JPH0389445A - High-output fluorescent lamp - Google Patents

High-output fluorescent lamp

Info

Publication number
JPH0389445A
JPH0389445A JP22787189A JP22787189A JPH0389445A JP H0389445 A JPH0389445 A JP H0389445A JP 22787189 A JP22787189 A JP 22787189A JP 22787189 A JP22787189 A JP 22787189A JP H0389445 A JPH0389445 A JP H0389445A
Authority
JP
Japan
Prior art keywords
face
light
fluorescent lamp
fluorescent
secondary electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22787189A
Other languages
Japanese (ja)
Inventor
Izumi Takagi
泉 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP22787189A priority Critical patent/JPH0389445A/en
Publication of JPH0389445A publication Critical patent/JPH0389445A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-output fluorescent lamp by providing a light emitting source, a photoelectric converting means, a photoelectron multiplying means, a secondary-electron accelerating means, and a phosphor element face. CONSTITUTION:The light from an LED array 1 is photoelectrically converted by a photoelectric converting face 3. The primary electrons thus obtained reach a secondary electron multiplier section 4 by the potential gradient of the voltage V1 and multiplied. The multiplied electron beam is accelerated by the voltage V3 and collides with a fluorescent face 5 arranged nearly in parallel with a secondary electron multiplier photoelectric tube 2 to illuminate it. The light illuminated on the fluorescent face 5 permeates the bottom of a tube 6 and is discharged to the outside. A light emitting face with high illumination power is obtained from a small light source, and the luminous quantity is not affected by the environmental temperature. No bright line spectrum peculiar to Hg exists, thus a high-quality image is obtained when this fluorescent lamp is used for an exposing light source.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高出力螢光灯に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to high power fluorescent lamps.

[従来技術] 従来、螢光灯は管に封入されている水銀蒸気中に電流を
流すことにより、該水銀を励起し、該水銀から放出され
る紫外線で該管面に塗布されている螢光体を励起し、該
螢光体から放出される可視光を得ていた。
[Prior Art] Conventionally, fluorescent lamps excite the mercury by passing an electric current through the mercury vapor sealed in the tube, and the ultraviolet rays emitted from the mercury excite the fluorescent light coated on the surface of the tube. The body was excited and the visible light emitted from the phosphor was obtained.

[発明が解決しようとする課題] しかしながら、螢光灯の温度により封入されている水銀
蒸気圧が変化するために、螢光灯の発光量は、温度によ
って大きく変化していた。
[Problems to be Solved by the Invention] However, since the mercury vapor pressure enclosed in the fluorescent lamp varies depending on the temperature of the fluorescent lamp, the amount of light emitted by the fluorescent lamp varies greatly depending on the temperature.

また螢光体特有の発光色の他に水銀から発せられる輝線
スペクトルが含まれていた。
In addition to the emission color unique to phosphors, the emission line spectrum emitted from mercury was also included.

本発明は、上述した問題点を解決するためになされたも
のであり、発光量が温度に影響されず、塗布されている
螢光体の発するスペクトルのみで決まる発光色の高出力
の螢光灯を提供することを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and provides a high-output fluorescent lamp in which the amount of light emitted is not affected by temperature and the color of the emitted light is determined only by the spectrum emitted by the coated phosphor. is intended to provide.

[課題を解決するための手段] この目的を達成するために本発明の螢光灯は、発光源と
、該発光源より発せられた光を光電子へ変換する光電子
変換手段と、該光電子変換手段により変換された光電子
の電子エネルギーによって2次電子を放出すると共に該
2次電子数モ増倍させる光電子増倍手段と、該光電子増
倍手段により増倍された2次電子を加速する2次電子加
速手段と、該2次電子加速手段により加速された2次電
子の入射により螢光を発する螢光体素子面とにより構成
される。
[Means for Solving the Problems] In order to achieve this object, the fluorescent lamp of the present invention includes a light emitting source, a photoelectron conversion means for converting light emitted from the light emission source into photoelectrons, and the photoelectron conversion means. a photoelectron multiplier for emitting secondary electrons and multiplying the number of secondary electrons by the electron energy of the photoelectrons converted by the photoelectron; and secondary electrons for accelerating the secondary electrons multiplied by the photoelectron multiplier. It is composed of an accelerating means and a phosphor element surface that emits fluorescent light upon incidence of secondary electrons accelerated by the secondary electron accelerating means.

[作用] 上記の構成を有する本発明によれば、小光源から発せら
れた光は2次電子増倍光電管の光電変換面で光電変換さ
れる。これによって得られた1次電子は平面状に配置さ
れた2次電子増倍部に達してそこで増倍される。増倍さ
れた2次電子は、該2次電子増倍光電管と略平行に配置
された螢光面に達しこれを発光させる。
[Function] According to the present invention having the above configuration, light emitted from the small light source is photoelectrically converted on the photoelectric conversion surface of the secondary electron multiplier phototube. The primary electrons obtained thereby reach a secondary electron multiplier section arranged in a planar manner and are multiplied there. The multiplied secondary electrons reach a fluorescent surface arranged substantially parallel to the secondary electron multiplier phototube and cause it to emit light.

[実施例] まず、第1図を参照して、本発明の螢光灯の構造を説明
する。
[Example] First, the structure of the fluorescent lamp of the present invention will be explained with reference to FIG.

本発明の螢光灯は、LEDアレイ1と、2次電子増倍光
電管2と、螢光面5がチューブ6に封入され内部は真空
になっている。2次電子増倍光電管2は光電変換面3と
2次電子増倍部4で構成される。
In the fluorescent lamp of the present invention, an LED array 1, a secondary electron multiplier phototube 2, and a fluorescent surface 5 are enclosed in a tube 6, and the inside thereof is evacuated. The secondary electron multiplier phototube 2 is composed of a photoelectric conversion surface 3 and a secondary electron multiplier 4.

第2図を参照して、本発明の螢光灯の原理を説明する。The principle of the fluorescent lamp of the present invention will be explained with reference to FIG.

光電変換面3と2次電子増倍分4の上面の間には電圧v
1が、2次電子増倍部4の上面と下面との間には電圧v
2が、また2次電子増倍部4の下面と螢光面5の間には
電圧v3が印加されている。
There is a voltage v between the photoelectric conversion surface 3 and the upper surface of the secondary electron multiplier 4.
1, there is a voltage v between the upper surface and the lower surface of the secondary electron multiplier 4.
2, and a voltage v3 is applied between the lower surface of the secondary electron multiplier 4 and the fluorescent surface 5.

LEDアレイ1から発せられた光は、光電変換面3で光
電変換される。これによって得られた1次電子は電圧v
1の電位勾配により2次電子増倍部4に達してそこで増
倍される。増倍されてできた電子流は電圧v3により加
速されて2次電子増倍光電管2と略平行に配置された螢
光面5に当り、これを発光させる。螢光面5で発光した
光はチューブ6の底部を透過して外部に放出される。
Light emitted from the LED array 1 is photoelectrically converted on the photoelectric conversion surface 3. The primary electrons obtained in this way have a voltage v
Due to the potential gradient of 1, the electrons reach the secondary electron multiplier 4 and are multiplied there. The multiplied electron current is accelerated by the voltage v3 and hits the fluorescent surface 5 arranged substantially parallel to the secondary electron multiplier phototube 2, causing it to emit light. The light emitted from the fluorescent surface 5 passes through the bottom of the tube 6 and is emitted to the outside.

第3図を参照して、光電変換面3の実施例を説明する。An example of the photoelectric conversion surface 3 will be described with reference to FIG.

光電変換面3は、ガラス基板10ESi02の透明電極
11が蒸着され、更にその上に(sb−に−Na−Cs
)12が蒸着されて構成されている。光はガラス基板1
0側から入射し、発生した光電子は電圧v1の電位勾配
により2次電子増倍部4の方向に出力される。
On the photoelectric conversion surface 3, a transparent electrode 11 of a glass substrate 10ESi02 is deposited, and on top of that a transparent electrode 11 (sb- to -Na-Cs) is deposited.
) 12 is deposited. Light is glass substrate 1
The photoelectrons incident from the 0 side are output in the direction of the secondary electron multiplier 4 due to the potential gradient of voltage v1.

第4図を参照して、2次電子増倍部4の一実施例を説明
する。
An embodiment of the secondary electron multiplier 4 will be described with reference to FIG.

マイクロチャネルプレー) (MCP)と呼ばれ、直径
10.の無数の微小孔(チャネル)20を有する厚さ4
00.の板状になっていて、その板厚方向に電圧V2が
印加されている。夫々のチャネル20の内壁は2次電子
放出面として活性化され、連続ダイノードとなって動作
する。
It is called microchannel play (MCP) and has a diameter of 10. Thickness 4 with countless micropores (channels) 20
00. It has a plate shape, and a voltage V2 is applied in the thickness direction of the plate. The inner wall of each channel 20 is activated as a secondary electron emitting surface and operates as a continuous dynode.

第5図を参照して、MCPのチャネル20での電子増倍
の動作原理を説明する。
The principle of operation of electron multiplication in the channel 20 of the MCP will be explained with reference to FIG.

MCPの入力側と出力側の電圧v2が印加されると、チ
ャネル方向に電位勾配が生じる。ここで入射電子21が
入力側の内壁に当たると、複数の2次電子が放出される
。これらの2次電子は電位勾配によって加速されるため
、初速度によって決まるある放物線軌道を進む。そして
反対側の壁に衝突して再び2次電子を放出する。このよ
うにして電子はチャネル20の内壁に何回も衝突しなが
ら出力側へ進んで行き、結果として指数関数的に増倍さ
れた電子流22が取り出される。
When voltage v2 is applied to the input and output sides of the MCP, a potential gradient is generated in the channel direction. Here, when the incident electrons 21 hit the inner wall on the input side, a plurality of secondary electrons are emitted. Since these secondary electrons are accelerated by the potential gradient, they follow certain parabolic trajectories determined by their initial velocity. It then collides with the opposite wall and emits secondary electrons again. In this way, the electrons advance toward the output side while colliding with the inner wall of the channel 20 many times, resulting in an exponentially multiplied electron stream 22 being extracted.

結果的に、この電子流22が電圧v3の電位勾配によっ
て加速されて螢光面5に当りそれを発光させる。
As a result, this electron flow 22 is accelerated by the potential gradient of voltage v3 and hits the fluorescent surface 5, causing it to emit light.

本実施例においては、小光源としてLEDを使用したが
、紫外光、可視光、または赤外光のいずれの光を発光す
る光源でも使用できる。
In this embodiment, an LED is used as a small light source, but any light source that emits ultraviolet light, visible light, or infrared light can be used.

光電変換面3は、光源との組合わせにより(Sb−に−
Na−Cs)以外に多くの物質が使用できる。
The photoelectric conversion surface 3 can convert (Sb- to -
Many substances other than Na-Cs) can be used.

2次電子増倍部4は、MCPに限らず、例えば透過形2
次電子膜等も使用できる。
The secondary electron multiplier 4 is not limited to an MCP, but may be a transmission type 2, for example.
A secondary electron film etc. can also be used.

螢光面6は、使用する螢光体を選択することによって任
意の色の光源にすることができる。
The fluorescent surface 6 can be a light source of any color by selecting the phosphor used.

[発明の効果] 以上説明したように本発明の螢光灯によれば、小光源か
ら高出力の発光面が得られ、またその発光量は環境温度
の影響を受けない。しかも水銀灯と違って水銀特有の輝
線スペクトルも存在しない。
[Effects of the Invention] As explained above, according to the fluorescent lamp of the present invention, a high-output light emitting surface can be obtained from a small light source, and the amount of light emitted is not affected by the environmental temperature. Moreover, unlike mercury lamps, there is no emission line spectrum unique to mercury.

従って、この蛍光灯を複写機等の露光光源として使うこ
とは高品質画像が得られる利点を有する。
Therefore, using this fluorescent lamp as an exposure light source for a copying machine or the like has the advantage that high quality images can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃第5図は本発明の一実施例に係るもので、第1
図は本発明に係る高出力蛍光灯の斜視図、第2図はその
動作原理を説明するため示した側面図、第3図はその光
電変換部の拡大図、第4図は2次電子増倍部の斜視図、
第5図はその動作原理を説明するために示した断面図で
ある。 図中、1はLEDアレイ、2は2次電子増倍光電管、3
は光電変換面、4は2次電子増倍部、5は螢光面である
Figures 1 to 5 relate to one embodiment of the present invention;
Figure 2 is a perspective view of a high-output fluorescent lamp according to the present invention, Figure 2 is a side view for explaining its operating principle, Figure 3 is an enlarged view of its photoelectric conversion section, and Figure 4 is a secondary electron amplifier. Perspective view of the double part,
FIG. 5 is a sectional view shown to explain the principle of operation. In the figure, 1 is an LED array, 2 is a secondary electron multiplier phototube, and 3
4 is a photoelectric conversion surface, 4 is a secondary electron multiplier, and 5 is a fluorescent surface.

Claims (1)

【特許請求の範囲】[Claims] 1、発光源と、該発光源より発せられた光を光電子へ変
換する光電子変換手段と、該光電子変換手段により変換
された光電子の電子エネルギーによって2次電子を放出
すると共に該2次電子数を増倍させる光電子増倍手段と
、該光電子増倍手段により増倍された2次電子を加速す
る2次電子加速手段と、該2次電子加速手段により加速
された2次電子の入射により螢光を発する螢光体素子面
とにより構成されることを特徴とする高出力蛍光灯。
1. A light emitting source, a photoelectron conversion means for converting light emitted from the light emission source into photoelectrons, and emitting secondary electrons and increasing the number of secondary electrons by the electron energy of the photoelectrons converted by the photoelectron conversion means. A photoelectron multiplier for multiplying the secondary electrons; a secondary electron accelerating means for accelerating the secondary electrons multiplied by the photoelectron multiplying means; and a secondary electron accelerating means for accelerating the secondary electrons; A high-output fluorescent lamp characterized by comprising a phosphor element surface that emits .
JP22787189A 1989-09-01 1989-09-01 High-output fluorescent lamp Pending JPH0389445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22787189A JPH0389445A (en) 1989-09-01 1989-09-01 High-output fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22787189A JPH0389445A (en) 1989-09-01 1989-09-01 High-output fluorescent lamp

Publications (1)

Publication Number Publication Date
JPH0389445A true JPH0389445A (en) 1991-04-15

Family

ID=16867659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22787189A Pending JPH0389445A (en) 1989-09-01 1989-09-01 High-output fluorescent lamp

Country Status (1)

Country Link
JP (1) JPH0389445A (en)

Similar Documents

Publication Publication Date Title
JP4246995B2 (en) Electron beam detector, scanning electron microscope, mass spectrometer, and ion detector
US2131185A (en) Electrooptical device
US4431943A (en) Electron discharge device having a high speed cage
US4236096A (en) Plasma image display device
US4306171A (en) Focusing structure for photomultiplier tubes
US5623141A (en) X-ray image intensifier with high x-ray conversion efficiency and resolution ratios
US4691099A (en) Secondary cathode microchannel plate tube
US2903596A (en) Image transducers
US4131818A (en) Night vision system
JPH0389445A (en) High-output fluorescent lamp
US2868994A (en) Electron multiplier
GB770238A (en) Improvements in or relating to image intensifying devices
US2851625A (en) Image tube
US2243178A (en) Electron multiplier
US3567947A (en) Imaging screen assembly for image intensifier tube
US3432668A (en) Photomultiplier having wall coating of electron emitting material and photoconductive material
JPH03147240A (en) Photo-electron multiplying tube
EP0423180B1 (en) Method for operating an image intensifier tube provided with a channel plate and image intensifier tube device provided with a channel plate
JPH03163749A (en) High-output fluorescent lamp
Stoudenheimer Image intensifier developments in the RCA electron tube division
US3191086A (en) Secondary emission multiplier intensifier image orthicon
JPWO2005091333A1 (en) Photomultiplier tube
RU2187169C2 (en) Image converter
JP2559578Y2 (en) Image intensifier
US2213180A (en) Image converter tube