JPH0389146A - Evaluating apparatus of percutaneous absorption - Google Patents

Evaluating apparatus of percutaneous absorption

Info

Publication number
JPH0389146A
JPH0389146A JP1225221A JP22522189A JPH0389146A JP H0389146 A JPH0389146 A JP H0389146A JP 1225221 A JP1225221 A JP 1225221A JP 22522189 A JP22522189 A JP 22522189A JP H0389146 A JPH0389146 A JP H0389146A
Authority
JP
Japan
Prior art keywords
skin
acoustooptic
diffusion cell
sensor
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1225221A
Other languages
Japanese (ja)
Inventor
Ryuichi Takamoto
隆一 高本
Ryujiro Nanba
難波 隆二郎
Okitsugu Nakada
中田 興亜
Masahiro Matsuoka
松岡 昌弘
Shiro Sawada
嗣郎 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP1225221A priority Critical patent/JPH0389146A/en
Publication of JPH0389146A publication Critical patent/JPH0389146A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the emitting process of a medicine from a basic agent on the skin and the permeating process of the medicine through the skin respectively by the acoustooptic measurement and absorption photometry simultaneously and in real time by applying an acoustooptic measuring apparatus as a vertical diffusion cell. CONSTITUTION:A sensor part of this evaluating apparatus is comprised of an acoustooptic sensor part a vertical diffusion cell, an absorption photometry measuring part and a processing part. An acoustooptic sensor has a microphone arranged at an upper end thereof. The neighborhood of a pressing part at a lower end of the acoustooptic sensor is made of light-permeable material. Laser beams are introduced via an optical fiber to the acoustooptic sensor to irradiate a sample on the skin. An acoustooptic signal generated at this time is received and processed by the microphone, whereby the emitting process of a medicine from a basic agent on the skin is measured. At the same time, the permeating process of the medicine through the skin is simultaneously measured. The vertical diffusion cell is formed of silica to make part to be irradiated a rectangular parallelepiped. The absorption photometry part measures the light passing through the diffusion cell by a photocell. The laser beams are spectrally separated at this time, one intaraoduced to the diffusion cell to obtain a measuring signal of the absorption and the other introduced to the photocell as a reference signal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、医薬品及び化粧品の開発には欠かせない、薬
剤の経皮吸収評価装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an apparatus for evaluating percutaneous absorption of drugs, which is indispensable for the development of pharmaceuticals and cosmetics.

[従来の技術] 経皮吸収製剤の開発設計するには適切な評価実験法が不
可欠である。過去30年にわたって数々の経皮吸収実験
法が報告されているが、多くの研究者によって手掛けら
れ、一般に使用されている手法は拡散セルを用いたin
−vitro実験である。この拡散セルを用いたin−
vitr○実験は膜透過した薬剤量を一定時間ごとに定
量し、この経時変化より基剤からの薬剤の放出速度及び
薬剤の膜透過速度を求める方法である。用いる拡散セル
は平行型と垂直型の2種類に分けられる。
[Prior Art] Appropriate evaluation experimental methods are essential for the development and design of transdermal absorption preparations. Numerous transdermal absorption experimental methods have been reported over the past 30 years, but the most commonly used method, which has been developed by many researchers, is the in vitro absorption method using a diffusion cell.
-This is an in vitro experiment. In-
The vitr○ experiment is a method in which the amount of drug that has permeated through the membrane is quantified at regular intervals, and the release rate of the drug from the base and the membrane permeation rate of the drug are determined from this change over time. The diffusion cells used can be divided into two types: parallel type and vertical type.

平行型セルはドナー側とレシーバ側の間に皮膚をはさみ
、両方のセルを一定速度で撹拌する。試料は溶液として
ドナー側に入れ、レシーバ側には生理食塩水等を入れる
。垂直型セルはドナー側には撹拌装置質なくレシーバ側
だけ撹拌しており、この場合はドナー側に溶液だけでな
く基剤を適用できる利点が有り、より臨床状態に近いと
いえる。
Parallel cells sandwich the skin between the donor and receiver sides, and both cells are agitated at a constant rate. The sample is placed as a solution on the donor side, and physiological saline or the like is placed on the receiver side. The vertical cell does not have a stirring device on the donor side and only stirs on the receiver side, and in this case it has the advantage of being able to apply not only a solution but also a base to the donor side, and can be said to be closer to the clinical situation.

皮膚透過実験法はまずドナーおよびレシーバセルの間に
摘出した皮膚をはさみ、そのセルの両側を生理食塩水あ
るいは溶媒で満たす。次に、角質層側のセルに薬物試料
を適用しく時間t=0)、レシーバから一定時間ごとに
採取された試料(薬剤)をHPLC(高速液体クロマト
グラフィ)等で定量分析を行う。レシーバ中の薬剤濃度
は時間の関数として、定常状態までのラグタイムののち
時間に比例する。データとして一般に用いられているも
のはfluxと透過係数である。これらの値は次式によ
って実験的に得られる。
In the skin permeation experiment method, the excised skin is first placed between a donor and receiver cell, and both sides of the cell are filled with physiological saline or a solvent. Next, a drug sample is applied to the cell on the stratum corneum side (time t=0), and samples (drugs) collected from the receiver at regular intervals are subjected to quantitative analysis using HPLC (high performance liquid chromatography) or the like. The drug concentration in the receiver is proportional to time as a function of time and after a lag time to steady state. Data commonly used are flux and transmission coefficient. These values are obtained experimentally by the following equations.

J=PAΔC=■・dc/dt Jは定常状態f lux (total  5tead
y−state  f 1ux)、Pは透過係数、Aは
拡散面積を示す。ΔCは薬物の皮膚中の濃度勾配であり
、実際の実験ではドナーセル中の溶′fi濃度を用いて
いる。d c / d tは得られたデータの直線の勾
配であり、■はレシーバセルの容積である。従って、薬
剤の透過係数は実験的に次式によって求めることができ
る。
J=PAΔC=■・dc/dt J is steady state f lux (total 5tead
y-state f lux), P is the transmission coefficient, and A is the diffusion area. ΔC is the concentration gradient of the drug in the skin, and in actual experiments, the dissolved 'fi concentration in the donor cell is used. d c /d t is the slope of the straight line of the obtained data, and ■ is the volume of the receiver cell. Therefore, the permeability coefficient of the drug can be determined experimentally using the following equation.

P= (V ・d c/d t) / (A ・ΔC)
基剤からの放出実験は、透過実験で用いたセルのドナー
側に軟膏などの基剤を入れて行う。レシーバセルに5i
nkとして精製水等を入れる。また、基剤が水溶性で5
ink液に溶出する場合は、透過が非常に速い膜を基剤
と5ink液の間にはさんだり、寒天のようなゲルを使
って5ink液の代りにするような方法がある。放出さ
れた薬剤量は前述した皮膚透過実験と同じ方法で定量す
る。得られるデータは)(iguchiの拡散理論(T
、 Higuchi、 J、 Soc、 Cosmet
、Chem、、 1ユ、375  (1986)、)よ
り時間の平方根に比例する。
P= (V ・d c/d t) / (A ・ΔC)
A release experiment from a base is performed by placing a base such as an ointment on the donor side of the cell used in the permeation experiment. 5i on receiver cell
Add purified water etc. as nk. In addition, if the base is water-soluble and
When eluting into an ink solution, there are methods such as sandwiching a membrane with very fast permeation between the base and the 5 ink solution, or using a gel such as agar in place of the 5 ink solution. The amount of drug released is quantified using the same method as in the skin permeation experiment described above. The data obtained is based on Iguchi's diffusion theory (T
, Higuchi, J., Soc., Cosmet.
, Chem, 1U, 375 (1986),), it is proportional to the square root of time.

従って、薬剤の皮膚透過実験または基剤からの薬剤の放
出実験のそれぞれ実験の目的によって実験条件を定める
必要がある。
Therefore, it is necessary to determine experimental conditions depending on the purpose of each experiment, whether it is a drug permeation experiment through the skin or a drug release experiment from a base.

[発明が解決しようとする課題〕 、  w占 しかしながら、この拡散セルを用いたin−vitro
経皮吸収実験は次に示す問題が生じる。
[Problems to be solved by the invention] However, in-vitro studies using this diffusion cell
Transdermal absorption experiments pose the following problems.

ひとつは、HPLC測定の際に拡散セル内の溶媒(生理
食塩水)を適量抽出するため膜と溶媒との界面に気泡が
生じ易いことである。これは、長時間の測定において結
果の再現性及び精度に影響を及ぼす。二つめに実験の目
的つまり、基剤からの薬剤の放出速度測定、薬剤の膜透
過速度測定によって、それぞれ異なる条件で別個に測定
を行う必要があることである。従って、実際に適用する
薬物(薬剤十基剤)の、薬剤の基剤から皮膚への放出過
程そして薬剤の皮膚透過過程を同一の系で測定すること
はできない。この2つの問題点を解決すれば、−回の測
定で基剤と薬剤と皮膚透過に関する情報を簡便に得、る
ことかできる。
One is that bubbles are likely to be generated at the interface between the membrane and the solvent because an appropriate amount of the solvent (physiological saline) in the diffusion cell is extracted during HPLC measurement. This affects the reproducibility and precision of results in long-term measurements. Second, the purpose of the experiment is to measure the release rate of the drug from the base and the membrane permeation rate of the drug, and it is necessary to perform separate measurements under different conditions. Therefore, it is not possible to measure the release process from the drug base to the skin and the skin permeation process of the drug actually applied (10 drug bases) using the same system. If these two problems are solved, information regarding the base, drug, and skin permeation can be easily obtained in just one measurement.

見且△且血 本発明は前記従来技術の問題点に鑑みなされたものであ
り、その目的は平行型セルより臨床状態に近い系である
垂直型拡散セルを用いて、ドナー側の基剤からの薬剤の
放出過程とレシーバ側の薬剤の皮膚透過過程を採取する
ことなしに同時にリアルタイムで高感度に測定可能な経
皮吸収評価装置を提供することにある。
The present invention was made in view of the problems of the prior art described above, and its purpose is to use a vertical diffusion cell, which is a system closer to clinical conditions than a parallel cell, to remove blood from the base on the donor side. The object of the present invention is to provide a transdermal absorption evaluation device that can simultaneously measure the drug release process and the skin permeation process of the drug on the receiver side with high sensitivity in real time without sampling.

[課題を解決するための手段1 前記目的を達成するため、本発明にかかる経皮吸収測定
装置は、石英を立方体状に加工した垂直型拡散セルに、
光音響測定部と、吸光度測定部と、を備える。
[Means for Solving the Problems 1] In order to achieve the above object, the transdermal absorption measuring device according to the present invention includes a vertical diffusion cell made of quartz processed into a cubic shape.
It includes a photoacoustic measurement section and an absorbance measurement section.

ここで、光音W信号及び吸光度の測定に、光源としてレ
ーザー光を用いることを特徴とする特また、この時、ひ
とつのレーザー光を2方向に分光し、それぞれ光音響測
定及び吸光度測定に用いたことを特徴とする。
Here, in a special feature in which a laser beam is used as a light source for measuring the photoacoustic W signal and absorbance, one laser beam is split into two directions and used for photoacoustic measurement and absorbance measurement, respectively. It is characterized by having been.

光音W測定部は、一端が開放され試料面に略気密に挿着
可能で他端にマイクロフォンが設置された筒体よりなり
、開放端を採取した皮膚上の試料(薬剤十基剤)に挿着
した状態で筒体に備えたライトガイドにより該試料面に
光°を照射可能に形成されている。
The photoacoustic W measurement unit consists of a cylindrical body that is open at one end and can be inserted almost airtight onto the sample surface, and a microphone is installed at the other end. When inserted, the sample surface can be irradiated with light by a light guide provided in the cylinder.

ここで、光音響測定部の試料との挿着部近傍は、光透過
性材よりなり、この部分にライトガイドを備えているこ
とを特徴とする。
Here, the vicinity of the insertion part of the photoacoustic measuring part with the sample is made of a light-transmitting material, and is characterized in that this part is provided with a light guide.

また、前述した装置において、光音響測定部に用いられ
る光透過性材は石英ガラスよりなることが好適である。
Moreover, in the above-described apparatus, it is preferable that the light-transmitting material used in the photoacoustic measuring section be made of quartz glass.

光透過性材により形成された部分は、挿着部より10〜
50mmであることも好適である。
The part formed of the light-transmitting material is about 10 to 10 minutes from the insertion part.
It is also suitable that it is 50 mm.

光音響測定部を形成する筒体の容量を可変とすることも
好適である。
It is also preferable to make the capacity of the cylinder forming the photoacoustic measuring section variable.

吸光度測定部は石英を加工した垂直型拡散セルにレーザ
ー光を透過させ、測定を行う。
The absorbance measurement section performs measurements by transmitting laser light through a vertical diffusion cell made of processed quartz.

この時、セルの光照射部は光に対して、垂直面であるこ
とを特徴とする。
At this time, the light irradiation part of the cell is characterized in that it is perpendicular to the light.

また、光照射部はセルの中央付近であることも好適であ
る。
Further, it is also preferable that the light irradiation part be located near the center of the cell.

そこで、本発明では変調したレーザー光を2方向に分光
することで、それぞれ光音響測定、及び吸光度測定を同
時にリアルタイムで行うことが可能となった。
Therefore, in the present invention, by splitting the modulated laser beam into two directions, it has become possible to perform photoacoustic measurement and absorbance measurement simultaneously in real time.

[作用] 本発明にかかる経皮吸収評価装置は、前述した手段を有
するので、臨床系に近い垂直型拡散セルを用いたin−
vitro経皮吸収評価において、皮膚上の基剤からの
薬剤の放出過程を光音響測定で、また、薬剤の皮膚透過
過程を吸光度法にて、同時にリアルタイムで測定可能と
なる。
[Function] The percutaneous absorption evaluation device according to the present invention has the above-mentioned means, so it can be used in an in-house using a vertical diffusion cell similar to a clinical system.
In vitro transdermal absorption evaluation, it becomes possible to simultaneously measure in real time the process of drug release from the base on the skin by photoacoustic measurement, and the process of drug permeation through the skin by spectrophotometry.

従って、従来法と比較して、より臨床状態に近い系にお
いて、実使用の製剤の、基剤からの薬剤の放出過程及び
N剤の皮膚透過過程を一回で測定可能となる。
Therefore, compared to conventional methods, it is possible to measure the drug release process from the base and the skin permeation process of the N agent in an actually used formulation in a system that is closer to clinical conditions in one go.

[実施例1 以下、図面に基づいて本発明の好適な実施例を説明する
[Embodiment 1] Hereinafter, a preferred embodiment of the present invention will be described based on the drawings.

第1図には本発明の一実施例にかかる経皮吸収測定装置
のセンサ一部分が示されている。
FIG. 1 shows a portion of a sensor of a transdermal absorption measuring device according to an embodiment of the present invention.

同図に示す、経皮吸収評価装置のセンサ一部分は、光音
響センサ一部と、石英を加工した垂直型拡散セルと、吸
光度測定部と、処理部と、よりなる。
The sensor portion of the percutaneous absorption evaluation device shown in the same figure includes a portion of a photoacoustic sensor, a vertical diffusion cell made of processed quartz, an absorbance measuring section, and a processing section.

光音響センサーは、図中上端にマイクロフォンが配置さ
れ、下端は開放されて皮膚挿着部を形成する。該皮膚挿
着部には、皮膚接触用ゴム(〇−リング)が設置され、
皮膚との間を略気密に保つ。
In the photoacoustic sensor, a microphone is placed at the upper end in the figure, and the lower end is open to form a skin insertion part. A skin contact rubber (〇-ring) is installed in the skin insertion part,
Keeps the space between it and the skin almost airtight.

また、前記マイクロフォンはブロック化され、該ブロッ
クの外周部は雄ネジ状にネジ切りされている。そして、
光音響センサー上部の雌ネジ状にネジ切り形成された部
分に上下位置調節自在にねじ込まれている。
Further, the microphone is formed into a block, and the outer periphery of the block is threaded into a male thread. and,
The photoacoustic sensor is screwed into the female-threaded part at the top of the sensor so that its vertical position can be adjusted freely.

本発明において特徴的なことは、光音響センサーの皮膚
との挿着部近傍を光透過性材より構成したことであり、
このために本実施例においては、光音響センサーの先端
よりや<40mmにわたって石英ガラスで構成している
The characteristic feature of the present invention is that the vicinity of the part where the photoacoustic sensor is inserted into the skin is made of a light-transmitting material,
For this reason, in this embodiment, the photoacoustic sensor is made of quartz glass over a distance of <40 mm from the tip.

なお、該石英ガラス部の上端よりマイクロフォンの間は
従来と同様、真鍮などの材質により形成されている。
Note that the space between the upper end of the quartz glass portion and the microphone is made of a material such as brass, as in the prior art.

垂直型拡散セルは、従来、ガラスで加工されるものを石
英で加工し、さらに、吸光度測定ができるように光の照
射部位を直方体にした。
The vertical diffusion cell is made of quartz instead of glass, and the light irradiation area is made into a rectangular parallelepiped so that absorbance can be measured.

なお、測定時には、従来と同じ方法で拡散セル内の生理
食塩水を回転子とマグネジトスタラーにより、撹拌する
Note that during measurement, the physiological saline in the diffusion cell is stirred using a rotor and a magnetic stirrer in the same manner as in the conventional method.

吸光度測定部は、拡散セルを透過した光をフォトセルに
て測定する系にて構成されている。
The absorbance measurement section is configured with a system that measures light transmitted through a diffusion cell using a photocell.

この時、吸光度測定のためのレーザー光は、ざらに2方
向に分光され、ひとつは、吸光度の測定信号を得るため
に拡散セルに、他方は参照信号として、フォトセルに導
かれる。
At this time, the laser beam for absorbance measurement is roughly split into two directions, one of which is guided to a diffusion cell to obtain an absorbance measurement signal, and the other is guided to a photocell as a reference signal.

処理部は、前記マイクロフォンと前記フォトセルである
The processing section is the microphone and the photocell.

ここで、前記経皮吸収評価装置のセンサ一部を含む、全
体の装置系が第2図に示されている。
Here, the entire device system including a part of the sensor of the percutaneous absorption evaluation device is shown in FIG.

光源として用いたアルゴンレーザー光を光チョッパーに
より変調を行い、その後でビームスプリッタ−によって
2方向に分光し、光音響及び吸光度測定にそれぞれ用い
られる。
The argon laser beam used as a light source is modulated by an optical chopper, and then split into two directions by a beam splitter, which are used for photoacoustic and absorbance measurements, respectively.

本実施例にかかる光音響測定装置は、概略以上のように
構成され、以下にその作用について説明する。
The photoacoustic measuring device according to this embodiment is roughly configured as described above, and its operation will be described below.

従来、感度を向上させるための対策であったセル内部の
気体の密閉度を高めることは、使用性に問題を生じさせ
、またセル内部気体の完全密閉は物理的に不可能である
Increasing the sealing degree of the gas inside the cell, which has been a conventional measure to improve sensitivity, causes problems in usability, and it is physically impossible to completely seal the gas inside the cell.

そこで、本実施例では、セル内部気体の半密閉状態を利
用して、環境ノイズの影響を強く受けない高い周波数(
3kHz以上)にてヘルムホルツ共鳴をおこさせ、光音
響セル特有の共鳴周波数を測定している。従って、その
信号は極大であり、かつ、セルの容量を微小に変化させ
ることにより共鳴周波数にて最適な信号の増大を図るこ
とができる。
Therefore, in this example, by utilizing the semi-sealed state of the gas inside the cell, a high frequency (
Helmholtz resonance is generated at a frequency of 3 kHz or higher), and the resonance frequency unique to the photoacoustic cell is measured. Therefore, the signal is maximum, and by minutely changing the capacitance of the cell, it is possible to optimally increase the signal at the resonant frequency.

しかも、前期信号は、ロックインアンプにより共鳴周波
数成分のみを取りだしているので、in−situiq
Il定において、目的の光音響信号のみの測定を行うこ
とができる。
Moreover, since only the resonant frequency components of the early signal are extracted by the lock-in amplifier, in-situ
In the Il determination, only the desired photoacoustic signal can be measured.

すなわち、光音響センサーは、O−リングを介して試料
表面に挿着される。
That is, the photoacoustic sensor is inserted onto the sample surface via an O-ring.

光音響センサーには、レーザー光源より、光ファイバを
介してレーザー光の変調光が導光され、皮膚上の試料(
薬剤十基剤)を局所的に照射する。
In the photoacoustic sensor, modulated laser light is guided from a laser light source through an optical fiber, and a sample (
Locally irradiate the drug (10 drug bases).

ところで、被測定試料が皮膚および軟膏などの強散乱性
物質の場合、試料からの反射光、散乱光の影響は無視で
きなくなる。
By the way, when the sample to be measured is a strongly scattering substance such as skin or ointment, the influence of reflected light and scattered light from the sample cannot be ignored.

そこで前述したように本実施例では光音響セルの、試料
と挿着する部分に適当な長さ(40mm)の石英ガラス
部を設けることで、試料からの反射光、散乱光を影響の
ない外部に放出させ、精度、感度の向上を図っている。
Therefore, as mentioned above, in this example, by providing a quartz glass part of an appropriate length (40 mm) in the part of the photoacoustic cell that is inserted into the sample, reflected light and scattered light from the sample is directed to the outside without any influence. The aim is to improve accuracy and sensitivity.

なお、石英ガラス部の長さは10mmから50mmとす
ることで事実上十分な性能向上を図ることができる。
Note that by setting the length of the quartz glass portion to 10 mm to 50 mm, a sufficient performance improvement can be achieved in practice.

そして、試料内で発生した光音響信号は、気体の疎密波
に変換され、セルの他面に装着したマイクロフォンで受
音する。
The photoacoustic signal generated within the sample is converted into a gas compressional wave, and the sound is received by a microphone attached to the other side of the cell.

また、ネジ切りされたブロックに装着されたマイクロフ
ォンはネジで位置を調整し、セル内部の容積を調整する
ことができる。
In addition, the position of the microphone attached to the threaded block can be adjusted using a screw, and the volume inside the cell can be adjusted.

そして、セル内部の容積を変化させることにより、測定
時の共鳴周波数に最適なヘルムホルツ共鳴を起こさせる
ことができる。
By changing the volume inside the cell, Helmholtz resonance optimal for the resonance frequency at the time of measurement can be caused.

このとき、容積が10μL変化すると共鳴周波数は3H
z変化するため、微小な調整のできるネジ切りが必要で
ある。
At this time, when the volume changes by 10 μL, the resonance frequency changes to 3H.
Since z changes, a thread cutter that allows minute adjustments is required.

そして、第2図に示すように、光音響センサーより検出
された信号S1はロックインアンプに入力され、該ロッ
クインアンプは、照射光の変調周波数と光チョッパーで
発生した同じ周波数成分のみを81より取り出し、出力
する。そして、チャートレコーダーで記録し、コンピュ
ーターで信号解析する。
Then, as shown in FIG. 2, the signal S1 detected by the photoacoustic sensor is input to a lock-in amplifier, and the lock-in amplifier converts only the modulation frequency of the irradiation light and the same frequency component generated by the optical chopper into 81 Take it out and output it. The signal is then recorded using a chart recorder and analyzed using a computer.

以上前述したように光音響センサーの作用により皮膚上
の基剤からの薬剤の放出過程を測定可能である。
As described above, the process of drug release from the base on the skin can be measured by the action of the photoacoustic sensor.

次に、この時同時にリアルタイムで薬剤の皮膚透過過程
を測定する、前述の概略で構成される吸光度法の作用に
ついて説明する。
Next, we will explain the function of the absorbance method, which simultaneously measures the skin permeation process of the drug in real time and is structured as outlined above.

従来、薬剤の皮膚透過過程は拡散セル内の溶媒(生理食
塩水等)を定期的に採取し、HPLC等で定量分析を行
っている。この方法は、皮膚と溶媒の界面に気泡が発生
しやすく、そのため、得られるデータの精度に影響を与
え、かつ、操作上困難である。
Conventionally, in the skin permeation process of drugs, a solvent (such as physiological saline) in a diffusion cell is periodically sampled and quantitatively analyzed using HPLC or the like. This method tends to generate bubbles at the skin-solvent interface, which affects the accuracy of the data obtained and is difficult to operate.

さらに、レーザー光は波長特性が優れているため、従来
法より高感度に測定可能である。
Furthermore, since laser light has excellent wavelength characteristics, measurements can be made with higher sensitivity than conventional methods.

そこで、本実施例では、溶媒を採取することなしに皮膚
透過する薬剤を定量するため、レーザー光を用いて、吸
光度測定を行っている。
Therefore, in this example, in order to quantify the drug that permeates the skin without collecting the solvent, absorbance measurement is performed using laser light.

変調されたレーザー光の一方(他方光は光音響測定に使
用)は、ざらに2方向に分光され、一方を石英より作成
した吸光度測定可能な垂直型拡散セルに、他方を参照信
号(■2)として検出器であるフォトセルに導光される
One of the modulated laser beams (the other beam is used for photoacoustic measurement) is roughly split into two directions, one of which is sent to a vertical diffusion cell made of quartz that can measure absorbance, and the other is sent to a reference signal (■2 ) is guided to a photocell, which is a detector.

測定信号(11)および参照信号(工2)は作動アンプ
に導かれ、この差信号(■3)を基に、コンピューター
により吸光度を定める。
The measurement signal (11) and the reference signal (Step 2) are guided to an operating amplifier, and the computer determines the absorbance based on this difference signal (■3).

この時同時に、光音響信号及び吸光度の経時変化の解析
が行なわれる。
Simultaneously at this time, analysis of the photoacoustic signal and changes in absorbance over time is performed.

以上前述の、光音響信号及び吸光度の同時、かつ、リア
ルタイム測定により、−回の測定で簡便かつ迅速に、基
剤からの薬剤放出過程及び、薬剤の皮膚透過過程を測定
可能である。
By simultaneously measuring the photoacoustic signal and the absorbance in real time as described above, it is possible to easily and quickly measure the drug release process from the base and the skin permeation process of the drug in one measurement.

次に実際の測定例について説明する。Next, an actual measurement example will be explained.

ヘアレスマウスの皮膚を用いて、前記図1及び図2に示
す装置系にてin−vitro経皮吸収評価実験を行っ
た。ヘアレスマウスの皮膚(真皮層までで、脂肪部は除
去)の5mmφ内に3%シコニン軟膏を6mg (シコ
ニン180μgに相当)塗布し、拡散セル内の溶媒には
、生理食塩水を用い、光音響信号及び吸光度の同時測定
を行った。結果を図3、図4及び図5に示す。
An in-vitro transdermal absorption evaluation experiment was conducted using the skin of a hairless mouse using the apparatus shown in FIGS. 1 and 2. 6 mg of 3% shikonin ointment (equivalent to 180 μg of shikonin) was applied to a 5 mm diameter area of the skin of a hairless mouse (up to the dermis layer, the fat area was removed), and physiological saline was used as the solvent in the diffusion cell, and photoacoustic Simultaneous signal and absorbance measurements were performed. The results are shown in FIGS. 3, 4 and 5.

図3において、縦軸は吸光度及び光音響信号強度、縦軸
は時間を示す。
In FIG. 3, the vertical axis represents absorbance and photoacoustic signal intensity, and the vertical axis represents time.

光音W信号の減少に伴い、吸光度の上昇が確認された。As the optical sound W signal decreased, an increase in absorbance was confirmed.

つまり、皮膚上のシコニン量の減少とそれに伴う皮膚透
過したシコニン量の増加が同時に観察された。吸光度の
みだれは、皮膚由来の浮遊物によるものである。
In other words, a decrease in the amount of shikonin on the skin and an accompanying increase in the amount of shikonin that permeated the skin were simultaneously observed. The drop in absorbance is due to floating matter derived from the skin.

25時間後の測定終了時に皮膚と溶媒の界面を観察した
が、気泡は観察されなかった。
At the end of the measurement after 25 hours, the interface between the skin and the solvent was observed, but no bubbles were observed.

図4において、縦軸は吸光度を定量化したもので、横軸
は、時間を示す。従って、薬剤の皮膚透過速度である。
In FIG. 4, the vertical axis represents the quantification of absorbance, and the horizontal axis represents time. Hence, the skin permeation rate of the drug.

皮膚透過したシコニン量は7時間のラグタイムの後、時
間に比例して増加し、25時間後には塗布量の3.7%
のシコニンが皮膚透過したことが認められた。ラグタイ
ムが通常より大きくなったのは、レシーバの生理食塩水
の温度を室温状態(200C)で測定を行ったためと思
われる。
The amount of shikonin that permeated the skin increased in proportion to time after a 7-hour lag time, and after 25 hours, it was 3.7% of the applied amount.
It was observed that shikonin permeated through the skin. The reason why the lag time was longer than usual is probably because the temperature of the physiological saline in the receiver was measured at room temperature (200C).

図5において、縦軸は光音響信号の減少値(初期光音響
信号からの信号の減少値)、横軸(よ、時間を示す。同
図に示したように光音響信号の減少値は時間の平方根に
比例した。光音W信号の減少値は皮膚上のシコニンの減
少量に対応する。従って、得られた光音響信号の経時変
化を基剤からの薬剤の放出過程と考えると、Higuc
hiの拡散理論と良い相関を示した。
In Figure 5, the vertical axis indicates the decrease value of the photoacoustic signal (the decrease value of the signal from the initial photoacoustic signal), and the horizontal axis (the decrease value of the signal from the initial photoacoustic signal) indicates time. The decrease value of the photoacoustic W signal corresponds to the amount of decrease in shikonin on the skin.Therefore, if we consider the change in the obtained photoacoustic signal over time as the process of drug release from the base, Higuc
It showed a good correlation with the diffusion theory of hi.

以上の結果より、光音響信号と吸光度同時測定による、
in−vitro経皮吸収経皮吸収評価法床状態に近い
系において、基剤からの薬剤放出過程及び薬剤の皮膚透
過過程を同時にリアルタイムで測定可能であることがわ
かった。
From the above results, by simultaneous measurement of photoacoustic signal and absorbance,
In-vitro transdermal absorption percutaneous absorption evaluation method It has been found that the drug release process from the base and the drug permeation process through the skin can be simultaneously measured in real time in a system similar to bed conditions.

以上説明したように本実施例にかかる経皮吸収評価装置
によれば、臨床状態に近し)系である垂直型拡散セルを
用いたin−vitro経皮吸収実験において、光音響
測定により、皮膚上の基剤力)らの薬剤放出過程を、ま
た、吸光度により、薬剤の皮膚透過過程を測定すること
ができる。
As explained above, according to the percutaneous absorption evaluation device according to the present example, in an in-vitro percutaneous absorption experiment using a vertical diffusion cell, which is a system close to clinical conditions, skin absorption was measured by photoacoustic measurement. It is possible to measure the drug release process (see above) and the skin permeation process of the drug by absorbance.

そして、アルゴンレーザー等の可視レーザーに、BB○
等の非線型光学結晶を組合せることで、紫外光を発振さ
せ、多くの薬剤を測定できる。
Then, apply BB○ to a visible laser such as an argon laser.
By combining nonlinear optical crystals such as , it is possible to oscillate ultraviolet light and measure many drugs.

従って、赤外・可視・紫外と光源の波長を可変させるこ
とによって、基剤、薬剤、皮膚への透過に関する情報を
える装置として広範な応用性が期待できる。
Therefore, by varying the wavelengths of the light source, including infrared, visible, and ultraviolet light, this device can be expected to have a wide range of applicability as a device that can obtain information regarding the penetration of base materials, drugs, and skin.

なお、本発明にかかる経皮吸収評価装置は、共鳴周波数
での最適な容積設定可能な光音響センサーを用いること
、及び、その時、吸光度を同時に測定する構造である限
り、拡散セル等の形状、大きざ、長さなどはなんら制限
されるものではないO [発明の効果] 本発明は前述したように構成されているので、次に記載
する効果を奏する。
Note that the percutaneous absorption evaluation device according to the present invention uses a photoacoustic sensor that can set the optimal volume at the resonance frequency, and as long as it has a structure that simultaneously measures absorbance, the shape of the diffusion cell, etc. The size, length, etc. are not limited in any way. [Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.

請求項(1)に記載の経皮吸収評価装置によれば、軟膏
等の強散乱性物質の測定に有効な光音響法を、一般に利
用されている拡散セルを用いたin−vitro経皮吸
収実験に初めて適用したことで、新規な経皮吸収評価装
置の開発が可能となる。
According to the transdermal absorption evaluation device according to claim (1), the photoacoustic method, which is effective for measuring strongly scattering substances such as ointments, can be applied to in-vitro transdermal absorption using a commonly used diffusion cell. By applying this method to experiments for the first time, it becomes possible to develop a new percutaneous absorption evaluation device.

請求項(2)に記載の装置によれば、レーザー光を光源
に使用することで、高感度な薬剤の分析が可能となる。
According to the apparatus according to claim (2), by using a laser beam as a light source, highly sensitive drug analysis becomes possible.

請求項(3)に記載の装置によれば、in−vivo、
in−situ測定可能な光音響測定装置を用いること
で、より臨床状態に近いin−vitr○経皮吸収評価
装置となる。
According to the device according to claim (3), in-vivo,
By using a photoacoustic measurement device capable of in-situ measurement, an in-vitr○ transdermal absorption evaluation device that is closer to clinical conditions can be achieved.

請求項(4)に記載の装置によれば、高感度に光音W8
!II定同時にリアルタイムで吸光度測定が可能となる
According to the device according to claim (4), the optical sound W8 can be produced with high sensitivity.
! It becomes possible to measure the absorbance in real time at the same time as II constant.

請求項(5)に記載の装置によれば、臨床状態に近い系
で、皮膚上の基剤からの薬剤放出過程を新規に測定可能
となる。
According to the device according to claim (5), it becomes possible to newly measure the drug release process from the base on the skin in a system similar to clinical conditions.

請求項(6)に記載の装置によれば、拡散セルの溶媒を
採取することなしに皮膚透過した薬剤量を定量できる。
According to the device according to claim (6), it is possible to quantify the amount of drug that has permeated the skin without collecting the solvent in the diffusion cell.

請求項(7)に記載の装置によれば、実使用の製剤を用
いて、−回の測定で、基剤からの薬剤放出過程、及び、
薬剤の皮膚透過過程を測定できる。従って、簡便、迅速
に基剤、薬剤、皮膚透過に関する情報を得ることができ
る。
According to the device according to claim (7), the process of drug release from the base can be determined by -times of measurement using a preparation in actual use, and
The process of drug permeation through the skin can be measured. Therefore, information on bases, drugs, and skin permeation can be obtained easily and quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例にかかる経皮吸収評価装置
のセンサ一部の説明図、 第2図は、前記第1図に示した装置の回路構成の説明図
、 第3図は、第1図に示した装置によるヘアレスマウスの
皮膚を用いてのin−vitro経皮吸収評価実験の測
定結果の説明図。 第4図は、第3図の測定結果における吸光度の経時変化
を定量化した結果の説明図。 第5図は、第3図の測定結果における光音響信号の経時
変化を初期信号からの減少値として表した結果の説明図
FIG. 1 is an explanatory diagram of a part of the sensor of a percutaneous absorption evaluation device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the circuit configuration of the device shown in FIG. 1, and FIG. , is an explanatory diagram of the measurement results of an in-vitro transdermal absorption evaluation experiment using the skin of a hairless mouse using the apparatus shown in FIG. 1. FIG. 4 is an explanatory diagram of the results of quantifying the change in absorbance over time in the measurement results of FIG. 3. FIG. 5 is an explanatory diagram of the measurement results of FIG. 3, in which the change over time in the photoacoustic signal is expressed as a decrease value from the initial signal.

Claims (7)

【特許請求の範囲】[Claims] (1)in−vitro経皮吸収実験に一般に用いられ
ている垂直型拡散セルに光音響測定装置を適用したこと
を特徴とする経皮吸収評価装置。
(1) A transdermal absorption evaluation device characterized in that a photoacoustic measuring device is applied to a vertical diffusion cell commonly used in in-vitro transdermal absorption experiments.
(2)請求項(1)記載の装置において、レーザー光を
用いることを特徴とする経皮吸収評価装置。
(2) A transdermal absorption evaluation device according to claim (1), characterized in that a laser beam is used.
(3)請求項(1)または(2)のいずれかに記載の装
置において、in−vivo、in−situ測定可能
な光音響測定装置(昭和63年1月27日付けで特許出
願)を用いたことを特徴とする経皮吸収評価装置。
(3) The device according to claim (1) or (2), which uses a photoacoustic measurement device (patent application filed on January 27, 1988) capable of in-vivo, in-situ measurement. A transdermal absorption evaluation device characterized by:
(4)請求項(1)記載の装置において、石英を立方体
状に加工した垂直型拡散セルを用いたことを特徴とする
経皮吸収評価装置。
(4) A percutaneous absorption evaluation device according to claim (1), characterized in that a vertical diffusion cell made of cubic quartz is used.
(5)請求項(1)記載の装置において、膜上の薬剤の
減少量の経時変化を請求項(3)記載の装置で測定する
ことを特徴とする経皮吸収評価装置。
(5) A transdermal absorption evaluation device according to claim (1), characterized in that the device according to claim (3) measures changes over time in the amount of decrease in the amount of drug on the membrane.
(6)請求項(4)記載の装置において、膜透過した薬
剤量の経時変化を吸光度により測定することを特徴とす
る経皮吸収評価装置。
(6) A transdermal absorption evaluation device according to claim (4), characterized in that the change over time in the amount of drug that has permeated through the membrane is measured by absorbance.
(7)請求項(5)〜(6)に記載の測定を同時にリア
ルタイムで測定可能なことを特徴とする経皮吸収評価装
置。
(7) A transdermal absorption evaluation device capable of simultaneously performing the measurements according to claims (5) and (6) in real time.
JP1225221A 1989-08-31 1989-08-31 Evaluating apparatus of percutaneous absorption Pending JPH0389146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1225221A JPH0389146A (en) 1989-08-31 1989-08-31 Evaluating apparatus of percutaneous absorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1225221A JPH0389146A (en) 1989-08-31 1989-08-31 Evaluating apparatus of percutaneous absorption

Publications (1)

Publication Number Publication Date
JPH0389146A true JPH0389146A (en) 1991-04-15

Family

ID=16825890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1225221A Pending JPH0389146A (en) 1989-08-31 1989-08-31 Evaluating apparatus of percutaneous absorption

Country Status (1)

Country Link
JP (1) JPH0389146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504585A (en) * 2000-07-14 2004-02-12 トランスフォーム ファーマシューティカルズ,インコーポレーティッド. Systems and methods for optimizing tissue barrier transport of compounds
JP2016518612A (en) * 2013-05-16 2016-06-23 ロレアル Apparatus and method for determining a diffusion profile of at least one molecule from the skin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504585A (en) * 2000-07-14 2004-02-12 トランスフォーム ファーマシューティカルズ,インコーポレーティッド. Systems and methods for optimizing tissue barrier transport of compounds
JP2016518612A (en) * 2013-05-16 2016-06-23 ロレアル Apparatus and method for determining a diffusion profile of at least one molecule from the skin

Similar Documents

Publication Publication Date Title
US6285448B1 (en) Clinical analyte determination by infrared spectroscopy
Wartewig et al. Pharmaceutical applications of Mid-IR and Raman spectroscopy
US8391939B2 (en) Metering glucose level in pulsing blood
US5348003A (en) Method and apparatus for chemical analysis
US5348002A (en) Method and apparatus for material analysis
US8352005B2 (en) Noninvasive blood analysis by optical probing of the veins under the tongue
JP2989496B2 (en) Quantitative analysis method of sample liquid
Meadows Recent developments with biosensing technology and applications in the pharmaceutical industry
JPH01131436A (en) Spectroscopic measuring method for saccharide concentration
WO2002026152A8 (en) A method for quantification of stratum corneum hydration using diffuse reflectance spectroscopy
US20080214913A1 (en) Surface-Enhanced Spectroscopy with Implanted Biosensors
EP2922469B1 (en) Non-invasive reagentless glucose determination
WO2005012553A2 (en) Optical in vivo probe of analyte concentration within the sterile matrix under the human nail
AU3914400A (en) Method and apparatus for noninvasive measurement of carotenoids and related chemical substances in biological tissue
EP1199554A3 (en) Analytical method and apparatus for blood using near infrared spectroscopy
EP0478136B1 (en) Photoacoustic cell and photoacoustic measuring device
EP1666870A3 (en) Analytical method and apparatus for liquid sample using near infrared spectroscopy
FR2393296A1 (en) METHOD AND APPARATUS FOR QUANTITATIVE DETERMINATION OF OPTICALLY ACTIVE SUBSTANCES
ATE276700T1 (en) SPECTROSCOPIC MEASUREMENTS ON LIGHT-SCATTERING TEST SPECIMEN USING AN INTEGRATION CAVITY
Wang et al. Comparison of different infrared measurement techniques in the clinical analysis of biofluids
US20090324498A1 (en) Method of measuring quantity of in-vivo substance by use of coherent anti-stokes raman scattered light
JPS5939698B2 (en) Method for analyzing components retained in fibrous media
EP1642115A1 (en) Ir-atr-based process and apparatus for analysing very small amounts of sample in the nanoliter range
JPH0389146A (en) Evaluating apparatus of percutaneous absorption
Manciu et al. Detection and monitoring of neurotransmitters—A spectroscopic analysis