JPH0388739A - Calcium phosphate-based glass and humidity conditioning melting method therefor - Google Patents

Calcium phosphate-based glass and humidity conditioning melting method therefor

Info

Publication number
JPH0388739A
JPH0388739A JP20630289A JP20630289A JPH0388739A JP H0388739 A JPH0388739 A JP H0388739A JP 20630289 A JP20630289 A JP 20630289A JP 20630289 A JP20630289 A JP 20630289A JP H0388739 A JPH0388739 A JP H0388739A
Authority
JP
Japan
Prior art keywords
glass
calcium phosphate
absorbance
melting
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20630289A
Other languages
Japanese (ja)
Inventor
Akira Watanabe
明 渡辺
Yoshimitsu Takeuchi
武内 祥光
Seiji Kihara
木原 誠治
Toshimasa Otsuki
大月 敏正
Makoto Koto
光藤 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kyushu Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd filed Critical Kyushu Refractories Co Ltd
Publication of JPH0388739A publication Critical patent/JPH0388739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the glass which is excellent in aesthetic appreciation property, mechanical strength and chemical durability by regulating absorbance per unit thickness of OH group based on moisture in calcium phosphate-based glass whose Ca/P (atomic ratio) is regulated to a specified range to a range within the prescribed value. CONSTITUTION:In the case of producing calcium phosphate-based crystallized glass whose Ca/P (atomic ratio) is 0.1-0.7, the value AOH (hereinafter simply defined as absorbance) of absorbance shown in a formula of calcium phosphate-based glass being a starting substance thereof is regulated to 0.01-0.5mm<-1>. Thereby crystallized glass described hereunder can be obtained by the ensuing crystallizing operation for the above-mentioned glass. This crystallized glass is uniform and free from a crack and a bore, etc., in grain boundary and excellent in aesthetic appreciation property. In this case, when calcium phosphate-based glass being the starting substance is melted in order to regulate absorbance to a range within the above-mentioned value, it is necessary that melting is performed in the gaseous atmosphere of 0.01-10g-H<2>O/Nm<3> absolate humidity. The above-mentioned crystallized glass has transparency very close to natural teeth free from unevenness and therefore is preferably utilized as the restorative material of a crown.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は歯科溶材料などとして有用なリン酸カルシウム
系ガラスおよび該ガラスを溶融する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a calcium phosphate glass useful as a dental melting material and a method for melting the glass.

〔従来の技術〕[Conventional technology]

リン酸カルシウム系結晶化ガラスは生体の骨や歯と組成
が類似しており、生体とのなじみのよさから注目されて
いる歯科材料あるいは人工骨材料である。このリン酸カ
ルシウム系結晶化ガラスは原料混合物を溶融ガラス化し
た材料を再溶融したものか、あるいは原料混合物の溶融
物を直接ロストワックス法などで鋳造成形してガラス鋳
造体を製造した後、熱処理により結晶化することによっ
°ζ製造される。通常この溶融はリン酸カルシウム系材
料の場合も金属系材料と同様に大気中でそのま\行われ
ている。
Calcium phosphate-based crystallized glass has a composition similar to that of living bones and teeth, and is a dental material or artificial bone material that is attracting attention because of its compatibility with living bodies. This calcium phosphate-based crystallized glass is made by remelting the material obtained by melting and vitrifying the raw material mixture, or by directly casting the melted raw material mixture using a lost wax method etc. to produce a glass casting, and then crystallizing it by heat treatment. °ζ is produced by oxidation. Normally, this melting is carried out in the atmosphere for calcium phosphate materials as well as for metal materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

リン酸カルシウム系ガラス材料は特に水分を含みやすく
、その水分には付着水と構造水がある。
Calcium phosphate-based glass materials are particularly prone to containing water, and this water includes attached water and structured water.

付着水は加熱乾燥によって比較的脱水されやすいが、ガ
ラス分子の末端にOH基の形で存在する構造水は脱水し
にくい上、しかもその水分が後のガラスの結晶化に多大
の影響を及ぼすのである。
Adhering water is relatively easily dehydrated by heating and drying, but structural water that exists in the form of OH groups at the ends of glass molecules is difficult to dehydrate, and furthermore, this water has a great effect on the subsequent crystallization of the glass. be.

すなわち、ガラス中の構造水が多いとガラスの結晶化速
度は大きくなり、結晶粒が大きく成長して、その結果結
晶化ガラスの強度が低下してしまうのである。また、結
晶粒が大きいと光の透過性が不均一となり、歯冠などの
場合は審美性が低下する。さらに、ガラス中の水分が多
いことは末端OH基が多いことであり、結晶化ガラスの
反応性が大きく、化学的安定性に欠けるなどの欠点が生
じるのである。
In other words, when there is a large amount of structural water in the glass, the crystallization rate of the glass increases, crystal grains grow large, and as a result, the strength of the crystallized glass decreases. Furthermore, if the crystal grains are large, the light transmittance will be uneven, and the aesthetics will be degraded in the case of dental crowns and the like. Furthermore, a large amount of water in the glass means a large number of terminal OH groups, resulting in drawbacks such as high reactivity of crystallized glass and lack of chemical stability.

逆にガラス中の水分が少なすぎるL、結晶化速度が遅く
、結晶化に長時間を要し経済的に不利となる。また、結
晶化操作の時間を短くすると、結晶化度が不足し製品の
機械的強度が低下するのである。
On the other hand, if the water content in the glass is too low, the crystallization rate will be slow and crystallization will take a long time, which is economically disadvantageous. Furthermore, if the crystallization operation time is shortened, the degree of crystallinity is insufficient and the mechanical strength of the product is reduced.

このようなことから、ガラス中の水分を速度な状態に保
つことが必須要件となるのである。しかし、ガラス中の
水分を定量的に測定することは困難であるが、末端OH
基については赤外線分光法により定量可能であり、それ
により間接的にガラス中の構造水の測定ができる。即ち
、赤外線透過法による分光分析において0−H(P−0
−H)の伸縮振動に起因する吸収帯は波数が2900 
cm−’(波長3.45μm)付近に現れることが知ら
れているので、次式によりガラス中のOH基数に対応す
る試料の単位厚さ当りの吸光度を求めることができる。
For this reason, it is essential to maintain the moisture content in the glass at a constant rate. However, it is difficult to quantitatively measure the water content in glass;
The groups can be quantified by infrared spectroscopy, thereby indirectly measuring the structural water in the glass. That is, in spectroscopic analysis using infrared transmission method, 0-H(P-0
-H) absorption band caused by stretching vibration has a wave number of 2900
cm-' (wavelength: 3.45 μm), the absorbance per unit thickness of the sample corresponding to the number of OH groups in the glass can be determined using the following equation.

AO)l = (A29[1O−A4(100) /l
 (mm″″Xi   (1)A、2900:波数29
00 cm−’付近の赤外線吸収ピークの吸光度 A4000:波数40口Ocm−’の赤外線吸収の吸光
度(バックグラウンド) t   ニガラス板試料の厚さ [m「!]〔課題を解
決するための手段〕 本発明者らはリン酸カルシウム系結晶化ガラスヲ製造す
る際の出発物質であるリン酸カルシウム系ガラスの製造
条件について検討を重ねた結果、このガラスの溶融物と
雰囲気との間で水分の平衡関係が存在し、ガラス中の水
分量は溶融時の雰囲気中の絶対湿度に依存すること、ま
た、ガラス組成のカルシウムとリンの比率にも依存する
ことをつきとめ、カルシウムに対するリンの原子比Ca
/Pが0.1〜1.7であるリン酸カルシウム系結晶化
ガラスを製造するに際し、その出発物質であるリン酸カ
ルシウム系ガラスの上記(1)式による吸光度の値AO
H(以下単に吸光度いう)が0.01〜0.5 mm−
’であれば後の結晶化操作によって均一で結晶粒界にク
ラックやボアなどのない審美性に優れた結晶化ガラスを
製造することが可能であり、吸光度を上記の値範囲内と
するためには溶融する際に溶融を絶対湿度0.01〜1
0 g−820/ Nm3の気体雰囲気中で行うことに
よって可能であることを見出し本発明を完成させたもの
である。
AO)l = (A29[1O-A4(100)/l
(mm″″Xi (1) A, 2900: wave number 29
Absorbance of infrared absorption peak near 00 cm-' A4000: Absorbance of infrared absorption at wave number 40 Ocm-' (background) t Thickness of Niglass plate sample [m''!] [Means for solving the problem] Book The inventors have repeatedly studied the manufacturing conditions of calcium phosphate glass, which is the starting material for producing calcium phosphate crystallized glass, and have found that there is an equilibrium relationship of moisture between the molten material of this glass and the atmosphere. We found that the amount of moisture in the glass depends on the absolute humidity in the atmosphere at the time of melting, and also on the ratio of calcium to phosphorus in the glass composition.
When producing a calcium phosphate-based crystallized glass in which /P is 0.1 to 1.7, the absorbance value AO of the calcium phosphate-based glass that is the starting material according to the above formula (1)
H (hereinafter simply referred to as absorbance) is 0.01 to 0.5 mm-
', it is possible to produce uniform crystallized glass with excellent aesthetics without cracks or bores at grain boundaries through the subsequent crystallization operation, and in order to keep the absorbance within the above value range. When melting, the absolute humidity is 0.01~1
The present invention was completed by discovering that this is possible by conducting the process in a gas atmosphere of 0 g-820/Nm3.

〔発明の構成および作用〕[Structure and operation of the invention]

リン酸塩ガラスを大気中で溶融して調製する場合、大気
湿度は季節、天候、時刻、溶融場所の換気状態や冷暖房
の有無などにより時々刻々に変化するため、ガラス中の
水分は湿度の高い雰囲気中で溶融すると多くなり、吸光
度では70.5〜4m「1の範囲で変化する。吸光度が
l mm”を越えるようなリン酸塩ガラスを結晶化する
と、結晶粒が粗大化すると共に結晶粒界にクラックやボ
アが生じ外観が不透明となり機械的強度や化学的耐久性
に劣る結晶化ガラスとなる。また、吸光度が0.5〜1
mn+−’の範囲のガラスを結晶化すると、吸光度がl
mm−’を越える場合よりも透明度は良くなるが、結晶
成長方向に従って組織に方向性が現れると共に乱れが生
じ易く、その結果機械的強度や化学的耐久性は不安定な
ものとなり外観的に白い斑点が現れるために、歯冠修復
材料としては審美性に劣るものとなる。一方、吸光度が
0.01mm−1以下のリン酸塩ガラスの場合には結晶
化速度が非常に遅くなり、結晶化に長時間を要するとい
う不都合が生じる。
When preparing phosphate glass by melting it in the atmosphere, the atmospheric humidity changes from moment to moment depending on the season, weather, time of day, ventilation conditions in the melting area, presence of air conditioning, etc., so the moisture in the glass is high. When melted in an atmosphere, the amount increases, and the absorbance varies in the range of 70.5 to 4 mm.When crystallizing phosphate glass with an absorbance exceeding 1 mm, the crystal grains become coarser and Cracks and bores occur in the crystallized glass, resulting in an opaque appearance and inferior mechanical strength and chemical durability. In addition, the absorbance is 0.5 to 1
When a glass in the range mn+-' is crystallized, the absorbance becomes l
Although the transparency is better than when it exceeds mm-', the structure becomes directional according to the crystal growth direction and disorder is likely to occur, resulting in unstable mechanical strength and chemical durability and a white appearance. Because of the appearance of spots, it is less aesthetically pleasing as a dental crown restoration material. On the other hand, in the case of a phosphate glass having an absorbance of 0.01 mm<-1> or less, the crystallization rate becomes extremely slow, resulting in the disadvantage that crystallization takes a long time.

吸光度が0.01〜0.5開−1の範囲のリン酸塩ガラ
スを結晶化して得られる結晶化ガラスは微細な結晶が特
定の方向性を持つことなく緻密に集合した組織となり、
安定した高い機械的強度と化学的耐久性を示すと共に、
ムラのない天然歯に非常に近い透明性を有するため、歯
冠修復材料として好適なものとなる。
Crystallized glass obtained by crystallizing phosphate glass with an absorbance in the range of 0.01 to 0.5-1 has a structure in which fine crystals are densely aggregated without any specific directionality.
In addition to exhibiting stable high mechanical strength and chemical durability,
Since it has a transparency that is very close to that of natural teeth without unevenness, it is suitable as a dental crown restoration material.

以下本発明の吸光度の範囲のガラスの製造方法について
詳述する。
The method for producing glass having an absorbance range according to the present invention will be described in detail below.

本発明のリン酸カルシウム系ガラスとはリン酸と酸化カ
ルシウムの2戒分あるいはリン酸と酸化カルシウムおよ
びアルミナの3戊分を基本とし、それに融点や粘性を低
下させるためのアルカリ金属酸化物、強度を向上させる
ための希土類酸化物や各種着色剤、着色助剤などを添加
したものである。また、このリン酸カルシウム系ガラス
と他のケイ酸塩ガラスを始めとする各種ガラスとの混合
ガラスにも応用できる。
The calcium phosphate glass of the present invention is basically composed of two components: phosphoric acid and calcium oxide, or three components: phosphoric acid, calcium oxide, and alumina, and also contains alkali metal oxides to lower the melting point and viscosity, and improve strength. It contains rare earth oxides, various coloring agents, coloring aids, etc. It can also be applied to mixed glasses of this calcium phosphate glass and various glasses including other silicate glasses.

本発明のリン酸カルシウム系ガラスの調湿溶融方法は原
料混合物を溶融反応させる場合にも、原料溶融物を一旦
急冷ガラス化して粉砕したものを再溶融する場合にも、
また尚科技工などにおいて歯冠などの形状に鋳造する際
の溶融にも使用できるものである。通常の歯冠などの製
造方法においては、原料の溶融などはガラス供給者によ
って行われ、鋳造の際の溶融は歯科技工士が行う場合が
多く、従って原料ガラス溶融と鋳造の際の溶融とは異な
る雰囲気湿度条件下で行われるのが通例である。また原
料溶融と再溶融とでも溶融時期が異なると溶融雰囲気湿
度条件に差が生じる。このように各溶融によってガラス
中に含まれる水分に変化が生じ、常に最適な結晶化ガラ
スを得るのが困難となる。しかし、本発明の方法によれ
ば、上記各溶融を同一雰囲気湿度条件で行うことができ
るので、一定の水分を含有するリン酸カルシウム系ガラ
スを得ることが可能となり、従って最適な結晶化が可能
となるのである。
The humidity-controlled melting method for calcium phosphate glass of the present invention can be applied both when melting and reacting a raw material mixture and when remelting a raw material melt that has been rapidly cooled and vitrified and then ground.
It can also be used for melting when casting into shapes such as dental crowns in science and technology. In normal manufacturing methods for dental crowns, etc., the raw material is melted by the glass supplier, and the melting during casting is often performed by a dental technician.Therefore, there is a difference between raw glass melting and melting during casting. It is customary to carry out under different atmospheric humidity conditions. Furthermore, if the melting times differ between melting the raw material and remelting, a difference will occur in the humidity conditions of the melting atmosphere. As described above, each melting causes a change in the water content in the glass, making it difficult to always obtain the optimum crystallized glass. However, according to the method of the present invention, each of the above melting processes can be performed under the same atmospheric humidity conditions, making it possible to obtain a calcium phosphate glass containing a certain amount of moisture, and thus making it possible to achieve optimal crystallization. It is.

本発明の調湿溶融方法は溶融炉中の溶融物の雰囲気に一
定湿度の気体を流すことに特徴があるもので、雰囲気用
の気体には空気、酸素、窒素、アルゴン、ヘリウム、炭
酸ガスなどを使用することができる。これらは一般にボ
ンベ詰めのものを用いるが、空気の場合は大気をコンプ
レッサーやポンプなとで送ることも可能である。これら
の各種気体の中では酸素や空気あるいは炭酸ガスなどの
酸化性気体の使用がより好ましい。これはガラスが溶融
中に酸素が一部抜けて還元状態となり、後の結晶化の際
にクラックができるのを防ぐためである。
The humidity-controlled melting method of the present invention is characterized by flowing a gas at a constant humidity into the atmosphere of the melt in the melting furnace, and the atmosphere gas includes air, oxygen, nitrogen, argon, helium, carbon dioxide, etc. can be used. These are generally packed in cylinders, but in the case of air, it is also possible to send atmospheric air using a compressor or pump. Among these various gases, it is more preferable to use an oxidizing gas such as oxygen, air, or carbon dioxide. This is to prevent some of the oxygen from leaving the glass during melting, resulting in a reduced state, which prevents cracks from forming during subsequent crystallization.

雰囲気用気体は適当な水分含量に調湿される。The atmospheric gas is adjusted to an appropriate moisture content.

調湿の方法は各種の方法が用いられるが、例えばボンベ
詰めのガスなど雰囲気気体の水分含量が目標とする水分
含量より低い場合には、一定温度の恒温水槽中でバブリ
ングすることにより水を気体中に飽和させた後調湿機で
冷却して一部の水分を除湿することにより調湿される。
Various methods are used to control humidity, but for example, if the moisture content of the atmospheric gas is lower than the target moisture content, such as gas packed in a cylinder, water can be converted into a gas by bubbling in a constant temperature water bath. After saturating the air, the humidity is controlled by cooling it with a humidifier and dehumidifying some of the moisture.

恒温水槽中でのバブリングのみによって調湿することも
可能であるが、調湿機で除湿した方がより精密な調湿が
できる。また、雰囲気気体の水分含量が目標値よりも斎
い場合、例えば室内の空気を使用する場合は直接調湿殴
で一部の水分を除湿するだけでも可能である。調湿機を
出た含水気体は湿度をモニターした後溶融炉に導入され
る。
Although it is possible to control humidity only by bubbling in a constant temperature water tank, more precise humidity control can be achieved by dehumidifying with a humidifier. Furthermore, when the moisture content of the atmospheric gas is lower than the target value, for example when indoor air is used, it is possible to simply dehumidify some of the moisture by direct humidity control. The moisture-containing gas leaving the humidity controller is introduced into the melting furnace after monitoring its humidity.

含水量は絶対湿度で0.01〜10g−H20/ Nm
3の範囲とし、Ca/P比により加減する。Ca/P比
が高い場合は少なく設定する。この湿度が10g−H2
0/Nm3を越えると結晶化において結晶粒が大きくな
り、機械的強度と審美性が低下する。また、その値が0
.01g−H20/ Nw’未満では結晶化操作の際の
結晶化速度が遅く結晶化度が低くなり、従って強度低下
となりいずれも好ましくない。
Water content is 0.01-10g-H20/Nm in absolute humidity
3, and adjust according to the Ca/P ratio. If the Ca/P ratio is high, set it low. This humidity is 10g-H2
When it exceeds 0/Nm3, crystal grains become large during crystallization, and mechanical strength and aesthetics deteriorate. Also, the value is 0
.. If it is less than 01g-H20/Nw', the crystallization rate during the crystallization operation will be slow and the degree of crystallinity will be low, resulting in a decrease in strength, which is not preferable.

実際に結晶化に影響するのはガラス中の構造水であるが
、実験の結果、ガラス中の構造水の量と平衡に達した雰
囲気の絶対湿度とははり直線的な相関関係があることが
判明した。実際にはガラス中の水分量は、一定時間経過
後(後述の気体流量範囲では1時間程度)の雰囲気気体
の絶対湿度の測定値と、予め求めた該装置における絶対
湿度とガラス中の水分量の相関より決定できる。
It is the structural water in the glass that actually affects crystallization, but experiments have shown that there is a linear correlation between the amount of structural water in the glass and the absolute humidity of the atmosphere that has reached equilibrium. found. In reality, the amount of moisture in the glass is determined by the measured absolute humidity of the atmospheric gas after a certain period of time (approximately 1 hour in the gas flow range described below), the absolute humidity of the device determined in advance, and the amount of moisture in the glass. It can be determined from the correlation of

溶融炉の形式や形状は問わないが、なるべく気密性のよ
い電気炉が望ましく、気体の出入口を必要とする。比較
的オープン状態に近い炉で気体の導入口のみを持ったも
のも使用できるが、正確な調湿は期待できない。気体の
1分間当りの流量は炉の空隙容積の0.1〜5倍が適当
である。
Although the type and shape of the melting furnace does not matter, an electric furnace with good airtightness is preferable and requires an inlet/outlet for gas. A relatively open furnace with only a gas inlet can be used, but accurate humidity control cannot be expected. The gas flow rate per minute is suitably 0.1 to 5 times the void volume of the furnace.

溶融炉からの気体は湿度モニターを通って排出される。Gas from the melting furnace is vented through a humidity monitor.

溶融炉を設置する室(溶融室)はその空気中の湿度が季
節的、時間的変動を受け、その結果溶融炉の雰囲気がど
うしてもその影響を受ける。溶融炉の気密性が完全であ
っても炉蓋を開閉する際には必然的に炉内の気体が溶融
室内の空気と一時的にでも置換されるので、できれば室
全体の調湿を行うことが好ましい。特に雰囲気気体とし
て溶融室の空気を使用する場合には必要である。
The humidity in the air in a room (melting chamber) in which a melting furnace is installed is subject to seasonal and temporal fluctuations, and as a result, the atmosphere of the melting furnace is inevitably affected by this. Even if the melting furnace is completely airtight, when opening and closing the furnace lid, the gas inside the furnace will inevitably be replaced by the air in the melting chamber, even if only temporarily, so it is recommended to control the humidity of the entire chamber if possible. is preferred. This is especially necessary when the air in the melting chamber is used as the atmospheric gas.

〔実施例〕〔Example〕

実施例 1 溶融室のエアコンをスタートさせ室内の湿度を一定とし
た。酸素ボンベより毎分1す・ノトルの流速で酸素ガス
を35℃の恒温槽中の水にバブリングさせ水を飽和させ
た後、調湿機を通して絶対湿度3  g−1h O/ 
Nm3とし、1360℃に昇温した内容積2リツトルの
電気炉に導入した。
Example 1 The air conditioner in the melting chamber was started to keep the humidity in the room constant. Oxygen gas was bubbled into the water in a thermostatic chamber at 35°C at a flow rate of 1 cubic meter per minute from an oxygen cylinder to saturate the water, and then passed through a humidifier to an absolute humidity of 3 g-1h O/min.
Nm3 and introduced into an electric furnace with an internal volume of 2 liters heated to 1360°C.

炉から排出される気体の湿度が一定に達したらCa 0
21.8重量%、Al2O39,3重量%、P2O66
8,9重量%に相当する炭酸カルシウム、アルミナおよ
びリン酸混合粉を内容積100 mlの白金ルツボに1
00gずつ入れて、炉内に入れ溶融を開始する。
When the humidity of the gas discharged from the furnace reaches a certain level, Ca 0
21.8% by weight, Al2O39.3% by weight, P2O66
A mixed powder of calcium carbonate, alumina and phosphoric acid equivalent to 8.9% by weight was placed in a platinum crucible with an internal volume of 100 ml.
00g at a time, put into the furnace and start melting.

溶融を1時間行った後ルツボを取り出し溶融物をカーボ
ン板上に流して冷却ガラス化した。
After melting for 1 hour, the crucible was taken out and the melt was poured onto a carbon plate to cool and vitrify.

実施例 2 実施例1と同じ組成のリン酸カルシウム系ガラスを雰囲
気気体を流さずに溶融、冷却ガラス化して調製し、さら
に得られたガラスを1mm以下に粉砕したものを用意し
ておく。
Example 2 Calcium phosphate glass having the same composition as in Example 1 was prepared by melting, cooling and vitrifying without flowing an atmospheric gas, and the resulting glass was ground into pieces of 1 mm or less.

実施例1と同様に電気炉を用意し、酸素ガスも同じ絶対
湿度と流量とする。前記粉砕物を内容積50m1の白金
ルツボに50g入れたものを炉中に挿入し、炉から排出
される気体の湿度が一定に達したら昇温を開始して13
60℃で75分間溶融した後、ルツボを取り出し溶融物
をカーボン板上に流して冷却ガラス化した。
An electric furnace is prepared in the same manner as in Example 1, and the oxygen gas has the same absolute humidity and flow rate. 50g of the pulverized material was placed in a platinum crucible with an internal volume of 50m1, and the mixture was inserted into the furnace, and when the humidity of the gas discharged from the furnace reached a certain level, the temperature was started to increase.
After melting at 60° C. for 75 minutes, the crucible was taken out and the melt was poured onto a carbon plate to cool and vitrify.

実施例 3 シールの不完全な炉内容積的160 cT[I3の溶融
炉を1360℃に昇温し、実施例1で用いた調湿機を用
いて室内の空気を絶対湿度3 g−H20/ NTIT
3に調湿し流量500 rnl/minで炉内の白金ル
ツボの真上に導入した。
Example 3 A melting furnace with an incomplete seal and an internal volume of 160 cT[I3 was heated to 1360°C, and the indoor air was heated to an absolute humidity of 3 g-H20/ using the humidity controller used in Example 1. N.T.I.T.
The humidity was adjusted to 3 and introduced into the furnace directly above the platinum crucible at a flow rate of 500 rnl/min.

約10m1の白金ルツボに実施例2で調製したガラスを
log入れて炉内にセットした。溶融は15分間行い、
500°Cに予熱した鋳型に注いで歯冠形状に鋳造成形
した。次いでこの鋳造体を700℃で10時間処理して
結晶化した。
A log of the glass prepared in Example 2 was placed in a platinum crucible of approximately 10 ml and set in a furnace. Melting was carried out for 15 minutes,
It was poured into a mold preheated to 500°C and cast into the shape of a tooth crown. This cast body was then treated at 700° C. for 10 hours to crystallize it.

比較例 l 実施例2で得られたガラスを気体を流すことなしに夏場
(絶対湿度15g−)120/ Nm”)に実施例3と
同様に溶融炉で溶融し、鋳造後詰晶化した。
Comparative Example 1 The glass obtained in Example 2 was melted in a melting furnace in the same manner as in Example 3 in the summer (absolute humidity 15 g - 120/Nm") without flowing gas, and after casting, it was packed and crystallized.

実施例 4 実施例1および3と同様にしてCa/P  (原子比0
.55に相当するリン酸および炭酸カルシウム混合粉を
用いて、気体を窒素ガスとし、絶対湿度を7g−820
/ Nwr’で溶融、鋳造、結晶化した。
Example 4 Ca/P (atomic ratio 0
.. Using phosphoric acid and calcium carbonate mixed powder equivalent to No. 55, the gas was nitrogen gas, and the absolute humidity was 7 g-820.
/ Nwr' melted, cast and crystallized.

〔発明の効果〕〔Effect of the invention〕

実施例1および2において厚さ3mmの板状試料を作製
し、その吸光度を測定したところいずれも0.1±0.
05mm’であった。ところが、比較例1で溶融したガ
ラスは結晶化前で0.9mm’とかなり水分含量の多い
ことを示している。その結果結晶化後の曲げ強さは実施
例3で1500 kg/cd、比較例1で350kg/
c−とかなり差があり、外観も実施例3ではむらのない
半透明乳白色であったのに対して比較例1ではかなり不
透明で色ムラや白斑点がみられ、審美性の点でもかなり
異なっていた。なお、実施例4の試料の赤外線吸光度の
測定値は最初の溶融時も鋳造後もいずれも0.3±0.
05n+m−’とは\゛同氷水分量あった。
In Examples 1 and 2, plate-shaped samples with a thickness of 3 mm were prepared and their absorbances were measured and found to be 0.1±0.
It was 05mm'. However, the glass melted in Comparative Example 1 has a considerably high water content of 0.9 mm' before crystallization. As a result, the bending strength after crystallization was 1500 kg/cd in Example 3 and 350 kg/cd in Comparative Example 1.
There was a considerable difference in appearance from C-, and the appearance was also translucent milky white with no unevenness in Example 3, whereas Comparative Example 1 was quite opaque with uneven color and white spots, and the aesthetics were also quite different. was. In addition, the measured value of infrared absorbance of the sample of Example 4 was 0.3±0.
05n+m-' had the same amount of ice and water.

また、実施例3.4、比較例1において3x4x32 
rnmの棒状試料を結晶化しそれをそれぞれ1%乳酸水
溶液中に37℃で7日間浸漬して溶出量を測定したとこ
ろ、それぞれ1.9.2.2および4.5mgであり、
本発明のものが化学的耐久性もあることがわかった。
In addition, in Example 3.4 and Comparative Example 1, 3x4x32
When rod-shaped samples of rnm were crystallized and immersed in a 1% lactic acid aqueous solution at 37°C for 7 days and the elution amounts were measured, they were 1.9, 2.2 and 4.5 mg, respectively.
It was found that the product of the present invention is also chemically durable.

このように本発明の調湿溶融方法はリン酸カルシウム系
ガラスのような水分含量の多い試料では特に有用である
こεを示しており、適切な含水量に調整することによ′
り審美性や機械的強度、化学的耐久性に優れた歯科材料
が製造できることがわかる。
This shows that the humidity-controlled melting method of the present invention is particularly useful for samples with high moisture content, such as calcium phosphate glasses, and by adjusting the moisture content to an appropriate level.
It can be seen that dental materials with excellent aesthetics, mechanical strength, and chemical durability can be produced.

Claims (2)

【特許請求の範囲】[Claims] (1)カルシウムに対するリンの原子比Ca/Pが0.
1〜1.7であるリン酸カルシウム系ガラス中の水分に
基づくOH基の単位厚み当りの吸光度の値が0.01〜
0.5mm^−^1の範囲であることを特徴とするリン
酸カルシウム系ガラス。
(1) The atomic ratio of phosphorus to calcium, Ca/P, is 0.
The absorbance value per unit thickness of OH group based on the moisture in the calcium phosphate glass is 0.01 to 1.7.
Calcium phosphate glass characterized by having a thickness in the range of 0.5 mm^-^1.
(2)カルシウムに対するリンの原子比Ca/Pが0.
1〜1.7であるリン酸カルシウム系結晶化ガラスを製
造するに際し、リン酸カルシウム系ガラスの溶融時に溶
融を絶対湿度0.01〜10g−H_2O/Nm^3の
気体雰囲気中で行うことを特徴とするリン酸カルシウム
系ガラスの調湿溶融方法。
(2) The atomic ratio of phosphorus to calcium, Ca/P, is 0.
1 to 1.7, the calcium phosphate glass is melted in a gas atmosphere with an absolute humidity of 0.01 to 10 g-H_2O/Nm^3. Moisture-controlled melting method for glass.
JP20630289A 1989-06-01 1989-08-08 Calcium phosphate-based glass and humidity conditioning melting method therefor Pending JPH0388739A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14076989 1989-06-01
JP1-140769 1989-06-01

Publications (1)

Publication Number Publication Date
JPH0388739A true JPH0388739A (en) 1991-04-15

Family

ID=15276322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20630289A Pending JPH0388739A (en) 1989-06-01 1989-08-08 Calcium phosphate-based glass and humidity conditioning melting method therefor

Country Status (1)

Country Link
JP (1) JPH0388739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7909698B2 (en) 2003-09-12 2011-03-22 Namco Bandai Games, Inc. Input device, input determination method, game system, game system control method, program, and information storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173019A (en) * 1974-12-20 1976-06-24 Toshio Fukui
JPS59141508A (en) * 1983-02-01 1984-08-14 Kyushu Refract Co Ltd Restorative dental material of corona dentis of crystallized glass of calcium phosphate system
JPS63252942A (en) * 1987-04-10 1988-10-20 Asahi Glass Co Ltd Phosphate based crystalline glass for dental material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173019A (en) * 1974-12-20 1976-06-24 Toshio Fukui
JPS59141508A (en) * 1983-02-01 1984-08-14 Kyushu Refract Co Ltd Restorative dental material of corona dentis of crystallized glass of calcium phosphate system
JPS63252942A (en) * 1987-04-10 1988-10-20 Asahi Glass Co Ltd Phosphate based crystalline glass for dental material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7909698B2 (en) 2003-09-12 2011-03-22 Namco Bandai Games, Inc. Input device, input determination method, game system, game system control method, program, and information storage medium

Similar Documents

Publication Publication Date Title
Pereira et al. Calcium phosphate formation on sol‐gel‐derived bioactive glasses in vitro
Bui et al. Bioactive glass 58S prepared using an innovation sol-gel process
Li et al. An investigation of bioactive glass powders by sol‐gel processing
Salinas et al. Biomimetic apatite deposition on calcium silicate gel glasses
Kaur et al. Assessment of in vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: An optico-analytical approach
Nayak et al. Effect of sintering temperature on mechanical behaviour and bioactivity of sol–gel synthesized bioglass-ceramics using rice husk ash as a silica source
Radin et al. Effect of serum proteins on solution‐induced surface transformations of bioactive ceramics
Spirandeli et al. Incorporation of 45S5 bioglass via sol-gel in β-TCP scaffolds: Bioactivity and antimicrobial activity evaluation
Lugo et al. Material processing of a new calcium silicophosphate ceramic
Brauer et al. Effect of degradation rates of resorbable phosphate invert glasses on in vitro osteoblast proliferation
El-Damrawi et al. Structural investigations on Na2O–CaO-V2O5-SiO2 bioglass ceramics
JPH0388739A (en) Calcium phosphate-based glass and humidity conditioning melting method therefor
US3617231A (en) Method of controlling the softening point and working temperature of soda-lime glass by regulating the water content of the glass melt
Lutisanova et al. Comparison of bioactivity in vitro of glass and glass ceramic materials during soaking in SBF and DMEM medium
CN110606743B (en) Method for preparing artificial diamond ring by using bone ash and product thereof
JP2502087B2 (en) Phosphate Crystalline Glass for Dental Materials
JPH09301734A (en) Calcium phosphate glass and crystallized glass
森本繁樹 Formation, absorption and emission spectra of Cr4+ ions in Li2O-SiO2 system transparent glass-ceramics
JP3561566B2 (en) Method for producing mixed powder composition of sugar and maltitol with high fluidity
CN114956560B (en) Crystal glaze, preparation method thereof and crystal glaze ceramic product
RU2765471C1 (en) Method for producing bioglass doped with zirconium dioxide
SU1715774A1 (en) Method of optical ceramics preparation
Goudouri Novel bioactive ceramics for dental applications
SU979296A1 (en) Raw mix for producing phosphate binder
Ivanova et al. Bioactive ceramics in the CaO-Al 2 O 3-P 2 O 5-ZnO system prepared by the sol-gel technology: Code: GP1