JPH0387644A - Ion sensor and sensor plate - Google Patents

Ion sensor and sensor plate

Info

Publication number
JPH0387644A
JPH0387644A JP1222909A JP22290989A JPH0387644A JP H0387644 A JPH0387644 A JP H0387644A JP 1222909 A JP1222909 A JP 1222909A JP 22290989 A JP22290989 A JP 22290989A JP H0387644 A JPH0387644 A JP H0387644A
Authority
JP
Japan
Prior art keywords
silver chloride
ion
silver
layers
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1222909A
Other languages
Japanese (ja)
Other versions
JPH0721482B2 (en
Inventor
Shoichiro Hirakuni
平國 正一郎
Akihiko Mochizuki
望月 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP1222909A priority Critical patent/JPH0721482B2/en
Publication of JPH0387644A publication Critical patent/JPH0387644A/en
Publication of JPH0721482B2 publication Critical patent/JPH0721482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain the sensor which has high measurement accuracy and is usable without calibrating the output value corresponding to an ion concn. by forming the silver chloride particles of silver chloride layers essentially consisting of the silver chloride to <=1mum grain size. CONSTITUTION:Silver layers 2a, 2b are respectively formed by electroplating on copper electrodes 1a, 1b and the silver chloride layers 3a, 3b are formed on the surfaces of the silver layers 2a, 2b. The silver chloride particles of the silver layers 2a, 2b are formed to <=1mum grain size. The silver chloride layer 3a is coated with an ion sensitive film 4 essentially consisting of a vinyl chloride/vinyl acetate copolymer. A dam body 5 is formed of the insulator of an epoxy resin so as to enclose the electrode formed with this ion sensitive film 4 and the silver chloride layer 3b. The sensor plate which is laminated with the silver layers 2a, 2b and the silver chloride layers 3a, 3b respectively on the copper electrodes 1a, 1b, is provided with the ion sensitive film 4 on the silver chloride layer 3a and uses the silver chloride layer 3b as a reference electrode for sepn. is obtd. in such a manner. Since the silver chloride particles are densely packed at a high density, the fluctuation of the potential generated between the silver chloride layers and the ion sensitive film is lessened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、出力校正を要せず、出力特性のバラツキを少
なくしたイオンセンサ及びその部品のセンサブレートに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion sensor that does not require output calibration and reduces variations in output characteristics, and a sensor plate for its components.

〔従来の技術〕[Conventional technology]

イオンセンサは、検体液中のイオン濃度を測定するため
のものであり、半導体に形成された電界効果型トランジ
スタ(FET )のゲート電極上にイオン感応膜を形成
した、いわゆるイオン感応性電界効果型トランジスタ(
ISFET)と呼ばれるものである。このl5FETは
、イオン感応膜に検体液を接触させると、イオン感応膜
と溶液との界面に生じる電界の変化に応じて半導体表面
近傍の電導度が変化することを利用し、これを外部回路
で検出できるようにしたものである。
An ion sensor is used to measure the concentration of ions in a sample liquid, and is a so-called ion-sensitive field-effect transistor in which an ion-sensitive film is formed on the gate electrode of a field-effect transistor (FET) formed in a semiconductor. Transistor (
ISFET). This 15FET utilizes the fact that when an ion-sensitive membrane is brought into contact with a sample liquid, the conductivity near the semiconductor surface changes in response to changes in the electric field generated at the interface between the ion-sensitive membrane and the solution, and this is controlled by an external circuit. It is designed to be detectable.

このl5FETには、FETを形成した半導体基板上で
はなく、別の絶縁性基板上に分離ゲート電極を設けこれ
にイオン感応膜を設け、さらに分離比較電極を相対して
設けて独立部品とし、これをFETに接続して使用する
、いわゆる分離ゲート型l5FETも知られている。
In this 15FET, a separate gate electrode is provided not on the semiconductor substrate on which the FET is formed, but on another insulating substrate, an ion-sensitive membrane is provided on this, and a separate comparison electrode is provided facing each other to make it an independent component. A so-called separated gate type 15FET is also known, which is used by connecting the FET to an FET.

このような分離ゲート型I 5FETイオンセンサのイ
オン感応部は、絶縁性基板、例えばガラス・エポキシ樹
脂基板上に厚さ35μ−〇銅箔を接着したいわゆるプリ
ント配線用基板を、ホトリソグラフィック法等により所
定形状の銅導電パターンにエツチングし、ついで市販の
厚付は用銀メフキ浴等を用いて電解メツキし、その表面
に数μs1〜20μ哨程度の厚さに銀層を形成し、さら
に塩酸溶液あるいは塩化ナトリウム溶液中に浸漬し、電
解化成処理をすることにより銀層表面に数μ−の塩化銀
層を形成する。ついで、表層部に銀層と塩化銀層の積層
構造を設けた電極を囲むように絶縁性樹脂、例えばエポ
キシ樹脂で堤体を形成した後、イオノフオアと呼ばれる
大環状化合物やイオン交換樹脂等を含むイオン感応膜を
形成したものであり、この構造は先の出願で提案した。
The ion sensing part of such a separated gate type I5FET ion sensor is made of a so-called printed wiring board, which is made by bonding a 35 μm-thick copper foil onto an insulating substrate, such as a glass epoxy resin substrate, using a photolithographic method, etc. A copper conductive pattern of a predetermined shape is etched by etching, and then electrolytically plated using a commercially available thick silver plating bath, etc., a silver layer is formed on the surface to a thickness of several μs 1 to 20 μs, and then a silver layer is etched using hydrochloric acid. A silver chloride layer having a thickness of several micrometers is formed on the surface of the silver layer by immersing it in a solution or a sodium chloride solution and performing an electrochemical conversion treatment. Next, after forming an embankment using an insulating resin, such as an epoxy resin, to surround the electrode, which has a laminated structure of a silver layer and a silver chloride layer on the surface layer, an embankment containing a macrocyclic compound called an ionophore, an ion exchange resin, etc. It forms an ion-sensitive membrane, and this structure was proposed in a previous application.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のイオンセンサは、同し条件で同し
ように製作されても、同しイオン濃度に対応する出力に
差異が生じ、一定のイオン濃度であるにもかかわらず、
一定の出力が得られないことが多い。そのため、個々の
イオンセンサについて校正した後使用することが行われ
ている。
However, even if conventional ion sensors are manufactured in the same way under the same conditions, there will be differences in output corresponding to the same ion concentration, and even though the ion concentration is constant,
Constant output is often not obtained. Therefore, each ion sensor is used after being calibrated.

その校正方法は、イオンセンサを出力回路装置に接続し
た後、予め定められた2つの異なる溶液を用意し、一方
のイオン濃度溶液中にイオンセンサを浸漬し、その出力
を読み取る。その値が所定の標準値と相違すると、出力
回路装置の回路定数を調整し、標準の出力の値と一致さ
せる。ついで、他のイオン濃度の溶液中にイオンセンサ
を浸漬し、上記と同様に出力値がそのイオン濃度に対応
する標準値と一致するように回路定数を調整する。その
後再度上記一方のイオン濃度溶液にイオンセンサを浸漬
し、出力値が対応する標準値と異なれば、再度上記と同
様にして回路定数を調整し、さらに他のイオン濃度につ
いてもこれを行い、それぞれのイオン濃度に対する出力
値が標準値になるまで校正を繰り返す。
In the calibration method, after connecting the ion sensor to the output circuit device, two different predetermined solutions are prepared, the ion sensor is immersed in one of the ion concentration solutions, and the output is read. If the value differs from a predetermined standard value, the circuit constants of the output circuit device are adjusted to match the standard output value. Next, the ion sensor is immersed in a solution with another ion concentration, and the circuit constants are adjusted in the same manner as above so that the output value matches the standard value corresponding to that ion concentration. After that, immerse the ion sensor in one of the above ion concentration solutions again, and if the output value differs from the corresponding standard value, adjust the circuit constants again in the same way as above, and repeat this for the other ion concentrations. Repeat the calibration until the output value for the ion concentration becomes the standard value.

このような校正作業は、工程が多く、作業が煩わしく、
また労力と手間がかかり、イオンセンサとして使用しに
くいものであった。
This kind of proofreading work involves many steps and is cumbersome.
Furthermore, it was labor-intensive and difficult to use as an ion sensor.

そこで、電極を塩化銀を主成分とする上側層と、銀を主
成分とする下側層からなる積層構造とし、上記上側層の
表面の粗さを200nm以下であるようにしたイオンセ
ンサ及びその分割部品のセンサブレートを先の出願で提
案した。これによれば、−定イオン濃度の検体液に対す
る出力のバラツキは最も少ない場合標準偏差で0.8m
Vにすることができ、これは約3%の測定誤差を生しる
に過ぎず、表面の粗さが200nmより大きい場合標準
偏差が3.0mV以上になるのとはかなり改良されてい
るが、さらに測定精度を高めようとする場合にはこれに
応えることができず、その改善が求められていた。
Therefore, an ion sensor and its A sensor plate made of split parts was proposed in a previous application. According to this, the minimum variation in output for a sample liquid with a constant ion concentration is 0.8 m with a standard deviation.
This results in a measurement error of only about 3%, which is a considerable improvement over the standard deviation of 3.0 mV or more when the surface roughness is greater than 200 nm. However, when attempting to further improve measurement accuracy, it has not been possible to meet this demand, and improvements have been sought.

本発明の目的は、イオン濃度に対応する出力値を校正す
ることなく使用できるイオンセンサを提供することにあ
る。
An object of the present invention is to provide an ion sensor that can be used without calibrating the output value corresponding to ion concentration.

また、本発明の目的は、イオン濃度に対応する出力値の
バラツキをさらに少なくして測定精度を向上させること
にある。
Another object of the present invention is to improve measurement accuracy by further reducing variations in output values corresponding to ion concentrations.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記課題を解決するために、イオン感応膜を
被覆した電極を用いて検体液の感応値を電界効果型半導
体で検出できるようにしたイオンセンサにおいて、上記
イオン感応膜が被覆される電極を塩化銀を主成分とする
上側層と、銀を主成分とする下側層からなる積層構造と
し、かつ上記上側層を構成する粒子の粒子径を1μmよ
り小さくしたことを特徴とするイオンセンサを提供する
ものである。
In order to solve the above-mentioned problems, the present invention provides an ion sensor in which a field-effect semiconductor can detect a sensitive value of a sample liquid using an electrode coated with an ion-sensitive membrane. An ion characterized in that the electrode has a laminated structure consisting of an upper layer mainly composed of silver chloride and a lower layer mainly composed of silver, and the particle size of the particles constituting the upper layer is smaller than 1 μm. It provides a sensor.

また、電界効果型半導体の基板とは別体の絶縁性基板上
に該電界効果型半導体のゲート電極と接続して使用する
分離ゲート電極と、分離比較電極を設け、上記分離ゲー
ト電極にイオン感応膜を被覆し、このイオン感応膜が被
覆される分離ゲート電極を塩化銀を主成分とする上側層
と、銀を主成分とする下側層からなる積層構造とし、か
つ上記上側層を構成する粒子の粒子径を1μmより小さ
くしたことを特徴とするセンサブレートを提供するもの
である。
In addition, a separate gate electrode and a separate reference electrode, which are used in connection with the gate electrode of the field effect semiconductor, are provided on an insulating substrate separate from the field effect semiconductor substrate, and an ion-sensitive electrode is provided on the separate gate electrode. The separation gate electrode coated with the ion-sensitive membrane has a laminated structure consisting of an upper layer containing silver chloride as a main component and a lower layer containing silver as a main component, and the upper layer comprises The present invention provides a sensor plate characterized in that the particle diameter of the particles is smaller than 1 μm.

〔作用〕[Effect]

塩化銀を主成分とする塩化銀層の塩化銀粒子を1μm以
下の粒径にすると塩化銀粒子が緻密かつ高密度に充填さ
れ、この塩化銀層とイオン感応膜との間に発生する電位
のバラツキを少なくし、イオンセンサの出力のバラツキ
を減少させることができる。
When the silver chloride particles in the silver chloride layer containing silver chloride as the main component are made to have a particle size of 1 μm or less, the silver chloride particles are densely and densely packed, and the potential generated between the silver chloride layer and the ion-sensitive membrane is reduced. Variations in the output of the ion sensor can be reduced.

〔実施例〕〔Example〕

次に本発明の実施例を!@1図(イ)(ロ)に基づいて
説明する。
Next, examples of the present invention! @1 The explanation will be based on Figures (a) and (b).

紙ポリエステル基板1に接着された銅箔をホトグラフィ
ック法によりバターニングし、2μmのダイヤモンドス
ラリによって研磨し、鏡面〔触針膜厚計(テンコール社
製薄膜表面プロファイラ−アルファステップ200)に
より測定した表面粗さ200nm )に仕上げ、所定形
状の銅電極1a、1bを形成した。
The copper foil adhered to the paper polyester substrate 1 was buttered by a photographic method, polished with a 2 μm diamond slurry, and polished to a mirror surface [surface measured with a stylus film thickness meter (Tencor thin film surface profiler Alpha Step 200). Copper electrodes 1a and 1b having a predetermined shape were formed.

次に表1に示す組成のシアン余録ストライク・メツキ浴
と定電流電源を用いて、白金メツキチタンメツシュを陽
極とし、陰極電流密度が0.5A/dmになるようにセ
ントした状態で、5秒間上記基板を浴中に浸漬し、取り
出した後水洗した。
Next, using a cyan Yoroku strike mesh bath with the composition shown in Table 1 and a constant current power supply, a platinum-plated titanium mesh was used as an anode and the cathode current density was 0.5 A/dm. The substrate was immersed in the bath for a second, taken out, and washed with water.

ついで表1に示す組成のシアン系電解銀メツキ液に温度
50℃に保持したまま浸漬し、銀縁を陽極として、陰極
電流密度1.2A/dmで15分間電解メツキを施し、
銅電極1a、 lbにそれぞれ15μ−の銀層2a、2
bを形威した。
Then, it was immersed in a cyan-based electrolytic silver plating solution having the composition shown in Table 1 while maintaining the temperature at 50°C, and electroplated for 15 minutes at a cathode current density of 1.2 A/dm using the silver edge as an anode.
Silver layers 2a, 2 of 15μ- thickness are provided on the copper electrodes 1a, lb, respectively.
It was a form of b.

その後、0.1規定(N)の塩酸(HCI)中で、上記
基板を作用極、白金電極を対極とし、銀、塩化銀電極を
比較電極とし、 150mVから350mVまで5サイ
クル電位を掃引し、予備的に微粒子の塩化銀層を形成す
る。その後、0.1規定の塩酸中で上記基板を陽極、白
金メツキチタンメツシュを陰極とし、陽極電流密度0.
23A/d−で2分40秒間電解処理し、銀層2a、2
bの表面に塩化銀層3a、3bを形成した。この塩化銀
層の塩化銀粒子の粒子径は走査型電子顕微鏡による観察
で0.1〜0.2μ隅であった。なお、この塩化銀層の
表面粗さは上記触針膜厚計による測定で200 nmで
あった。
Thereafter, in 0.1 normal (N) hydrochloric acid (HCI), the potential was swept for 5 cycles from 150 mV to 350 mV using the substrate as a working electrode, a platinum electrode as a counter electrode, and a silver or silver chloride electrode as a reference electrode. A fine grain silver chloride layer is preliminarily formed. Thereafter, the above substrate was used as an anode and the platinum-plated titanium mesh was used as a cathode in 0.1N hydrochloric acid, and the anode current density was 0.
Electrolytic treatment was performed at 23A/d- for 2 minutes and 40 seconds to form silver layers 2a and 2.
Silver chloride layers 3a and 3b were formed on the surface of b. The particle diameter of the silver chloride particles in this silver chloride layer was found to be 0.1 to 0.2 μm in diameter when observed using a scanning electron microscope. The surface roughness of this silver chloride layer was 200 nm as measured by the stylus thickness meter.

上記塩化銀層3aに塩化ビニル−酢酸ビニル系共重合体
を主成分とするイオン感応膜4を被覆し、このイオン感
応膜を形威した電極と、塩化銀電極3bとを囲むように
、エポキシ樹脂の絶縁物で堤体5を形成した。
The silver chloride layer 3a is coated with an ion-sensitive membrane 4 mainly composed of a vinyl chloride-vinyl acetate copolymer, and an epoxy resin is applied so as to surround the electrode formed with this ion-sensitive membrane and the silver chloride electrode 3b. The embankment body 5 was formed of a resin insulator.

このようにして銅電極1a、1bにそれぞれ銀層2a、
2b及び塩化銀層3a、3bを積層し、塩化銀層3aに
はイオン感応膜4を設け、一方墳化銀層3bを分離比較
電極とするセンサブレートができあがる。
In this way, the copper electrodes 1a and 1b have silver layers 2a and 1b, respectively.
A sensor plate is completed in which the silver chloride layer 3a is provided with an ion-sensitive membrane 4, and the silver chloride layer 3b is used as a separation reference electrode.

このようにして、80個のセンサブレートを作成した。In this way, 80 sensor plates were created.

これらのセンサブレートは、イオン感応膜を設けた電極
を分離ゲートとし、これを図示省略したFETのゲート
電極と接続し、一方分離比較電極の示す電位を基準値と
して、FETを出力回路装置に接続し、上記堤体の内側
部に検対液を滴下することにより、その含有イオン濃度
をイオンセンサの出力値として測定することができる。
These sensor plates use an electrode provided with an ion-sensitive membrane as a separation gate, which is connected to the gate electrode of an FET (not shown), and on the other hand, connects the FET to an output circuit device using the potential indicated by the separation comparison electrode as a reference value. However, by dropping the test liquid onto the inner side of the embankment body, the concentration of ions contained therein can be measured as an output value of the ion sensor.

このイオンセンサにカリウムイオン濃度1mM、3mM
 、10+nM、305Mの溶液を滴下し、それぞれの
出力を測定し、出力値がイオン濃度の対数と直線関係に
なることを確認する。その後、センサブレートをFET
から分離し、以下同様に79個のそれぞれのセンサブレ
ートを上記と同様に接続してこれらセンサブレートを用
いたイオンセンサについて同様の測定を行った。これら
の出力値のうち、カリウムイオン濃度1軸Hの溶液を検
体液とした時の出力値を取り出し、統計的に処理し、そ
の標準偏差を求め、表2に示す。また、その電子顕微鏡
写真を模写した図を第2図(イ)に示し、その写真を参
考資料の写真(イ)として提出する。
This ion sensor has potassium ion concentrations of 1mM and 3mM.
, 10+nM, and 305M solutions were dropped, and the respective outputs were measured to confirm that the output values had a linear relationship with the logarithm of the ion concentration. After that, connect the sensor plate to FET
The 79 sensor plates were connected in the same manner as above, and the same measurements were performed on the ion sensors using these sensor plates. Among these output values, the output values when a solution with a potassium ion concentration of 1 axis H was used as the sample liquid were extracted, statistically processed, and their standard deviations were determined, and are shown in Table 2. In addition, a copy of the electron micrograph is shown in Figure 2 (a), and this photo is submitted as the reference photo (a).

上記実施例1において、銀ストライクメツキを省略し、
表1に示す組成のシアン系電解メツキ液に常温で浸漬し
、鎖線を陽極として陰極電流密度0.42A/d rd
で20分間電解メツキを施し、厚さ約15μmの銀層を
形威し、予備的に微粒子の塩化銀層を形成することを省
略して塩化銀層を形威し、走査型顕微鏡で観察した塩化
銀粒子の粒子径をl〜′2μmとした以外は同様にして
80IIlのセンサプレ−トを作成し、これらのそれぞ
れを用いてイオンセンサを作成し、これらのそれぞれの
イオンセンサについて実施例1と同様に測定し、出力値
の標準偏差を求め、その結果を表2に示す。また、その
電子顕微鏡写真の摸写図を第2図く口)に示し、その写
真を参考資料の写真(ロ)として提出する。
In the above Example 1, the silver strike plating is omitted,
The cathode current density was 0.42 A/d rd by immersing it in a cyan electrolytic plating solution with the composition shown in Table 1 at room temperature and using the chain line as the anode.
Electrolytic plating was performed for 20 minutes to form a silver layer with a thickness of approximately 15 μm, and the silver chloride layer was formed by omitting the preliminary formation of a fine-grain silver chloride layer, which was then observed using a scanning microscope. Sensor plates of 80 IIl were prepared in the same manner except that the particle diameter of the silver chloride particles was changed to 1 to 2 μm, and ion sensors were prepared using each of these plates. Measurements were made in the same manner, and the standard deviation of the output values was determined, and the results are shown in Table 2. In addition, a copy of the electron micrograph is shown in Figure 2 (a) and submitted as a reference photo (b).

表1(メツキ浴組成) 単位二g/ 実施例2 実施例1において、予備的に微粒子の塩化11層を形成
することを省略した以外は同様にして塩化銀層を形威し
、さらに走査型電子顕微鏡で観察した塩化銀粒子の粒子
径を0.2〜0.5μmとした以外は同様にして80個
のセンサブレートを作成し、このそれぞれを用いてイオ
ンセンサを作成し、このそれぞれについて実施例1と同
様に測定し、出力値の標準偏差を求め、その結果を表2
に示す。
Table 1 (Plating bath composition) Unit 2 g/Example 2 A silver chloride layer was formed in the same manner as in Example 1 except that the preliminary formation of the 11-layer chloride layer of fine particles was omitted, and then a scanning type 80 sensor plates were created in the same manner except that the particle size of the silver chloride particles observed with an electron microscope was changed to 0.2 to 0.5 μm, and each of these was used to create an ion sensor, and each was carried out. Measurement was carried out in the same manner as in Example 1, the standard deviation of the output value was determined, and the results are shown in Table 2.
Shown below.

また、その電子顕微鏡写真の摸写図を第2図(ハ)に示
し、その写真を参考資料の写真(ハ)として提出する。
In addition, a copy of the electron micrograph is shown in Figure 2 (c), and the photograph is submitted as a reference photograph (c).

表2 〔発明の効果〕 本発明によれば、イオン感応膜を設ける電極を銀を主成
分とする下(11層と塩化銀を主成分とする上側層から
なる積層構造とし、上0[11層の粒子の粒子径を1μ
曜以下にしたので、この上側層の粒子が緻密かつ高密度
に充填され、これにより電極とイオン感応膜との界面に
発生する電位のバラツキが減少し、その結果としてイオ
ンセンサの出力電位のバラツキが減少する。したがって
所定のイオン濃度で校正することなく使用できるイオン
センサを提供することができるので、使用の際極めて便
利である。
Table 2 [Effects of the Invention] According to the present invention, the electrode provided with the ion-sensitive membrane has a laminated structure consisting of a lower layer (11 layers) mainly composed of silver and an upper layer mainly composed of silver chloride. The particle size of the layer particles is 1μ
Since the particles in the upper layer are densely and densely packed, the variation in the potential generated at the interface between the electrode and the ion-sensitive membrane is reduced, and as a result, the variation in the output potential of the ion sensor is reduced. decreases. Therefore, it is possible to provide an ion sensor that can be used without calibration at a predetermined ion concentration, which is extremely convenient for use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ〉は本発明の一実施例のセンサブレートの平
面図、同図(ロ)はその■−■断面図、第2図(イ)(
ハ)は本発明の実施例により作成されたセンサブレート
の分離ゲート電極の塩化銀層の組織を示す図、第2図(
ロ)はその改良前のセンサブレートの分離ゲート電極の
塩化ti層の組織を示す図である。 図中、1は基板、2a、2bは銀層、3a、3bは塩化
ta層、4はイオン感応膜、5は堤体である。 平底1年8月31日 第 1 図 (ロ) 第 図 (イ) (ロ)
Fig. 1 (A) is a plan view of a sensor plate according to an embodiment of the present invention, Fig. 1 (B) is a sectional view taken along ■-■, and Fig. 2 (A) (
C) is a diagram showing the structure of the silver chloride layer of the separated gate electrode of the sensor plate prepared according to the embodiment of the present invention, and FIG.
B) is a diagram showing the structure of the Ti chloride layer of the separated gate electrode of the sensor plate before the improvement. In the figure, 1 is a substrate, 2a and 2b are silver layers, 3a and 3b are Ta chloride layers, 4 is an ion-sensitive membrane, and 5 is a bank body. August 31, 1st year Figure 1 (B) Figure (A) (B)

Claims (2)

【特許請求の範囲】[Claims] (1)イオン感応膜を被覆した電極を用いて検体液の感
応値を電界効果型半導体で検出できるようにしたイオン
センサにおいて、上記イオン感応膜が被覆される電極を
塩化銀を主成分とする上側層と、銀を主成分とする下側
層からなる積層構造とし、かつ上記上側層を構成する粒
子の粒子径を1μmより小さくしたことを特徴とするイ
オンセンサ。
(1) In an ion sensor that uses an electrode covered with an ion-sensitive membrane to enable detection of the sensitive value of a sample liquid using a field-effect semiconductor, the electrode coated with the ion-sensitive membrane has silver chloride as its main component. An ion sensor characterized in that it has a laminated structure consisting of an upper layer and a lower layer containing silver as a main component, and the particles constituting the upper layer have a particle size smaller than 1 μm.
(2)電界効果型半導体の基板とは別体の絶縁性基板上
に該電界効果型半導体のゲート電極と接続して使用する
分離ゲート電極と、分離比較電極を設け、上記分離ゲー
ト電極にイオン感応膜を被覆し、このイオン感応膜が被
覆される分離ゲート電極を塩化銀を主成分とする上側層
と、銀を主成分とする下側層からなる積層構造とし、か
つ上記上側層を構成する粒子の粒子径を1μmより小さ
くしたことを特徴とするセンサプレート。
(2) A separate gate electrode to be connected to the gate electrode of the field-effect semiconductor and a separate comparison electrode are provided on an insulating substrate separate from the field-effect semiconductor substrate, and ions are ionized to the separated gate electrode. A separated gate electrode coated with a sensitive membrane is formed into a laminated structure consisting of an upper layer mainly composed of silver chloride and a lower layer mainly composed of silver, and the upper layer is composed of A sensor plate characterized in that the particle diameter of the particles is smaller than 1 μm.
JP1222909A 1989-08-31 1989-08-31 Ion sensor and sensor plate Expired - Lifetime JPH0721482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1222909A JPH0721482B2 (en) 1989-08-31 1989-08-31 Ion sensor and sensor plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1222909A JPH0721482B2 (en) 1989-08-31 1989-08-31 Ion sensor and sensor plate

Publications (2)

Publication Number Publication Date
JPH0387644A true JPH0387644A (en) 1991-04-12
JPH0721482B2 JPH0721482B2 (en) 1995-03-08

Family

ID=16789769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1222909A Expired - Lifetime JPH0721482B2 (en) 1989-08-31 1989-08-31 Ion sensor and sensor plate

Country Status (1)

Country Link
JP (1) JPH0721482B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0927884A2 (en) * 1997-12-29 1999-07-07 TAIYO YUDEN KABUSHIKI KAISHA (also trading as TAIYO YUDEN CO., LTD.) Ion sensor and ion sensor plate
WO2021172197A1 (en) * 2020-02-26 2021-09-02 国立大学法人 東京大学 Transistor-type sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0927884A2 (en) * 1997-12-29 1999-07-07 TAIYO YUDEN KABUSHIKI KAISHA (also trading as TAIYO YUDEN CO., LTD.) Ion sensor and ion sensor plate
EP0927884A3 (en) * 1997-12-29 2001-07-04 TAIYO YUDEN KABUSHIKI KAISHA (also trading as TAIYO YUDEN CO., LTD.) Ion sensor and ion sensor plate
US6328866B1 (en) 1997-12-29 2001-12-11 Taiyo Yuden Co., Ltd. Ion sensor and ion sensor plate
WO2021172197A1 (en) * 2020-02-26 2021-09-02 国立大学法人 東京大学 Transistor-type sensor

Also Published As

Publication number Publication date
JPH0721482B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
KR0157220B1 (en) Metal oxide electrodes
US4062750A (en) Thin film electrochemical electrode and cell
US5110441A (en) Solid state ph sensor
EP0315788A2 (en) Ion sensor
JPH0954065A (en) Planar-type bicarbonate sensor and manufacture and use thereof
JPH0387644A (en) Ion sensor and sensor plate
Lambert et al. Analysis of films on Copper by Coulometric reduction
US5785830A (en) Electrochemical planar metal/metal oxide electrodes
JP2575316B2 (en) Ion sensor, sensor plate and manufacturing method thereof
DK159861B (en) Reference electrode with inactive polymer membrane and method of production of the same
JPS5837907A (en) Method of producing anodic oxidized aluminum humidity sensitive film
US4699806A (en) Method of producing fluoride-sensitive diaphragms
JPH0384450A (en) Ion sensor and sensor plate
JP2772833B2 (en) Method for manufacturing ion sensor, method for manufacturing sensor plate, and method for storing these
JPH03100452A (en) Ion sensor and sensor plate
JP2844358B2 (en) Ion sensor and sensor plate
JP3013088B2 (en) Ion sensor output value correction method
US3294662A (en) ph meter
JP2552208B2 (en) Method of manufacturing chemical sensor and sensor plate
JP2748523B2 (en) Hydrogen ion electrode
JP2861149B2 (en) Reference electrode
JPH0422291Y2 (en)
JPS6243557A (en) Solid electrode for electrochemical sensor
JPS59214751A (en) Collation electrode
JP2002350395A (en) Method for measuring concentration of chlorine in plating solution

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 15