JPH0388209A - High polymer solid electrolyte - Google Patents

High polymer solid electrolyte

Info

Publication number
JPH0388209A
JPH0388209A JP1224265A JP22426589A JPH0388209A JP H0388209 A JPH0388209 A JP H0388209A JP 1224265 A JP1224265 A JP 1224265A JP 22426589 A JP22426589 A JP 22426589A JP H0388209 A JPH0388209 A JP H0388209A
Authority
JP
Japan
Prior art keywords
crosslinked network
solid polymer
polymer electrolyte
network
crosslinked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1224265A
Other languages
Japanese (ja)
Inventor
Shuichi Ido
秀一 井土
Hiroshi Imachi
宏 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP1224265A priority Critical patent/JPH0388209A/en
Publication of JPH0388209A publication Critical patent/JPH0388209A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase mechanical strength by forming a full interpenetrating network structure where a first crosslinked network is entwined with a second crosslinked network. CONSTITUTION:More than 2 crosslinked-network-forming compounds selected from a group made up of acrylate, methacrylate, styrene and acryl compounds are different in reactivity, a faster reactive one of which compounds faster is reacted to form a first crosslinked network. Then, a structural body which has formed such a second crosslinked network that the first crosslinked network is entwined with a slow reactive compound, is made to contain ionic salt. It is thereby possible to get high polymer solid electrolyte having good mechanical strength.

Description

【発明の詳細な説明】 産業上の利用分野 、本発明は1次電池、2次電池、エレクトロクロ汽りデ
ィスプレイ、電気化学センサーイオントフォレーシス、
及びコンデンサー等の電気化学的デバイスに用いる高分
子固体電解質に関するものである。
[Detailed Description of the Invention] The present invention relates to the field of industrial application, primary batteries, secondary batteries, electrochromic displays, electrochemical sensors, iontophoresis,
and solid polymer electrolytes used in electrochemical devices such as capacitors.

従来技術とその問題点 従来、アクリロイル変性ポリアルキレンオキシドとイオ
ン性塩を均一に混和させたものを架橋ネットワークとし
た高分子固体電解質が提案されているが、機械的強度が
小さいという問題点があった。
Conventional technologies and their problems Conventionally, solid polymer electrolytes have been proposed in which a crosslinked network is formed by uniformly mixing acryloyl-modified polyalkylene oxide and ionic salts, but this method has the problem of low mechanical strength. Ta.

発明の目的 (4) 本発明は上記従来の問題点に鑑みなされたものであり、
機械的強度に優れた高分子固体電解質を提供することを
目的とするものである。
Purpose of the invention (4) The present invention has been made in view of the above-mentioned conventional problems,
The purpose is to provide a solid polymer electrolyte with excellent mechanical strength.

発明の構成 本発明は上記目的を達成するべく、 アクリレート系、メタクリレート系、スチレン系、アリ
ル系化合物よりなる群から2種以上選んだ架橋ネットワ
ーク形成化合物の反応性の反応性が異なり、反応性の速
い化合物を反応させ第1の架橋ネットワークを形成し、
該架橋ネットワークに反応性の遅い化合物によって絡む
ように第2の架橋ネットワークを形成させた構造体がイ
オン性塩を含むことを特徴とする高分子固体電解質であ
る。
Structure of the Invention In order to achieve the above-mentioned object, the present invention provides a method in which two or more crosslinked network-forming compounds selected from the group consisting of acrylate-based, methacrylate-based, styrene-based, and allyl-based compounds have different reactivities. reacting a fast compound to form a first crosslinked network;
The solid polymer electrolyte is characterized in that the structure in which a second crosslinked network is formed so as to be entangled with the crosslinked network by a compound with slow reactivity contains an ionic salt.

又、架橋ネットワーク形成化合物がポリエーテル構造を
有する前記の高分子固体電解質である。
Moreover, the crosslinked network forming compound is the above-mentioned solid polymer electrolyte having a polyether structure.

又、ポリエーテルがポリエチレンオキシド又はポリプロ
ピレンオキシド又はエチレンオキシドとプロピレンオキ
シドの共重合体である前記の高分子固体電解質である。
Further, the above solid polymer electrolyte is one in which the polyether is polyethylene oxide, polypropylene oxide, or a copolymer of ethylene oxide and propylene oxide.

又、反応が電離性放射線、又は可視光線、又は紫外線、
又は熱による前記の高分子固体電解質である。
Also, if the reaction is caused by ionizing radiation, visible light, or ultraviolet light,
Or the above-mentioned polymer solid electrolyte by heat.

又、前記の構造体がイオン性塩の他に、イオン性塩を溶
解することができる化合物を含む高分子固体電解質であ
る。
Further, the above-mentioned structure is a solid polymer electrolyte containing not only an ionic salt but also a compound capable of dissolving the ionic salt.

作用 第1の架橋ネットワークに第2の架橋ネットワークに絡
み合ったフルインターペネトレイティングネットワーク
構造を形成させることによって、機械的強度が増大する
Effect Mechanical strength is increased by forming a fully interpenetrating network structure in which the first crosslinked network is intertwined with the second crosslinked network.

実施例 以下、本発明の詳細について実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

実施例1 ポリエチレンオキシドジアクリレート(平均分子量52
0)5重量部、ポリエチレンオキシドジメタクリレート
(平均分子量540)5重量部、トリフルオロメタンス
ルホン酸リチウム1.3重量部を均一に混合し、溶解し
た。この混合物をガラス板上にキャストし、2.0Mr
adの電子線を照射した。次に5M r a dの電子
線を照射し、50μmのフィルムを得た。このフィルム
のイオン伝導度を複素インピーダンス法で測定したとこ
ろ、1x 10’ S cm −” (温度25℃)を
示した。コノ膜の引張強度は30kg/c−であった。
Example 1 Polyethylene oxide diacrylate (average molecular weight 52
0), 5 parts by weight of polyethylene oxide dimethacrylate (average molecular weight 540), and 1.3 parts by weight of lithium trifluoromethanesulfonate were uniformly mixed and dissolved. This mixture was cast on a glass plate and 2.0 Mr.
irradiated with ad electron beam. Next, an electron beam of 5M rad was irradiated to obtain a 50 μm film. When the ionic conductivity of this film was measured by the complex impedance method, it was found to be 1 x 10' S cm -'' (temperature 25°C). The tensile strength of the Kono membrane was 30 kg/c -.

比較例1 ポリエチレンオキシドジアクリレート(平均分子量52
0)10重量部、トリフルオロメタンスルホン酸リチウ
ム1.3重量部を均一に混合し、溶解した。この混合物
をガラス板にキャストし、2.0Mradの電子線を照
射し、50μmのフィルムを得た。このフィルムのイオ
ン伝導度を複素インピーダンス法で測定したところ、I
 X 10−68 aa−1(温度25℃)を示した。
Comparative Example 1 Polyethylene oxide diacrylate (average molecular weight 52
0) and 1.3 parts by weight of lithium trifluoromethanesulfonate were uniformly mixed and dissolved. This mixture was cast on a glass plate and irradiated with an electron beam of 2.0 Mrad to obtain a 50 μm film. When the ionic conductivity of this film was measured using the complex impedance method, it was found that I
X 10-68 aa-1 (temperature 25°C).

この膜の引張強度は18kg / cjであった。The tensile strength of this membrane was 18 kg/cj.

実施例2 実施例1の組成物にプロピレンカーボネート10重量部
を加えて、同様の方法で50μmのフィルムを得た。こ
の時のイオン伝導度は、複素インピーダンス法で5×1
0→5(7)−1(温度25℃)で、引張強度は15k
g/dであった。
Example 2 10 parts by weight of propylene carbonate was added to the composition of Example 1, and a 50 μm film was obtained in the same manner. The ionic conductivity at this time is 5×1 using the complex impedance method.
0→5(7)-1 (temperature 25℃), tensile strength is 15k
g/d.

比較例2 比較例1の組成物にプロピレンカーボネート10重量部
を加えて、同様の方法で50μmのフィルムを得た。こ
の時のイオン伝導度は、複素インピーダンス法で6X1
0−’Sca+−1(温度25℃)で、引張強度は4.
5kg/cdであった。
Comparative Example 2 10 parts by weight of propylene carbonate was added to the composition of Comparative Example 1, and a 50 μm film was obtained in the same manner. The ionic conductivity at this time is 6X1 using the complex impedance method.
At 0-'Sca+-1 (temperature 25°C), the tensile strength is 4.
It was 5 kg/cd.

実施例3 ポリエチレンオキシドジアクリレート(平均分子量52
0)5重量部、トリアリルエーテル化ポリエチレンオキ
シド(平均分子量3000)5重量部、トリフルオロメ
タンスルホン酸リチウム1.3重量部、プロピレンカ−
ボネート10重量部を均一に混合溶解し、ガラス板上に
キャストし、2.9Mradの電子線を照射し、次にg
QMradの電子線を照射し、50μmのフィルムを得
た。この膜のイオン伝導度は複素インピーダンス法によ
ると8 X 10=Scs−’ (温度25℃)であっ
た。引張強度は13kg/cjであった。
Example 3 Polyethylene oxide diacrylate (average molecular weight 52
0) 5 parts by weight, 5 parts by weight of triallyl etherified polyethylene oxide (average molecular weight 3000), 1.3 parts by weight of lithium trifluoromethanesulfonate, propylene carbon
10 parts by weight of carbonate were uniformly mixed and melted, cast on a glass plate, irradiated with an electron beam of 2.9 Mrad, and then g
A 50 μm film was obtained by irradiation with a QMrad electron beam. The ionic conductivity of this membrane was 8 x 10=Scs-' (temperature 25°C) according to the complex impedance method. The tensile strength was 13 kg/cj.

実施例4 実施例3の組成物にベンゾフェノン1重量部を加えて、
ガラス板上にキャストし、15備の距離からIKWのU
Vランプで10秒間紫外線を照射し、次に40秒間照射
を10回繰り返した。得られた膜の厚味は50μmで、
イオン伝導度は複素インピーダンス法によると8 X 
1045cm−1(温度25℃)、引張強度は12kg
/c−であった。
Example 4 1 part by weight of benzophenone was added to the composition of Example 3,
Cast it on a glass plate and use IKW's U from a distance of 15 minutes.
Ultraviolet rays were irradiated with a V lamp for 10 seconds, and then irradiation for 40 seconds was repeated 10 times. The thickness of the obtained film was 50 μm,
According to the complex impedance method, the ionic conductivity is 8
1045cm-1 (temperature 25℃), tensile strength is 12kg
/c-.

イオン性塩を溶解することができる化合物は、テトラヒ
ドロフラン、2−メチルテトラヒドロフラン1.3−ジ
オキソラン、4,4−ジメチル−1,3−ジオキサン、
γ−ブチロラクトン、エチレンカーボネート、プロピレ
ンカーボネート、ブチレンカーボネート、スルホラン、
3−メチルスルホラン、tert、−ブチルエーテル、
1so−ブチルエーテル、1.2ジメトキシエタン、1
.2エトキシメトキシエタン、メチルジグライム、メチ
ルトリグライム、メチルテトラグライム、エチルグライ
ム、エチルジグライムなどがあるが限定はしない。
Compounds that can dissolve ionic salts include tetrahydrofuran, 2-methyltetrahydrofuran 1,3-dioxolane, 4,4-dimethyl-1,3-dioxane,
γ-butyrolactone, ethylene carbonate, propylene carbonate, butylene carbonate, sulfolane,
3-methylsulfolane, tert,-butyl ether,
1 so-butyl ether, 1.2 dimethoxyethane, 1
.. Examples include, but are not limited to, 2-ethoxymethoxyethane, methyl diglyme, methyl triglyme, methyltetraglyme, ethyl glyme, and ethyl diglyme.

イオン性塩としては、LiCj!04.LiBF4.L
iAsF6.LiCFSO3,LiPF6.Li I、
LiBr、Li5CN。
As an ionic salt, LiCj! 04. LiBF4. L
iAsF6. LiCFSO3, LiPF6. Li I,
LiBr, Li5CN.

Na I、  L 12B1o Cff11o、  L
 i CF3 C02、NaBr、Na5CN、KSC
N、MgCl2.Mg(C之04 ) 2 、  (C
H3) 4NBF4 、(CH3)4 NB r、(C
2H5)4NC104,(C2H5)4NI、(C3H
7) 4 NB r、  (n−C,s He ) 4
 NCff104 m  (n−C4He ) 4 N
 I、  (n−C5H11)4NIが好ましいが、限
定しない。
Na I, L 12B1o Cff11o, L
i CF3 C02, NaBr, Na5CN, KSC
N, MgCl2. Mg(C之04)2,(C
H3) 4NBF4, (CH3)4NB r, (C
2H5)4NC104, (C2H5)4NI, (C3H
7) 4 NB r, (n-C,s He ) 4
NCff104 m (n-C4He) 4 N
I, (n-C5H11)4NI is preferred, but not limited.

発明の効果 上述した如く、本発明は機械的強度に優れた高分子固体
電解質を提供することが出来るので、その工業的価値は
極めて大である。
Effects of the Invention As described above, the present invention can provide a polymer solid electrolyte with excellent mechanical strength, and therefore has extremely great industrial value.

Claims (5)

【特許請求の範囲】[Claims] (1)アクリレート系、メタクリレート系、スチレン系
、アリル系化合物よりなる群から2種以上選んだ架橋ネ
ットワーク形成化合物の反応性が異なり、反応性の速い
化合物を反応させ第1の架橋ネットワークを形成し、該
架橋ネットワークに反応性の遅い化合物によって絡むよ
うに第2の架橋ネットワークを形成させた構造体がイオ
ン性塩を含むことを特徴とする高分子固体電解質。
(1) Two or more crosslinked network-forming compounds selected from the group consisting of acrylates, methacrylates, styrenes, and allyl compounds have different reactivities, and compounds with fast reactivity are reacted to form a first crosslinked network. A solid polymer electrolyte, characterized in that the structure in which a second crosslinked network is formed so as to be entangled with the crosslinked network by a slowly reactive compound contains an ionic salt.
(2)架橋ネットワーク形成化合物がポリエーテル構造
を有する請求項1記載の高分子固体電解質。
(2) The solid polymer electrolyte according to claim 1, wherein the crosslinked network-forming compound has a polyether structure.
(3)ポリエーテルがポリエチレンオキシド又はポリプ
ロピレンオキシド又はエチレンオキシドとプロピレンオ
キシドの共重合体である請求項2記載の高分子固体電解
質。
(3) The solid polymer electrolyte according to claim 2, wherein the polyether is polyethylene oxide, polypropylene oxide, or a copolymer of ethylene oxide and propylene oxide.
(4)反応が電離性放射線、又は可視光線又は、紫外線
、又は熱による請求項1記載の高分子固体電解質。
(4) The solid polymer electrolyte according to claim 1, wherein the reaction is caused by ionizing radiation, visible light, ultraviolet rays, or heat.
(5)請求項1記載の構造体がイオン性塩の他に、イオ
ン性塩を溶解することができる化合物を含む高分子固体
電解質。
(5) A solid polymer electrolyte in which the structure according to claim 1 contains, in addition to an ionic salt, a compound capable of dissolving the ionic salt.
JP1224265A 1989-08-29 1989-08-29 High polymer solid electrolyte Pending JPH0388209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224265A JPH0388209A (en) 1989-08-29 1989-08-29 High polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224265A JPH0388209A (en) 1989-08-29 1989-08-29 High polymer solid electrolyte

Publications (1)

Publication Number Publication Date
JPH0388209A true JPH0388209A (en) 1991-04-12

Family

ID=16811068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224265A Pending JPH0388209A (en) 1989-08-29 1989-08-29 High polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JPH0388209A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2246872A (en) * 1990-07-20 1992-02-12 Dowty Electronic Components Electrochromic material
EP0825619A2 (en) * 1996-07-23 1998-02-25 Rohm And Haas Company Solid polymeric electrolyte
CN109494411A (en) * 2018-10-31 2019-03-19 中南大学 A kind of low temperature flexibility solid polyelectrolyte and its preparation method and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654279A (en) * 1986-07-10 1987-03-31 The United States Of America As Represented By The Secretary Of The Navy Interpenetrating-network polymeric electrolytes
JPS6394501A (en) * 1986-10-09 1988-04-25 宇部興産株式会社 Manufacture of ion conducting solid electrolytic shield

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654279A (en) * 1986-07-10 1987-03-31 The United States Of America As Represented By The Secretary Of The Navy Interpenetrating-network polymeric electrolytes
JPS6394501A (en) * 1986-10-09 1988-04-25 宇部興産株式会社 Manufacture of ion conducting solid electrolytic shield

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2246872A (en) * 1990-07-20 1992-02-12 Dowty Electronic Components Electrochromic material
EP0825619A2 (en) * 1996-07-23 1998-02-25 Rohm And Haas Company Solid polymeric electrolyte
EP0825619A3 (en) * 1996-07-23 1998-08-12 Rohm And Haas Company Solid polymeric electrolyte
CN109494411A (en) * 2018-10-31 2019-03-19 中南大学 A kind of low temperature flexibility solid polyelectrolyte and its preparation method and application
CN109494411B (en) * 2018-10-31 2021-08-31 中南大学 Low-temperature flexible polymer solid electrolyte and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2914388B2 (en) Polymer solid electrolyte
CN100364151C (en) Negative pole protecting film composite for lithium metal battery, and lithium metal battery therewith
US5972539A (en) Flame-retardant solid electrolytes
KR980012680A (en) Polymer solid electrolyte and lithium secondary battery employing the same
JP2896361B2 (en) Polymer solid electrolyte, method for producing the same, and lithium secondary battery employing the polymer solid electrolyte
JPS6394501A (en) Manufacture of ion conducting solid electrolytic shield
JPH11130821A (en) Vinylidene fluoride-based copolymer for forming gelatinous solid electrolyte, solid electrolyte and battery
JPH0388209A (en) High polymer solid electrolyte
CN109768322A (en) Sodium-ion battery polymer electrolyte matrix and film, preparation method and application
JPH02142063A (en) Electrolyte composition for solid electrochemical battery
JP3698259B2 (en) Ion conductive polymer electrolyte
JP2002500813A (en) Polymer gel electrolyte
JPH03196407A (en) Ion conductive solid electrolyte
JPH10188984A (en) Solid secondary battery
JPH10223044A (en) Polymer solid electrolyte gel
JPH08295711A (en) Production of solid polymer electrolyte
JPH0324162A (en) Solid polyelectrolyte
JP2925231B2 (en) Polymer solid electrolyte
JPH0324163A (en) Solid polyelectrolyte
JPH11260407A (en) Polymer electrolyte for lithium secondary battery
JPH02186561A (en) Polymer solid state electrolyte
JP2586667B2 (en) Polymer solid electrolyte
JP2518073B2 (en) Polymer-solid electrolyte
KR100389896B1 (en) Solid polymer electrolyte composition, preparation method, and lithium secondary battery employing the electrolyte
KR100393181B1 (en) Polymer solid electrolyte composition