受信した電波を衛
星から見通せる地表の他の地点に中継することにより、
−度に多数の地点に、電波伝搬遅延時間差のみで情報を
伝達でき、リアルタイムで双方向通信情報の交換を行う
ことができる。また、従来、資源探査衛星、科学衛星等
の地球周回型衛星は主として人工衛星で取得したデータ
を地上に送信する一方向データ通信がほとんどであった
Normally, the majority of communication satellites are geostationary communication satellites that utilize geostationary orbits located 36,000 km above the equator. Geostationary satellites relay radio waves received from each point on the earth's surface to other points on the earth's surface that can be seen from the satellite.
- Information can be transmitted to a large number of points at once using only radio wave propagation delay time differences, and bidirectional communication information can be exchanged in real time. Furthermore, conventionally, earth-orbiting satellites such as resource exploration satellites and scientific satellites have mostly performed one-way data communication in which data acquired by the satellite is transmitted to the ground.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来の主として静止型通信衛星
は取扱う通信のすべてが同報性、双方向性を必要としな
い通信も多く、打上げ費用の高価な静止型通信衛星をこ
のような通信に使用するのは不経済な問題がある。また
、静止型通信衛星で地球全体に通信サービスするために
は、最低3個の衛星を必要とする。
However, many of the communications handled by the conventional geostationary communication satellites mentioned above do not require broadcasting or bidirectionality, and it is difficult to use geostationary communication satellites, which are expensive to launch, for such communications. has an uneconomical problem. Furthermore, in order to provide communication services to the entire earth using geostationary communication satellites, at least three satellites are required.

本発明の目的は1個の地球周回型人工衛星を使用してデ
ータ通信の同報性を要せず、データ伝達の遅延を許容で
きる通信に好適であり、かつ、極めて安価な通信衛星を
提供することにある。
An object of the present invention is to provide a communication satellite that uses one earth-orbiting artificial satellite, is suitable for communication that does not require broadcasting of data communication, can tolerate delays in data transmission, and is extremely inexpensive. It's about doing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の通信衛星は通信衛星本体が低高度または、中高
度の極軌道を周回し、前記通信衛星本体内に地球上のあ
る地点の地球局から転送先地球局を指定した送信信号を
受信する受信部と、受信した情報を記憶する蓄積部と、
この記憶された情報を転送先地球局の上空で送信する送
信部と、前記受信部で復調された制御情報を入力して前
記蓄積部および前記送信部を制御する制御部とを有する
In the communication satellite of the present invention, the communication satellite body orbits in a polar orbit at a low altitude or a medium altitude, and the communication satellite body receives a transmission signal specifying a transfer destination earth station from an earth station at a certain point on the earth. a receiving unit; a storage unit that stores received information;
It has a transmitting section that transmits the stored information in the air above the destination earth station, and a control section that inputs the control information demodulated by the receiving section and controls the storage section and the transmitting section.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の第2図は本実施例の地上と
衛星間のデータ授受を説明する模式図、第3図、第4図
は本実施例の地球周回型衛星の運行を示す説明図である
。第1図において、地球周回型衛星1内には、地上の任
意の地球局からの送信波を受信し、伝送データを復調す
る受信部2、この伝送データを一時記憶する蓄積部3、
この蓄積されたデータを所定位置の空間で所定の地球局
に送信する送信部4、この受信部2、蓄積部3、送信部
4、この受信部2、蓄積部3、送信部4を地球局のデー
タ送受信の要求情報にしたがって制御する制御部5から
構成′、きれる。
Figure 1 is an embodiment of the present invention. Figure 2 is a schematic diagram illustrating data exchange between the ground and the satellite in this embodiment. Figures 3 and 4 are operations of the earth-orbiting satellite in this embodiment. FIG. In FIG. 1, an earth-orbiting satellite 1 includes a receiving section 2 that receives transmitted waves from any earth station on the ground and demodulates the transmitted data, a storage section 3 that temporarily stores this transmitted data,
A transmitter 4 transmits the accumulated data to a predetermined earth station in space at a predetermined location; The control section 5 is configured to perform control according to data transmission/reception request information.

次に第2図の地上と衛星間の動作を説明する。Next, the operation between the ground and the satellite in FIG. 2 will be explained.

地球周回型衛星1は地球局8の上空(A点)で受信機1
により送信波を受信し、そのデータ情報は蓄積部6に記
憶される。受信したデータ信号には宛先が付与されてお
りその情報は制御部4にも伝えられる。地球周回型衛星
1が周回軌道6を飛行する量情報は蓄積部3に記憶され
ている。衛星1が周回軌道6の0点である宛先の地球局
9の上空に到達すると、制御部5の指令により蓄積部3
の情報が読み出され送信部4により地球局9に送信され
る。
Earth-orbiting satellite 1 is located above earth station 8 (point A) with receiver 1
The transmitted wave is received by the storage unit 6, and the data information is stored in the storage unit 6. A destination is assigned to the received data signal, and this information is also transmitted to the control unit 4. Information on the amount of flight of the earth-orbiting satellite 1 in the orbit 6 is stored in the storage unit 3. When the satellite 1 reaches the sky above the destination earth station 9, which is the zero point of the orbit 6, the storage unit 3
The information is read out and transmitted to the earth station 9 by the transmitter 4.

第3図は本実施例の地球周回型衛星の地上軌跡6Aを示
す。この地上軌跡6Aは衛星の高度909Km軌道傾斜
角99°の場合を示しており、図の横と縦の目盛はそれ
ぞれ経度緯度を示す。図のような軌跡をとれば世界各地
から少なくとも昼及び夜の2回地球周回型衛星と交信す
ることができる。したがって受信した情報を12時間以
内に世界中のどこにでも伝達することが可能である。
FIG. 3 shows the ground trajectory 6A of the earth-orbiting satellite of this embodiment. This ground trajectory 6A shows a case where the satellite has an altitude of 909 km and an orbital inclination of 99 degrees, and the horizontal and vertical scales in the figure indicate the longitude and latitude, respectively. If the trajectory shown in the figure is taken, it will be possible to communicate with earth-orbiting satellites from all over the world at least twice, once during the day and once at night. It is therefore possible to transmit the received information anywhere in the world within 12 hours.

次に本実施例で軌道を極軌道の中でも特殊な太陽同期全
日照軌道とした場合を説明する。第4図は地球の1年間
の運行と本実施例の周回軌道6との関係を示す。この周
回軌道6はて年間を通じ太陽方向が軌道面にほぼ垂直で
あり、衛星が地球の影(食)10に入ることなく常時太
陽光を受けることができる。したがって食の間型力を供
給するための蓄電池や、温度低下を防止するヒータ等が
不要になり、地球周回型衛星の装置を簡単かつ安価にす
ることができる。また、この軌道の場合地上局と衛星が
交信する時刻は各地点における日没および日の出となる
ため、人間の活動リズムに合った情報伝達を行える利点
もある。
Next, a case will be explained in which the orbit in this embodiment is a sun-synchronous all-daylight orbit, which is special among polar orbits. FIG. 4 shows the relationship between the annual movement of the earth and the orbit 6 of this embodiment. In this orbit 6, the direction of the sun is almost perpendicular to the orbit plane throughout the year, and the satellite can always receive sunlight without entering the earth's shadow (eclipse) 10. Therefore, there is no need for storage batteries for supplying power during eclipses, heaters for preventing temperature drops, etc., and the equipment for earth-orbiting satellites can be made simple and inexpensive. In addition, in this orbit, the times when the ground station and the satellite communicate are at sunset and sunrise at each location, which has the advantage of being able to transmit information that matches the rhythm of human activity.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、極軌道を周回し受信情報
を一時的に蓄積し、指定の地点上空で送信することによ
り、静止通信衛星に比べて、回報性が不要で伝達遅延時
間を許す双方向性情報を極めて安価に伝達することがで
きる効果がある。
As explained above, the present invention orbits in a polar orbit, temporarily accumulates received information, and transmits it over a designated point, thereby eliminating the need for repeatability and allowing transmission delay time compared to geostationary communication satellites. This has the effect of allowing interactive information to be transmitted at an extremely low cost.

また、地球周回型衛星を極軌道の中でも食のない太陽同
期全日照軌道上に打上げるととにより、衛星内の電源及
び熱制御系の装置を極めて簡単にし、経済的な通信衛星
を提供することができる。
In addition, by launching an earth-orbiting satellite into a sun-synchronous, all-daylight orbit where there is no eclipse even in polar orbits, the power supply and thermal control systems inside the satellite are extremely simple, thereby providing an economical communication satellite. be able to.

【図面の簡単な説明】 第1図は本発明の一実施例のブロック図、第2図は本実
施例の動作を示す模式図、第3図および第4図は本実施
例の衛星と地球との相対軌跡を説明する説明図である。 1・・・地球周回型衛星、2・・・受信部、3・・・蓄
積部、 5・・・制御部、 6・・・周回軌道、 6A・・・地上軌跡、 7・・・地球、 8゜ 9・・・地球局、 O・・・地球の影。
[Brief Description of the Drawings] Figure 1 is a block diagram of an embodiment of the present invention, Figure 2 is a schematic diagram showing the operation of this embodiment, and Figures 3 and 4 are the satellite and earth of this embodiment. It is an explanatory diagram explaining a relative locus with. DESCRIPTION OF SYMBOLS 1... Earth-orbiting satellite, 2... Receiving unit, 3... Storage unit, 5... Control unit, 6... Orbit, 6A... Ground trajectory, 7... Earth, 8゜9...Earth station, O...Earth's shadow.

Claims (1)

【特許請求の範囲】 1、通信衛星本体が低高度または、中高度の極軌道を周
回し、前記通信衛星本体内に地球上のある地点の地球局
から転送先地球局を指定した送信信号を受信する受信部
と、受信した情報を記憶する蓄積部と、この記憶された
情報を転送先地球局の上空で送信する送信部と、前記受
信部で復調された制御情報を入力して前記蓄積部および
前記送信部を制御する制御部とを有することを特徴とす
る通信衛星。 2、前記極軌道が太陽同期全日照軌道であることを特徴
とする請求項1記載の通信衛星。
[Claims] 1. A communication satellite body orbits in a low-altitude or medium-altitude polar orbit, and a transmission signal specifying a transfer destination earth station from an earth station at a certain point on the earth is transmitted within the communication satellite body. a receiving section that receives the information; a storage section that stores the received information; a transmitting section that transmits the stored information above the destination earth station; and a receiving section that receives the control information demodulated by the receiving section and stores the information A communication satellite comprising: a controller; and a controller that controls the transmitter. 2. The communication satellite according to claim 1, wherein the polar orbit is a sun-synchronous all-daylight orbit.
JP22680089A 1989-09-01 1989-09-01 Communication satellite Pending JPH0389727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22680089A JPH0389727A (en) 1989-09-01 1989-09-01 Communication satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22680089A JPH0389727A (en) 1989-09-01 1989-09-01 Communication satellite

Publications (1)

Publication Number Publication Date
JPH0389727A true JPH0389727A (en) 1991-04-15

Family

ID=16850813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22680089A Pending JPH0389727A (en) 1989-09-01 1989-09-01 Communication satellite

Country Status (1)

Country Link
JP (1) JPH0389727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049239A1 (en) * 2000-12-14 2002-06-20 Ihi Aerospace Co., Ltd. Message supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049239A1 (en) * 2000-12-14 2002-06-20 Ihi Aerospace Co., Ltd. Message supply system

Similar Documents

Publication Publication Date Title
US20190181947A1 (en) Data transmission systems and methods using satellite-to-satellite radio links
US5553816A (en) Satellite telecommunications and remote sensing system based on the use of short-period sun-synchronous elliptical orbits
US6263188B1 (en) Elliptical satellite system which emulates the characteristics of geosynchronous satellites
US3836969A (en) Geo-synchronous satellites in quasi-equatorial orbits
US6714521B2 (en) System and method for implementing a constellation of non-geostationary satellites that provides simplified satellite tracking
US6333924B1 (en) High latitude geostationary satellite system
US4943808A (en) Communications system with moving bodies with the aid of satellites
US5890679A (en) Medium earth orbit communication satellite system
US5621415A (en) Linear cell satellite system
WO1998051568A1 (en) Aerial communications network
EP0951760A1 (en) Method for controlling the transmission of a beam of radiated energy in a cellular satellite system
US6851651B2 (en) Constellation of spacecraft, and broadcasting method using said constellation
US6678519B2 (en) Elliptical satellite system which emulates the characteristics of geosynchronous satellites
Blonstein Communications satellites: the technology of space communications
JPH0389727A (en) Communication satellite
US20050063706A1 (en) Deep space communications network
Cheruku Satellite communication
Mitchell Polar Satcom System and Related Method
Johnston Jr ATS-6 Experimental Communications Satellite-Report on Early Orbital Results
Jacoby Communication satellites
RU2118055C1 (en) Low-orbit system for regional communication
JPS63160431A (en) Data relay satellite system
Bentley et al. Syncom satellite program
RU8549U1 (en) REGIONAL COMMUNICATION SYSTEM
Gutteberg Elements of satellite technology and communication