JPH0389162A - Detecting material of inflammable gas and method for defecting inflammable gas - Google Patents

Detecting material of inflammable gas and method for defecting inflammable gas

Info

Publication number
JPH0389162A
JPH0389162A JP22669589A JP22669589A JPH0389162A JP H0389162 A JPH0389162 A JP H0389162A JP 22669589 A JP22669589 A JP 22669589A JP 22669589 A JP22669589 A JP 22669589A JP H0389162 A JPH0389162 A JP H0389162A
Authority
JP
Japan
Prior art keywords
oxide
inflammable gas
oxygen
cobalt
cobalt oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22669589A
Other languages
Japanese (ja)
Other versions
JPH0672876B2 (en
Inventor
Tetsuhiko Kobayashi
哲彦 小林
Masaki Haruta
正毅 春田
Hiroshi Sano
寛 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1226695A priority Critical patent/JPH0672876B2/en
Publication of JPH0389162A publication Critical patent/JPH0389162A/en
Publication of JPH0672876B2 publication Critical patent/JPH0672876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To detect an inflammable gas by the use of photo-signals by utilizing the change in the light absorptivity corresponding to the concentration of the gas of a specific metal oxide. CONSTITUTION:The light absorptivity of an oxide of Cr, Mn, Fe, Ao, Ni or Ru is changed through contact with an inflammable gas in the presence of oxygen. The reason is that, in the case of cobalt oxide, for example, oxygen removes electrons from the cobalt oxide when the surface of the cobalt oxide is in contact with the air, and the removed electrons are absorbed to the surface of the cobalt oxide as oxygen cathode ions. If an inflammable gas is mixed in the air at this time, the absorbed oxygen cathode ions react wit the inflammable gas, thereby oxidizing the inflammable gas and returning the electrons from the oxygen cathode ions to the oxide cobalt. Therefore, when the concentration of the inflammable gas is high, the density of electrons in the cobalt oxide becomes high, whereas, if the concentration of the inflammable gas is low, the density of electrons is decreased. Since the light absorptivity of the cobalt oxide is changed by the density of electrons, it can be resumed that the cobalt oxide shows the change of light absorptivity corresponding to the change of the concentration of the inflammable gas.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、可燃性ガス検知材料及び可燃性ガス検知方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to combustible gas detection materials and combustible gas detection methods.

従来の技術及びその問題点 一酸化炭素、水素、炭化水素ガスなどのいわゆる可燃性
ガスを検知する事は、中毒防止、爆発防止、火災防止等
の環境上の問題及び安全上の問題並びに化学工業プロセ
スの自動制御等に関連して重要である。近年、ホームオ
ートメイション化及びファクトリーオートメイション化
の進展に伴つて、センサによる可燃性ガスの検知、計測
及び制御は、ますますその重要性を増している。
Conventional technology and its problems Detection of so-called flammable gases such as carbon monoxide, hydrogen, and hydrocarbon gases is important for environmental and safety issues such as prevention of poisoning, explosion prevention, and fire prevention, as well as for the chemical industry. This is important in connection with automatic process control, etc. In recent years, with the progress of home automation and factory automation, the detection, measurement, and control of flammable gases using sensors has become increasingly important.

従来、可燃性ガスを検知する方法としては、例えば、(
イ)触媒を用いて可燃性ガスを触媒燃焼させ、その反応
熱を測定する方法(いわゆる触媒燃焼式ガスセンサ方式
)、(ロ)Sn02等の半導体の表面に可燃性ガスが吸
着した際に生ずる半導体の電気抵抗の変化を測定する方
法(いわゆる半導体式ガスセンサ方式)等が用いられて
いる。
Conventionally, methods for detecting flammable gas include, for example, (
(b) A method of catalytically burning a combustible gas using a catalyst and measuring the reaction heat (so-called catalytic combustion gas sensor method); (b) A semiconductor formed when a flammable gas is adsorbed on the surface of a semiconductor such as Sn02. A method of measuring changes in electrical resistance (so-called semiconductor gas sensor method) is used.

これらの従来方法においては、駆動用の電力を供給して
ヒーターによる電気的な加熱を行ない、ガスセンサを駆
動する必要がある。このため、ヒーターの加熱、電力線
の短絡或いは接触不良による火花の発生などにより、可
燃性ガスに着火する危険性がある。また、ガス検知信号
を電気信号として取り出しているので、化学プラントや
炭鉱などにおけるように、広範囲でのガス検知を遠隔操
作により行なう場合には、種々の源から発せられる強力
な電磁波やノイズなどによりガス検知信号が妨害されや
すい欠点がある。更に、これら電気信号を基本とするガ
ス検知方法では、近年実用化されつつある光信号を基本
に構成された情報システムや制御システムと直接組合せ
ることは困難であり、電気信号を光信号に変換する為の
設備を必要とする。
In these conventional methods, it is necessary to supply driving power and perform electrical heating using a heater to drive the gas sensor. Therefore, there is a risk of igniting the flammable gas due to heating of the heater, generation of sparks due to a short circuit in the power line, or poor contact. Additionally, since the gas detection signal is extracted as an electrical signal, when gas detection is performed over a wide area by remote control, such as in chemical plants or coal mines, strong electromagnetic waves and noise emitted from various sources may be used. The disadvantage is that the gas detection signal is easily interfered with. Furthermore, with these gas detection methods based on electrical signals, it is difficult to directly combine them with information systems and control systems configured based on optical signals, which have been put into practical use in recent years. equipment is required to do so.

従って、防爆性に優れ、電磁気的妨害を受けにくく、光
情報システムや光制御システムと直接組み合せやすいガ
ス検知装置の開発が要望されている。
Therefore, there is a need for the development of a gas detection device that has excellent explosion-proof properties, is less susceptible to electromagnetic interference, and can be easily combined directly with optical information systems and optical control systems.

光信号で可燃性ガスを検知する方法としては、(イ)二
酸化タングステン及びパラジウムからなる検知材料を用
いた検知方法(光波術]ンタクト、voj2.24.N
(Ll、PP、9〜17 (1986))及び(ロ)金
、銀または銅の超微粒子を用いた検知方法(触媒、  
voj;j、  30. Na4. PP、 295〜
300 (1988))が知られている。しかしながら
、前者は水素ガスのみの検知しかできず、また後者は空
気中のような酸素の共存する雰囲気中の可燃性ガスの検
知ができないという欠点がある。
As a method for detecting combustible gases using optical signals, (a) a detection method using a detection material made of tungsten dioxide and palladium (light wave technique) contact, voj2.24.N
(Ll, PP, 9-17 (1986)) and (b) Detection method using ultrafine particles of gold, silver or copper (catalyst,
voj;j, 30. Na4. PP, 295~
300 (1988)) is known. However, the former has the disadvantage that it can only detect hydrogen gas, and the latter cannot detect flammable gas in an atmosphere where oxygen coexists, such as air.

問題点を解決するための手段 本発明者は、上記した如き従来技術の問題点に鑑みて、
酸素の存在する雰囲気中において光信号により各種の可
燃性ガスを検知し得る方法を見出すべく、鋭意研究を重
ねてきた。その結果、クロム、マンガン、鉄、コバルト
、ニッケル及びルテニウムの少なくとも1種の金属酸化
物は、酸素の存在下において、可燃性ガスと接触する際
に、可燃性ガスの濃度に対応した光吸収率の変化が生じ
、この特性を利用することによって、光信号による可燃
性ガスの検知が可能となることを見出した。
Means for Solving the Problems In view of the problems of the prior art as described above, the inventor of the present invention
We have been conducting extensive research to find a method that can detect various flammable gases using optical signals in an oxygen-containing atmosphere. As a result, when at least one metal oxide of chromium, manganese, iron, cobalt, nickel, and ruthenium comes into contact with a flammable gas in the presence of oxygen, the light absorption rate corresponds to the concentration of the flammable gas. It was discovered that by utilizing this characteristic, it is possible to detect combustible gases using optical signals.

即ち本発明は、以下に示す可燃性ガス検知材料及び可燃
性ガス検知方法を提供するものである。
That is, the present invention provides a combustible gas detection material and a combustible gas detection method shown below.

■ クロム、マンガン、鉄、コバルト、ニッケル及びル
テニウムから選ばれた少なくとも1種の金属の酸化物を
含有することを特徴とする光信号による可燃性ガス検知
用検知材料。
■ A detection material for detecting combustible gases using optical signals, characterized by containing an oxide of at least one metal selected from chromium, manganese, iron, cobalt, nickel, and ruthenium.

■ クロム、マンガン、鉄、コバルト、ニッケル及びル
テニウムから選ばれた少なくとも1種の金属の酸化物、
並びに白金、金、銀、パラジウム、イリジウム及びロジ
ウムから選ばれた少なくとも1種の貴金属を含有するこ
とを特徴とする光信号による可燃性ガス検知用検知材料
■ At least one metal oxide selected from chromium, manganese, iron, cobalt, nickel and ruthenium;
and a sensing material for detecting a combustible gas using an optical signal, comprising at least one noble metal selected from platinum, gold, silver, palladium, iridium, and rhodium.

■ 上記■又は■に記載の検知材料が、酸素の存在下に
可燃性ガスと接触する際の検知材料の光吸収率を測定す
ることを特徴とする可燃性ガス検知方法。
(2) A combustible gas detection method comprising measuring the light absorption rate of the detection material described in (1) or (2) above when it comes into contact with a combustible gas in the presence of oxygen.

本発明では、可燃性ガスの検知用材料としては、クロム
、マンガン、鉄、コバルト、ニッケル及びルテニウムの
少なくとも1種の金属酸化物を用いる。これらの酸化物
は、酸素の存在下において、可燃性ガスと接触すること
によって、光吸収率の変化が生じる性質を有するもので
ある。このような現象の生じる理由は明確ではないが、
例えば、酸化コバルト(CO304)を例にとると、以
下のような原理によるものであると推定される。即ち、
酸化コバルトの表面が、空気の様な酸素を含んだ気体に
接触していると、酸素が酸化コバルトから電子を奪って
、酸素陰イオンとして酸化コバルト表面に吸着する。酸
化コバルトに接触している空気中に可燃性ガスが混入す
ると、吸着した酸素陰イオンと可燃性ガスが化学反応し
て可燃性ガスが酸化され(触媒酸化)、このとき吸着酸
素陰イオンから酸化コバルトに電子が押戻される。従っ
て、可燃性ガスの濃度が濃い場合には酸化コバルト中の
電子密度が高くなり、薄い場合には電子密度は低くなる
In the present invention, a metal oxide of at least one of chromium, manganese, iron, cobalt, nickel, and ruthenium is used as a material for detecting combustible gas. These oxides have a property that their light absorption rate changes when they come into contact with combustible gas in the presence of oxygen. Although the reason for this phenomenon is not clear,
For example, taking cobalt oxide (CO304) as an example, it is presumed that the following principle is used. That is,
When the surface of cobalt oxide is in contact with a gas containing oxygen, such as air, oxygen takes electrons from the cobalt oxide and is adsorbed on the surface of the cobalt oxide as oxygen anions. When flammable gas mixes into the air that is in contact with cobalt oxide, the adsorbed oxygen anions and the flammable gas undergo a chemical reaction and the flammable gas is oxidized (catalytic oxidation). Electrons are pushed back into the cobalt. Therefore, when the concentration of combustible gas is high, the electron density in cobalt oxide becomes high, and when it is low, the electron density becomes low.

酸化コバルトの光吸収率は、電子密度で変化し、電子密
度が高いと光吸収率が小さくなり、電子密度が低いと光
吸収率が大きくなる。以上のように、酸化コバルトは可
燃性ガス濃度の変化に対応した光吸収率の変化が生じる
The light absorption rate of cobalt oxide changes depending on the electron density; when the electron density is high, the light absorption rate is low, and when the electron density is low, the light absorption rate is high. As described above, the light absorption rate of cobalt oxide changes in response to changes in the combustible gas concentration.

この様な現象は全ての金属酸化物で現われるのではなく
、(イ)気相中の酸素と平衡して、表面の酸素陰イオン
が可逆的に吸脱着すること、(ロ)可燃性ガスと吸着酸
素陰イオンとが化学反応しやすい触媒活性があること、
(ハ)電子密度の変化で光吸収率が変化すること、の3
条件を満足する金属酸化物でのみ達成されるものと考え
られる。
This phenomenon does not occur with all metal oxides; (a) oxygen anions on the surface are reversibly adsorbed and desorbed in equilibrium with oxygen in the gas phase; and (b) with flammable gases. It has catalytic activity that facilitates chemical reactions with adsorbed oxygen anions,
(c) The light absorption rate changes with changes in electron density.
It is thought that this can be achieved only with metal oxides that satisfy the conditions.

上記したクロム、マンガン、鉄、コバルト、ニッケル及
びルテニウムの酸化物は、いずれも可燃性ガス濃度の変
化に対応した先板収率変化を示すものである。
The above-mentioned oxides of chromium, manganese, iron, cobalt, nickel, and ruthenium all exhibit changes in lead plate yield corresponding to changes in combustible gas concentration.

本発明では、これらの金属酸化物を単独又は混合して用
いることができる。また、単成分の金属元素の一酸化物
として用いるだけでなく、複合酸化物として用いてもよ
い。複合酸化物の中でも、スピネル型結晶構造を有する
AB20a(AはMg、Fe、Cos Ni、Cu%M
n、Znなどを示し、BはAl1、Fe、00% Ti
、Crなどを示す)、ペロブスカイト型結晶構造を有す
るABO3(A及びBはそれぞれA g s N a 
SK s Ca s S r 1BaSPbSLa、B
i、Y、Ce、Th5LL。
In the present invention, these metal oxides can be used alone or in combination. Moreover, it may be used not only as a monoxide of a single component metal element but also as a composite oxide. Among composite oxides, AB20a (A is Mg, Fe, Cos Ni, Cu%M
n, Zn, etc., B is Al1, Fe, 00% Ti
, Cr, etc.), ABO3 having a perovskite crystal structure (A and B are respectively A g s Na
SK s Ca s S r 1BaSPbSLa,B
i, Y, Ce, Th5LL.

Cu、Mg5Ti%v、Rh5Pt、NbSMo。Cu, Mg5Ti%v, Rh5Pt, NbSMo.

W%Cr、Mn、Fes Co5Ni%Ru等を示す)
などは、安定な結晶構造をとるため、高温域での作動に
適するものである。また、クロム、マンガン、鉄、コバ
ルト、ニッケル又はルテニウムの金属酸化物は、他の金
属酸化物゛、ガラス、セラミックス、高分子材料等の各
種の物質と混合して用いることができるが、他の物質と
混合する場合には、光吸収率の変化割合が少なくなるの
で、可燃性ガス濃度、検出手段等に応じて、混合割合を
適宜調節することが必要である。
(Indicates W%Cr, Mn, Fes Co5Ni%Ru, etc.)
Because they have stable crystal structures, they are suitable for operation in high temperature ranges. Furthermore, metal oxides of chromium, manganese, iron, cobalt, nickel, or ruthenium can be used in combination with various substances such as other metal oxides, glass, ceramics, and polymeric materials. When mixed with a substance, the rate of change in light absorption rate decreases, so it is necessary to adjust the mixing ratio appropriately depending on the flammable gas concentration, detection means, etc.

本発明では、上記した金属酸化物の形状は特に限定はな
く、検出手段に応じて、薄膜状、粉末状などの各種の形
状とすることができる。例えば、後述する透過法により
光吸収率を測定する方法では、薄膜状とすることが一般
的であり、また、拡散反射法により測定する場合には、
粉末状又はこれを底形したベレット状とすることが一般
的である。
In the present invention, the shape of the metal oxide described above is not particularly limited, and can be in various shapes such as a thin film shape or a powder shape depending on the detection means. For example, in the method of measuring light absorption rate using the transmission method described below, it is common to use a thin film, and when measuring by the diffuse reflection method,
It is generally in the form of a powder or a bottom-shaped pellet.

薄膜は、通常ガラス、石英、サファイアなどの透明基板
上に形成する。薄膜の形成方法は、特に限定はなく、ス
パッタ蒸着法、真空蒸着法、CVD法などのいわゆる気
相法や、金属アルコキシド、金属硝酸塩などの溶液を基
板上に塗布し、熱分解する方法など、各種の公知法が適
用できる。
Thin films are typically formed on transparent substrates such as glass, quartz, or sapphire. The method of forming the thin film is not particularly limited, and may include so-called gas phase methods such as sputter deposition, vacuum deposition, and CVD, and a method of applying a solution of metal alkoxide, metal nitrate, etc. onto a substrate and thermally decomposing it. Various known methods can be applied.

薄膜の厚さは、特に限定されないが、光吸収率の変化は
、主として薄膜の表面部分でのみ生じるので、薄膜が厚
くなりすぎると、光吸収率の変化割合が少なくなり、検
出感度が低下する。通常、スパッタ蒸着法で形成される
薄膜のように均質な薄膜の場合には、比較的表面積が小
さいので、5〜20nm程度が適当であり、溶液を塗布
し、熱分解する方法では、形成される薄膜の表面積が比
較的広いので、より厚い膜厚でも、光吸収率の変化を検
出することができる。
The thickness of the thin film is not particularly limited, but changes in light absorption mainly occur only at the surface of the thin film, so if the thin film becomes too thick, the rate of change in light absorption decreases and detection sensitivity decreases. . Normally, in the case of a homogeneous thin film such as a thin film formed by sputter deposition, the surface area is relatively small, so a thickness of about 5 to 20 nm is appropriate. Since the surface area of the thin film is relatively large, changes in light absorption can be detected even with thicker films.

また、金属酸化物を粉末状で用いる場合には、微粉末状
とすることが好ましく、粒径1μm以下程度とすること
が適当である。
Further, when the metal oxide is used in powder form, it is preferably in the form of fine powder, and suitably has a particle size of about 1 μm or less.

更に、本発明の可燃性ガス検知材料では、クロム、マン
ガン、鉄、コバルト、ニッケル及びルテニウムの少なく
とも1種の金属酸化物に、白金、金、銀、パラジウム、
イリジウム及びロジウムの少なくとも1種の貴金属を混
合して用いる場合に、応答速度を向上させることができ
る。これは、これらの貴金属の存在によって、酸素陰イ
オンの吸脱着速度、及び可燃性ガスと吸着酸素陰イオン
との化学反応速度等が向上することによるものであると
考えられる。
Furthermore, in the combustible gas sensing material of the present invention, platinum, gold, silver, palladium,
When at least one noble metal of iridium and rhodium is used in combination, the response speed can be improved. This is considered to be because the presence of these noble metals improves the rate of adsorption and desorption of oxygen anions and the rate of chemical reaction between the combustible gas and adsorbed oxygen anions.

上記した白金、金、銀、パラジウム、イリジウム及びロ
ジウムの少なくとも1種の貴金属は、金属酸化物に微粒
子の状態で担持された状態であることが好ましく、粒径
は、lnm〜1100rt程度が好ましい。担持量は、
金属酸化物と貴金属の合計量に対して、0.01〜10
重量%程度の範囲が適当である。
At least one of the above-mentioned noble metals of platinum, gold, silver, palladium, iridium, and rhodium is preferably supported on a metal oxide in the form of fine particles, and the particle size is preferably about 1 nm to 1100 rt. The amount supported is
0.01 to 10 relative to the total amount of metal oxide and noble metal
A range of about % by weight is appropriate.

貴金属の担持方法は、公知の方法に従えばよく、例えば
、金属酸化物膜を形成した後、上記した貴金属を含む水
溶液を塗布し、焼成する方法、金属酸化物の粉末に上記
貴金属を含む水溶液を含浸させた後焼成する方法、スパ
ッタ蒸着法により金属酸化物膜上に貴金属を析出させる
方法、スパッタ蒸着法により金属酸化物と上記貴金属を
同時に析出させる方法、金属酸化物と上記貴金属を含む
溶液を基板上に塗布し、熱分解する方法等を挙げること
ができる。
The noble metal may be supported by a known method, such as forming a metal oxide film, applying an aqueous solution containing the above-mentioned noble metal and firing, or applying an aqueous solution containing the above-mentioned noble metal to a metal oxide powder. A method in which a noble metal is deposited on a metal oxide film by sputter deposition, a method in which a metal oxide and the above noble metal are simultaneously deposited by a sputter deposition method, and a solution containing a metal oxide and the above noble metal. Examples include a method of coating the substrate on a substrate and thermally decomposing it.

本発明の検知材料は、酸素の存在下において、可燃性ガ
スと接触する際に光吸収率の変化が生じる。酸素の存在
量は、特に限定的ではなく、0、Qlvo、17%程度
以上の酸素が存在すれば、光吸収率の変化を検出するこ
とが可能であるが、通常1〜100voJ2%程度の酸
素濃度であることが好ましい。酸素濃度が高くなると金
属酸化物表面に吸着する酸素量が増加して、金属酸化物
から電子を多く奪い、金属酸化物の電子密度が低下する
。このため、酸素濃度は検知材料の先板収率変化に影響
を与え、酸素濃度が高くなると光吸収率が大きくなる傾
向にある。従って、可燃性ガス濃度を求めるためには、
測定雰囲気の酸素濃度における可燃性ガス濃度と光吸収
率との関係を求めておく必要がある。
When the sensing material of the present invention comes into contact with a combustible gas in the presence of oxygen, a change in light absorption occurs. The amount of oxygen present is not particularly limited, and if oxygen of about 0, Qlvo, 17% or more is present, it is possible to detect a change in light absorption rate, but usually oxygen of about 1 to 100voJ2% Preferably, it is a concentration. When the oxygen concentration increases, the amount of oxygen adsorbed on the surface of the metal oxide increases, and many electrons are taken away from the metal oxide, resulting in a decrease in the electron density of the metal oxide. Therefore, the oxygen concentration affects the change in the yield of the front plate of the sensing material, and as the oxygen concentration increases, the light absorption rate tends to increase. Therefore, to find the flammable gas concentration,
It is necessary to determine the relationship between the combustible gas concentration and the light absorption rate in the oxygen concentration of the measurement atmosphere.

本発明における検知対象は、可燃性ガスであり、例えば
メタン、エタン、エチレン、プロパン等の炭化水素ガス
、水素、−酸化炭素、アルコール蒸気等を挙げることが
できる。
The objects to be detected in the present invention are flammable gases, such as hydrocarbon gases such as methane, ethane, ethylene, and propane, hydrogen, carbon oxide, and alcohol vapor.

本発明の可燃性ガス検知方法では、酸素の存在下におい
て、検知材料が可燃性ガスと接触した際の検知材料の光
吸収率を測定すればよく、光吸収率の測定方法としては
、公知の方法をいずれも適用することができる。例えば
、透明基板上に薄膜状の金属酸化物層を形成した検知材
料を用いて透過光の光吸収率を測定する方法、粉末状、
ペレット状等の金属酸化物を用いて、拡散反射法で測定
する方法、先導波路表面に金属酸化物を付着させて測定
する方法、光−音響効果を利用して測定する方法など各
種の公知の方法が可能である。
In the flammable gas detection method of the present invention, it is sufficient to measure the light absorption rate of the detection material when it comes into contact with a combustible gas in the presence of oxygen. Any method can be applied. For example, there is a method of measuring the light absorption rate of transmitted light using a sensing material in which a thin metal oxide layer is formed on a transparent substrate;
Various known methods are available, including a method of measuring using a diffuse reflection method using a metal oxide such as a pellet, a method of measuring by attaching a metal oxide to the surface of a guiding waveguide, and a method of measuring using a photoacoustic effect. method is possible.

光吸収率は、吸光度、吸収度、透過率など通常用いられ
る各種の基準によって評価することができる。
Light absorption rate can be evaluated using various commonly used standards such as absorbance, absorbance, and transmittance.

測定光の波長は、特に限定的ではないが、300ro+
+〜1l100n程度とすることが好ましい。
The wavelength of the measurement light is not particularly limited, but is 300ro+
It is preferable to set it to approximately +11100n.

光吸収率の測定は、応答速度を上げるために100〜5
00℃程度の加熱下に行なうことが好ましいが、これに
限定されるものではない。
Measurement of light absorption rate is carried out at 100-5 to increase response speed.
It is preferable to conduct the heating at a temperature of about 00°C, but the heating is not limited thereto.

発明の効果 本発明によれば、光信号による可燃性ガスの検知が可能
となる。このため、防爆性に優れ、電磁気的妨害を受け
にくいガス検知装置を作製することができ、また、光情
報システムや光制御システムと組み合わせることも可能
となる。
Effects of the Invention According to the present invention, it is possible to detect combustible gas using an optical signal. Therefore, it is possible to manufacture a gas detection device that has excellent explosion-proof properties and is less susceptible to electromagnetic interference, and it also becomes possible to combine it with an optical information system or an optical control system.

実施例 以下実施例を示して本発明を更に詳細に説明する。Example EXAMPLES The present invention will be explained in more detail below with reference to Examples.

実施例1 ガラス基板上に、厚さ10nmの酸化コバルト(Co3
04 )薄膜を、スパッタ蒸着法で形成した。
Example 1 Cobalt oxide (Co3) with a thickness of 10 nm was deposited on a glass substrate.
04) A thin film was formed by sputter deposition.

酸化コバルト薄膜を300°Cに保ち、(a)標準空気
(21%酸素+79%窒素)、(b)1%のエチレンを
含む空気、(C)1%の水素を含む空気、(d)1%の
一酸化炭素を含む空気、または(e)15%酸素+85
%窒素の混合気体のいずれかの中で、透過光の可視光吸
収スペクトルを測定した。結果を第1図に示す。
A cobalt oxide thin film was maintained at 300°C, and (a) standard air (21% oxygen + 79% nitrogen), (b) air containing 1% ethylene, (C) air containing 1% hydrogen, (d) 1 air containing % carbon monoxide, or (e) 15% oxygen + 85%
Visible light absorption spectra of transmitted light were measured in either of the gas mixtures of % nitrogen. The results are shown in Figure 1.

(a)と(b)〜(C)との比較により、空気中に可燃
性ガスが存在することで酸化コバルトの吸光度が低下す
ることが判る。
Comparison of (a) and (b) to (C) reveals that the presence of flammable gas in the air reduces the absorbance of cobalt oxide.

(a)と(e)を比較することにより、酸素濃度が減少
することで酸化コバルトの吸光度が低下することが判る
By comparing (a) and (e), it can be seen that the absorbance of cobalt oxide decreases as the oxygen concentration decreases.

また、酸化コバルト薄膜を250℃に保ち、雰囲気を標
準空気から1%の一酸化炭素を含む空気に切り替え、6
0分経過後に再び標準空気に戻したときの、波長700
nmの光に対する酸化コノくルト薄膜の吸光度の変化を
調べた。結果を第2図に示す。空気中の一酸化炭素の有
無により、可逆的に酸化コバルトの吸光度が変化するこ
とが判る。
In addition, the cobalt oxide thin film was maintained at 250°C, and the atmosphere was changed from standard air to air containing 1% carbon monoxide.
Wavelength 700 when returned to standard air after 0 minutes
The change in absorbance of the oxidized conort thin film with respect to nm light was investigated. The results are shown in Figure 2. It can be seen that the absorbance of cobalt oxide changes reversibly depending on the presence or absence of carbon monoxide in the air.

酸化コバルト薄膜を250℃に保ち、雰囲気を標準空気
、および0.5%〜10%の一酸化炭素を含む空気に変
えて、波長700nmの光に対する酸化コバルト薄膜の
吸光度の変化を調べた。結果を第3図に示す。空気中の
一酸化炭素濃度に応じた吸光度の変化が得られることが
判る。
The cobalt oxide thin film was maintained at 250° C., and the atmosphere was changed to standard air and air containing 0.5% to 10% carbon monoxide, and changes in absorbance of the cobalt oxide thin film to light with a wavelength of 700 nm were investigated. The results are shown in Figure 3. It can be seen that the absorbance changes depending on the carbon monoxide concentration in the air.

実施例2 厚み10nmの酸化コバルト(CO304)薄膜をスパ
ッタ蒸着法でガラス基板上に形成し、更にその表面に厚
さ0.5nm相当量のパラジウムをスパッタ蒸着で付着
させた。パラジウムは酸化コバルト薄膜表面にlnm程
度の超微粒子として付着しているものと推定される。
Example 2 A 10 nm thick cobalt oxide (CO304) thin film was formed on a glass substrate by sputter deposition, and palladium in an amount equivalent to 0.5 nm thick was deposited on the surface by sputter deposition. It is estimated that palladium is attached to the surface of the cobalt oxide thin film as ultrafine particles of about 1 nm in size.

この薄膜を150℃に保ち、(a)標準空気および(b
)1%の水素を含む空気中で透過光の光吸収スペクトル
を測定した。結果を第4図に示す。
This thin film was kept at 150°C, and (a) standard air and (b)
) The light absorption spectrum of transmitted light was measured in air containing 1% hydrogen. The results are shown in Figure 4.

水素の存在により吸光度が低下し、パラジウムを付着さ
せた酸化コバルトでは、150℃でも水素の検知が可能
であることが判る。
It can be seen that the absorbance decreases due to the presence of hydrogen, and that hydrogen can be detected even at 150° C. with cobalt oxide to which palladium is attached.

実施例3 硝酸コバルト、硝酸マンガン、硝酸鉄、硝酸ニッケル、
硝酸銀、硝酸ランタン、硝酸ストロンチウム、硝酸クロ
ム、塩化ルテニウム、または塩化金酸について、それぞ
れ金属イオン濃度0.2m o j2 / 42とした
水溶液を別々に調製した。これらを第1表の酸化物組成
の欄に示した原子比となるように混合し、石英基板上に
塗布し、空気中室温で2時間乾燥する事により、表面に
金属塩の皮膜が付着した石英板を得た。アンモニア蒸気
で満たしたガラス容器中にこの石英板を入れ、1時間放
置した。再び空気中室温に1時間放置し、この後電気炉
で空気中400℃から700℃で3時間焼成し、目的と
する酸化物薄膜を得た。
Example 3 Cobalt nitrate, manganese nitrate, iron nitrate, nickel nitrate,
Aqueous solutions of silver nitrate, lanthanum nitrate, strontium nitrate, chromium nitrate, ruthenium chloride, or chloroauric acid each having a metal ion concentration of 0.2 m o j2/42 were prepared separately. These were mixed to have the atomic ratio shown in the oxide composition column of Table 1, coated on a quartz substrate, and dried in air at room temperature for 2 hours to form a metal salt film on the surface. A quartz plate was obtained. This quartz plate was placed in a glass container filled with ammonia vapor and left for one hour. The product was again left in the air at room temperature for 1 hour, and then fired in the air at 400° C. to 700° C. for 3 hours in an electric furnace to obtain the desired oxide thin film.

これらの薄膜について、空気中および1%の一酸化炭素
を含む空気中で吸光度を調べた。結果を第1表に示す。
The absorbance of these thin films was examined in air and in air containing 1% carbon monoxide. The results are shown in Table 1.

一酸一化炭素が存在することにより、吸光度が減少する
ことが明らかである。
It is clear that the presence of carbon monoxide reduces the absorbance.

i 1 表 酸  化  物  組  成 測定温度 測定光波長 吸光[(abs)Ag:Co=
l:l       250  500  0.290
710.2879Fe:Co=l:2      25
0  500  0.798310.7923Ni:C
o=1:2      250  500  0.95
2210.9499Au:Co=l:19     2
00  800  0J92810J909Ag:Mn
=l+1      250  600  1.524
 /1.496La:Sr:Co−0,8:0.2:1
 350  600  1.18B /1.179La
:Sr:Mn=0.8:0.2:L  350  50
0  1.053 /1.047Mn=1      
   250  500  0J50510.3481
Co:Mn=l:2      250  500  
1.225 /1.196Cr:Co=l:2    
  350  700  1.133 /1.119
i 1 Table oxide Composition Measurement temperature Measurement light wavelength Absorption [(abs)Ag:Co=
l:l 250 500 0.290
710.2879Fe:Co=l:2 25
0 500 0.798310.7923Ni:C
o=1:2 250 500 0.95
2210.9499Au:Co=l:19 2
00 800 0J92810J909Ag:Mn
=l+1 250 600 1.524
/1.496La:Sr:Co-0,8:0.2:1
350 600 1.18B /1.179La
:Sr:Mn=0.8:0.2:L 350 50
0 1.053 /1.047Mn=1
250 500 0J50510.3481
Co:Mn=l:2 250 500
1.225/1.196Cr:Co=l:2
350 700 1.133 /1.119

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各種雰囲気中での可視光吸収スペクトルを表
わす図、第2図は、−酸化炭素との接触による吸光度変
化を表わす図、第3図は一酸化炭素濃度と吸光度との関
係を表わす図、第4図は、空気中及び1%の水素を含む
空気中での光吸収スペクトルを表わす図である。 (以 上)
Figure 1 shows visible light absorption spectra in various atmospheres, Figure 2 shows changes in absorbance due to contact with -carbon oxide, and Figure 3 shows the relationship between carbon monoxide concentration and absorbance. FIG. 4 is a diagram showing light absorption spectra in air and in air containing 1% hydrogen. (that's all)

Claims (5)

【特許請求の範囲】[Claims] (1)クロム、マンガン、鉄、コバルト、ニッケル及び
ルテニウムから選ばれた少なくとも1種の金属の酸化物
を含有することを特徴とする光信号による可燃性ガス検
知用検知材料。
(1) A sensing material for detecting combustible gases using optical signals, which is characterized by containing an oxide of at least one metal selected from chromium, manganese, iron, cobalt, nickel, and ruthenium.
(2)クロム、マンガン、鉄、コバルト、ニッケル及び
ルテニウムから選ばれた少なくとも1種の金属の酸化物
、並びに白金、金、銀、パラジウム、イリジウム及びロ
ジウムから選ばれた少なくとも1種の貴金属を含有する
ことを特徴とする光信号による可燃性ガス検知用検知材
料。
(2) Contains an oxide of at least one metal selected from chromium, manganese, iron, cobalt, nickel, and ruthenium, and at least one noble metal selected from platinum, gold, silver, palladium, iridium, and rhodium. A sensing material for detecting combustible gases using optical signals, which is characterized by:
(3)クロム、マンガン、鉄、コバルト、ニッケル及び
ルテニウムから選ばれた少なくとも1種の金属の酸化物
に、微粒子状の貴金属を担持させたものであることを特
徴とする請求項2に記載の検知材料。
(3) A fine particle noble metal is supported on an oxide of at least one metal selected from chromium, manganese, iron, cobalt, nickel, and ruthenium. Sensing material.
(4)金属酸化物を薄膜状に透明基板上に形成してなる
請求項1〜3のいずれかに記載の検知材料。
(4) The sensing material according to any one of claims 1 to 3, wherein the metal oxide is formed in the form of a thin film on a transparent substrate.
(5)請求項1〜4のいずれかに記載の検知材料が、酸
素の存在下に可燃性ガスと接触する際の検知材料の光吸
収率を測定することを特徴とする可燃性ガス検知方法。
(5) A combustible gas detection method, comprising measuring the light absorption rate of the detection material when the detection material according to any one of claims 1 to 4 comes into contact with a combustible gas in the presence of oxygen. .
JP1226695A 1989-08-31 1989-08-31 Flammable gas detection material and flammable gas detection method Expired - Lifetime JPH0672876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1226695A JPH0672876B2 (en) 1989-08-31 1989-08-31 Flammable gas detection material and flammable gas detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226695A JPH0672876B2 (en) 1989-08-31 1989-08-31 Flammable gas detection material and flammable gas detection method

Publications (2)

Publication Number Publication Date
JPH0389162A true JPH0389162A (en) 1991-04-15
JPH0672876B2 JPH0672876B2 (en) 1994-09-14

Family

ID=16849206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226695A Expired - Lifetime JPH0672876B2 (en) 1989-08-31 1989-08-31 Flammable gas detection material and flammable gas detection method

Country Status (1)

Country Link
JP (1) JPH0672876B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311145A (en) * 1993-05-07 1995-11-28 Res Dev Corp Of Japan Method for optical discrimination and detection of combustible gas
DE4345211C2 (en) * 1992-03-04 1996-08-08 Fujitsu Ltd Measuring equipment for simplified measurement of the ambient atmosphere
DE4390935C2 (en) * 1992-03-04 1996-08-29 Fujitsu Ltd Measuring ambient atmos. simply
JPH0940427A (en) * 1995-07-26 1997-02-10 Agency Of Ind Science & Technol Compound metal oxide film
US5750406A (en) * 1993-11-04 1998-05-12 Fujitsu Limited Environment monitoring test piece and test method
US5985213A (en) * 1992-03-04 1999-11-16 Fujitsu Limited Simplified environmental atmosphere measuring apparatus
JP2007155436A (en) * 2005-12-02 2007-06-21 Japan Atomic Energy Agency High-sensitivity detection method for hydrogen gas and hydrogen detection material used therefor
JP2009244262A (en) * 2008-03-28 2009-10-22 General Electric Co <Ge> Sensing system with optical fiber gas sensor
JP2013540998A (en) * 2010-08-31 2013-11-07 ユニヴァーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレーテッド Chemochromic hydrogen sensor
CN106841067A (en) * 2017-01-17 2017-06-13 大连理工大学 A kind of gas sensor and its detection method based on selective wave band

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4345211C2 (en) * 1992-03-04 1996-08-08 Fujitsu Ltd Measuring equipment for simplified measurement of the ambient atmosphere
DE4390935C2 (en) * 1992-03-04 1996-08-29 Fujitsu Ltd Measuring ambient atmos. simply
US5985213A (en) * 1992-03-04 1999-11-16 Fujitsu Limited Simplified environmental atmosphere measuring apparatus
US5994144A (en) * 1992-03-04 1999-11-30 Fujitsu Limited Simplified environmental atmosphere measuring method
JPH07311145A (en) * 1993-05-07 1995-11-28 Res Dev Corp Of Japan Method for optical discrimination and detection of combustible gas
US5750406A (en) * 1993-11-04 1998-05-12 Fujitsu Limited Environment monitoring test piece and test method
JPH0940427A (en) * 1995-07-26 1997-02-10 Agency Of Ind Science & Technol Compound metal oxide film
JP2007155436A (en) * 2005-12-02 2007-06-21 Japan Atomic Energy Agency High-sensitivity detection method for hydrogen gas and hydrogen detection material used therefor
JP2009244262A (en) * 2008-03-28 2009-10-22 General Electric Co <Ge> Sensing system with optical fiber gas sensor
JP2013540998A (en) * 2010-08-31 2013-11-07 ユニヴァーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレーテッド Chemochromic hydrogen sensor
CN106841067A (en) * 2017-01-17 2017-06-13 大连理工大学 A kind of gas sensor and its detection method based on selective wave band

Also Published As

Publication number Publication date
JPH0672876B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
Neri et al. Methanol gas-sensing properties of CeO2–Fe2O3 thin films
Savage et al. Titanium dioxide based high temperature carbon monoxide selective sensor
Cabot et al. Bi2O3 as a selective sensing material for NO detection
Wang et al. Controlled synthesis and enhanced catalytic and gas‐sensing properties of tin dioxide nanoparticles with exposed high‐energy facets
Papadopoulos et al. Comparative study of various metal-oxide-based gas-sensor architectures
Tsang et al. Rare earth oxide sensors for ethanol analysis
US5397541A (en) Thin film oxygen sensor
Güntner et al. Flame-made chemoresistive gas sensors and devices
Phani et al. Preparation, characterization and electrical properties of SnO2 based liquid petroleum gas sensor
Jain et al. Ultra-low NO2 detection by gamma WO3 synthesized by Reactive Spray Deposition Technology
Kanan et al. Dual WO3 based sensors to selectively detect DMMP in the presence of alcohols
Srivastava et al. Study on ZnO-doped tin oxide thick film gas sensors
JPH0389162A (en) Detecting material of inflammable gas and method for defecting inflammable gas
Zhuiykov Carbon monoxide detection at low temperatures by semiconductor sensor with nanostructured Au-doped CoOOH films
Garde LPG and NH^ sub 3^ Sensing Properties of SnO^ sub 2^ Thick Film Resistors Prepared by Screen Printing Technique
Zeb et al. Synergistic effect of Au–PdO modified Cu-doped K2W4O13 nanowires for dual selectivity high performance gas sensing
Ambardekar et al. Plasma sprayed copper oxide sensor for selective sensing of carbon monoxide
Li et al. Xanthate sensing properties of Pt-functionalized WO3 microspheres synthesized by one-pot hydrothermal method
JPH0886752A (en) Humidity detecting material and method for detecting humidity
Wang et al. Lanthanum oxide@ antimony-doped tin oxide with high gas sensitivity and selectivity towards ethanol vapor
Cheong et al. The role of additives in tin dioxide-based gas sensors
Ferro et al. Gas-sensing properties of sprayed films of (CdO)/sub x/(ZnO)/sub 1-x/mixed oxide
EP0095313B1 (en) Combustible gas-detecting element and its production
Neri et al. A study of the catalytic activity and sensitivity to different alcohols of CeO2–Fe2O3 thin films
JPH05505465A (en) gas sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term