JPH0387633A - Method for quantitatively determining material or ion to be incorporated during non-deionized welding and crystal oscillator coated with barrier on one surface to be used in this method - Google Patents

Method for quantitatively determining material or ion to be incorporated during non-deionized welding and crystal oscillator coated with barrier on one surface to be used in this method

Info

Publication number
JPH0387633A
JPH0387633A JP22319189A JP22319189A JPH0387633A JP H0387633 A JPH0387633 A JP H0387633A JP 22319189 A JP22319189 A JP 22319189A JP 22319189 A JP22319189 A JP 22319189A JP H0387633 A JPH0387633 A JP H0387633A
Authority
JP
Japan
Prior art keywords
deionized
crystal oscillator
barrier
coated
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22319189A
Other languages
Japanese (ja)
Other versions
JP2759683B2 (en
Inventor
Shigeo Okahata
恵雄 岡畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogo Pharmaceutical Co Ltd
Original Assignee
Sogo Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogo Pharmaceutical Co Ltd filed Critical Sogo Pharmaceutical Co Ltd
Priority to JP22319189A priority Critical patent/JP2759683B2/en
Priority to DE68911442T priority patent/DE68911442T2/en
Priority to EP89309071A priority patent/EP0359473B1/en
Priority to US07/404,513 priority patent/US5049808A/en
Publication of JPH0387633A publication Critical patent/JPH0387633A/en
Application granted granted Critical
Publication of JP2759683B2 publication Critical patent/JP2759683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To make quantitative determination by coating one of both electrodes of the crystal oscillator with a barrier so as to prohibit the permeation of a non-deionized soln. via a specified insulating space and measuring the frequency while the crystal oscillator is held immersed into the non-deionized soln. CONSTITUTION:One electrode 2b of the electrodes 2a and 2b deposited by evaporation on a crystal plate 1 is coated by using the barrier formed by sealing, for example, a plastic plate 6, which is stable in the non-deionized soln., and, for example, silicone rubber 4, which are stable in the non-deionized soln., with polymer adhesive agents 3a and 3b of, for example, a silicone system, which is stable in the non-deionized soln. so as to prohibit the permeation of the non-deionized soln. to the insulating space 5, via the specified insulating space 5 while the tight contact with the electrode 2b is substantially averted. An adsorption film 7 is cast on the electrode 2a. The easy temp. control and stirring during the frequency measurement are possible in this way and the frequency is measured in the state of immersing the oscillator in the one-side barrier soln. without requiring a large-sized cell or a large volume of the non-deionized soln. and distilled water.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、非脱イオン溶液中に含有される物質またはイ
オンの定量方法および該方法に用いられる両電極の片面
をバリヤー被覆し、他面を吸着膜で被覆してなる水晶発
振子(以下、単に片面バリヤー被覆水晶発振子という)
に関し、詳しくは水晶発振子を用いて非脱イオン溶液中
に含有される物質またはイオンをその場で定量する方法
および該方法に用いられる片面バリヤー被覆水晶発振子
に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for quantifying substances or ions contained in a non-deionized solution, and a method in which one side of both electrodes used in the method is coated with a barrier and the other side is coated with a barrier. A crystal oscillator coated with an adsorption film (hereinafter simply referred to as a single-sided barrier-coated crystal oscillator)
In particular, the present invention relates to a method for on-the-spot determination of substances or ions contained in a non-deionized solution using a quartz crystal oscillator, and a single-sided barrier-coated quartz crystal oscillator used in the method.

[従来の技術] 水晶発振子を用いて、非脱イオン溶液中に含有される物
質またイオンを定量するにあたり、水晶発振子をそのま
ま非脱イオン溶液中に浸漬して用いたのでは、非脱イオ
ン溶液のイオンの濃度にもよるが、実質上発振せず、定
量が実質上不可能であるか、あるいは正確な定量が不可
能であるため、周波数の測定は別途蒸留水中あるいは気
相中で行ない定量する方法が一般に行なわれている。
[Prior Art] When quantifying substances or ions contained in a non-deionized solution using a crystal oscillator, if the crystal oscillator is directly immersed in the non-deionized solution, Depending on the concentration of ions in the ion solution, there is virtually no oscillation and quantification is virtually impossible, or accurate quantification is impossible, so the frequency must be measured separately in distilled water or in the gas phase. A commonly used method is to quantify the

また従来例えば(1)抗原抗体反応の研究に応用されて
いるように、フローセル中に水晶発振子を取り付け、先
づ蒸留水を流通させ、次いでイオン溶液を流通させて含
有される物質を水晶発振子に吸着させ、次いで蒸留水を
流通させながら周波数を測定して定量する方法、(2)
重金属イオンの定量に応用されているように、水晶発振
子を2個のセルの間にはさみ、一方のセルにはイオン溶
液を入れ、もう一方のセルには蒸留水を入れ、それぞれ
両電極の一方に接触するようにした状態で周波数を測定
して定量する方法、および(3)重金属イオンの定量に
応用されているように、水晶発振子を水平にしてその片
面上のみに一種の筒を取り付け、その中にイオン溶液を
入れた状態で周波数を測定して定量する方法が知られて
いる。
In addition, conventionally, for example, (1) a crystal oscillator is attached to a flow cell, and distilled water is first passed through the flow cell, and then an ionic solution is passed through the flow cell, as applied to research on antigen-antibody reactions (1). (2) A method for quantifying by adsorbing it onto a sample and then measuring the frequency while flowing distilled water.
As applied to the determination of heavy metal ions, a crystal oscillator is sandwiched between two cells, one cell is filled with an ion solution, and the other cell is filled with distilled water. (3) As applied to the determination of heavy metal ions, the crystal oscillator is held horizontally and a type of cylinder is placed on only one side of the crystal oscillator. There is a known method for quantifying the frequency by attaching the ionic solution to the ionic solution and measuring the frequency.

[発明が解決しようとする課題] 上記した従来技術のうち第1の方法ではフローセル系と
なり溶液が多量必要であり、かつ吸着・脱着が可逆反応
の場合、不利であり、第2の方法は発振子が電極部以外
の水晶板上の重量に鈍感であること、換言すれば電極部
以外の水晶板は発振に関与しないことを利用したもので
あるが、セルの容量が大きくなると共に発振子は薄い水
晶板でできているので強度上の問題があり、第3の方法
は第2の方法と同様発振子が電極部以外の水晶板上のI
flLに鈍感であることを利用したものであるが、温度
調節が困難であり、かつ撹拌ができない欠点を有する。
[Problems to be Solved by the Invention] Among the above-mentioned conventional techniques, the first method uses a flow cell system and requires a large amount of solution, and is disadvantageous when adsorption and desorption are reversible reactions, and the second method is disadvantageous because of oscillation. This method takes advantage of the fact that the oscillator is insensitive to the weight on the crystal plate other than the electrode part, in other words, the crystal plate other than the electrode part does not participate in oscillation, but as the capacitance of the cell increases, the oscillator Since it is made of a thin crystal plate, there is a problem with its strength.The third method, like the second method, uses an I
This method takes advantage of the fact that it is insensitive to flL, but it has the drawbacks that temperature control is difficult and stirring is not possible.

本発明は、上記した従来技術における問題を解決するた
めになされたものである。
The present invention has been made to solve the problems in the prior art described above.

本発明は、水晶発振子を用いて、その周波数を測定して
非脱イオン溶液中に含有される物質またはイオンを定量
する方法において、周波数測定中の温度調節および撹拌
を容易に行うことが可能であると共に大型のセルあるい
は多量の非脱イオン溶液および蒸留水を必要とすること
なく、水晶発振子を非脱イオン溶液中に浸漬したままの
状態で周波数を測定して非脱イオン溶液中に含有される
物質を定量する方法および該方法に用いられる片面バリ
ヤー被覆水晶発振子を提供することを目的とするもので
ある。
The present invention is a method for quantifying substances or ions contained in a non-deionized solution by measuring the frequency using a crystal oscillator, and it is possible to easily adjust temperature and stir during frequency measurement. At the same time, the frequency can be measured while the crystal oscillator is immersed in the non-deionized solution, without the need for large cells or large amounts of non-deionized solution and distilled water. It is an object of the present invention to provide a method for quantifying contained substances and a single-sided barrier-coated crystal oscillator used in the method.

本発明は、水晶発振子を用いて、その周波数を測定して
非脱イオン溶液中に含有される匂い物質ならびに苦味物
質を定量する方法において、水晶発振子を非脱イオン溶
液中に浸漬したままの状態で周波数を測定して定量する
方法および該方法に用いられる片面バリヤー被覆水晶発
振子を提供することを目的とするものである。
The present invention provides a method for quantifying odorants and bitter substances contained in a non-deionized solution by measuring the frequency of the crystal using a crystal oscillator. The object of the present invention is to provide a method for measuring and quantifying the frequency under such conditions, and a single-sided barrier-coated crystal oscillator used in the method.

[課題を解決するための手段] 本発明は、第1に水晶発振子を用いて、非脱イオン溶液
中に含有される物質またはイオンを定量する方法におい
て、該水晶発振子の両電極の一方を、これと実質上密着
することなく一定の絶縁空間を介して該非脱イオン溶液
が透過しないようにバリヤー被覆し、他方の電極上に吸
着膜をキャストし、次いで両電極の片面がバリヤー被覆
され、他面が該吸着膜で被覆された水晶発振子を、該非
脱イオン溶液中に浸漬し、該非脱イオン溶液中に含有さ
れる物質またはイオンをそれぞれ該吸着膜に吸着または
化学結合させ、吸着または化学結合の前後における周波
数の変化を、該片面バリヤー被覆水晶発振子を該非脱イ
オン溶液中に浸漬したままの状態で測定して該非脱イオ
ン溶液中に含有される物質またはイオンを定量すること
を特徴とする非脱イオン溶液中に含有される物質または
イオンの定量方法を提供するものである。
[Means for Solving the Problems] The present invention first provides a method for quantifying substances or ions contained in a non-deionized solution using a crystal oscillator. is coated with a barrier so that the non-deionized solution does not permeate through a certain insulating space without being in substantial contact with the other electrode, an adsorption film is cast on the other electrode, and then one side of both electrodes is coated with the barrier. , a crystal oscillator whose other side is coated with the adsorption film is immersed in the non-deionized solution, and the substances or ions contained in the non-deionization solution are adsorbed or chemically bonded to the adsorption film, respectively. Or, quantifying the substance or ion contained in the non-deionized solution by measuring the change in frequency before and after chemical bonding while the single-sided barrier-coated crystal oscillator is immersed in the non-deionized solution. A method for quantifying substances or ions contained in a non-deionized solution is provided.

本発明は、第2に非脱イオン溶液中に含有される物質ま
たはイオンを定量する方法に用いられる水晶発振子であ
って、その両電極の一方を、これと実質上密着すること
なく一定の絶縁空間を介して該非脱イオン溶液が透過し
ないようにバリャー被覆し、他方の電極上に吸着膜をキ
ャストしてなる片面バリヤー被覆水晶発振子を提供する
ものである。
Second, the present invention is a crystal oscillator used in a method for quantifying substances or ions contained in a non-deionized solution, in which one of the two electrodes is fixed at a certain level without being in substantially close contact with the crystal oscillator. The object of the present invention is to provide a single-sided barrier-coated crystal oscillator, which is coated with a barrier so that the non-deionized solution does not permeate through an insulating space, and an adsorption film is cast on the other electrode.

本発明における非脱イオン溶液は、その中に水晶発振子
をそのまま浸漬したままの状態では、周波数の測定が実
質上不可能となる水性システム、例えば水溶液、水性分
散液、水性エマルション、水性懸濁液などを包含するこ
とが可能であり、例えば非脱イオン水、非脱イオン水溶
液、非脱イオン水性エマルション、非脱イオンコロイド
水分散液などを包含し、蒸留水および脱イオン水を除外
する。
The non-deionized solution used in the present invention is suitable for use in aqueous systems such as aqueous solutions, aqueous dispersions, aqueous emulsions, and aqueous suspensions in which it is virtually impossible to measure the frequency while the crystal oscillator is immersed therein. Examples include non-deionized water, non-deionized aqueous solutions, non-deionized aqueous emulsions, non-deionized colloidal aqueous dispersions, etc., and exclude distilled water and deionized water.

上記非脱イオン溶液の例として、ビール、日本酒、ウィ
スキー、しょうちゅう、ワインなどのアルコール飲料、
牛乳、コーヒー牛乳、コーヒー紅茶1日本茶などの飲物
、果汁飲料、炭酸飲料などの清涼飲料、上下水道水、河
川湖沼水などがあげられる。
Examples of the above-mentioned non-deionized solutions include alcoholic beverages such as beer, sake, whiskey, shochu, and wine;
Drinks such as milk, coffee milk, coffee black tea 1 Japanese tea, soft drinks such as fruit juice drinks and carbonated drinks, water and sewage water, and water from rivers, lakes, and marshes, etc.

本発明方法によって定量される非脱イオン溶液中に含有
される物質としては、水晶発振子の電極上にキャストさ
れた吸着膜に吸着して、周波数の変化を′API定して
定量されるものを包含し、例えば匂い物質、苦味物質な
どがあげられる。
The substances contained in the non-deionized solution that can be quantified by the method of the present invention include those that are adsorbed to an adsorption film cast on the electrodes of a crystal oscillator and determined by determining the change in frequency using API. Examples include odorants, bitter substances, etc.

本発明方法および該方法に用いられる片面バリヤー被覆
水晶発振子において、水晶発振子の画電極のうち一方を
、これに実質上密着することなく一定の絶縁空間を介し
て非脱イオン溶液が透過しないようにバリヤー被覆し、
他方の電極上に吸着膜をキャストする。
In the method of the present invention and the single-sided barrier coated crystal oscillator used in the method, a non-deionized solution does not pass through one of the picture electrodes of the crystal oscillator through a certain insulating space without substantially coming into close contact with the picture electrode. Barrier coated and
Cast an adsorbent film on the other electrode.

本発明に用いられる片面バリヤー被覆水晶発振子の電極
としては、銀またはアルミニウム蒸着電極も使用しうる
が、非脱イオン溶液に溶解したりして発振が不安定にな
る傾向がみられ、不活性で蒸着可能な金属、例えば金、
白金などの電極が好ましい。
Silver or aluminum vapor-deposited electrodes can also be used as electrodes for the single-sided barrier-coated crystal oscillator used in the present invention, but they tend to dissolve in non-deionized solutions, making oscillation unstable, and are inactive. metals that can be deposited with, e.g. gold,
Electrodes such as platinum are preferred.

本発明方法における電極のバリヤー被覆方法は、電極に
実質上密着することなく一定の絶縁空間を介して非脱イ
オン溶液が透過しないようにバリヤー被覆されている限
り特別の制限はないが、例えば第1の態様として第1図
を参照して説明すると、水晶板1に蒸着された電極2a
および2bのうちの一つの電極2bと実質上密着するこ
となく一定の絶縁空間5を介して非脱イオン溶液が該絶
縁空間5へ透過しないように、非脱イオン溶液中で安定
な、例えばプラスチック板6、および非脱イオン溶液中
で安定な、たとえばシリコンゴム4を、非脱イオン溶液
中で安定な、例えばシリコン系のポリマー接着剤3aお
よび3bでシールすることにより行なわれ、電極2aに
は吸着膜7がキャストされる。
The method of barrier coating the electrode in the method of the present invention is not particularly limited as long as the barrier coating is applied so that the non-deionized solution does not permeate through a certain insulating space without substantially adhering to the electrode. The first embodiment will be explained with reference to FIG. 1. An electrode 2a deposited on a crystal plate 1
and 2b, such as a plastic material which is stable in the non-deionized solution, such that the non-deionized solution does not permeate through the insulating space 5 into the insulating space 5 without being in substantially intimate contact with one of the electrodes 2b of the electrodes 2b. This is done by sealing the plate 6 and a non-deionized solution-stable, e.g. silicone rubber 4 with a non-deionized solution-stable, e.g. silicone-based polymer adhesive 3a and 3b; Adsorption film 7 is cast.

電極のバリヤー被覆方法の第2の態様としては、例えば
第2図に示されるようにプラスチック部材5を接着剤3
でシールして形成されるバリヤーにより電極2bとの間
に絶縁空間4を形成せしめる方法、また第3の態様とし
て第3図に示されるように、電極2bの回りに水晶板1
と一体的に形成される水晶板のバリヤー4を設けること
により絶縁空間3を形成せしめる方法などがあげられる
In a second embodiment of the barrier coating method for electrodes, a plastic member 5 is coated with an adhesive 3 as shown in FIG.
A method of forming an insulating space 4 between the electrode 2b and the electrode 2b by a barrier formed by sealing with
For example, an insulating space 3 may be formed by providing a barrier 4 of a quartz plate integrally formed with the insulation space 3.

上記した電極のバリヤー被覆方法における一定の絶縁空
間とは、両電極間の導電性がそれにより遮断される限り
特別の制限はないが、電極表面よりの垂直方向の間隔と
して好ましく0.5m+s〜5開、さらに好ましくは1
 mm〜2 mmである。該絶縁空間の間隔が0.5+
++s未満では両電極間の電導性の遮断が不十分となる
おそれがあり、5關を超えることも可能であるが空間が
無意味に増大し、技術的に意味がないばかりか使用上支
障をもたらす場合が生ずる。
The certain insulating space in the above electrode barrier coating method is not particularly limited as long as the conductivity between the two electrodes is interrupted, but it is preferably 0.5 m+s to 5 m+s as the vertical distance from the electrode surface. open, more preferably 1
mm to 2 mm. The distance between the insulation spaces is 0.5+
If it is less than ++s, there is a risk that the electrical conductivity between the two electrodes will be insufficiently interrupted, and although it is possible to exceed 5 times, the space will increase meaninglessly, and it will not only be technically meaningless but also pose a problem in use. There may be cases where this occurs.

本発明において電極上にキャストされ、非脱イオン溶液
中に含有される物質を吸着させる吸着膜としては、固定
化二分子膜、および高分子膜があげられる。該高分子膜
を構成する高分子化合物は、高分子化合物単独、それら
の混合物、それらとモノマーなとの低分子化合物との混
合物として使用することができる。
In the present invention, examples of the adsorption membrane that is cast on the electrode and that adsorbs substances contained in a non-deionized solution include immobilized bilayer membranes and polymer membranes. The polymer compound constituting the polymer membrane can be used alone, as a mixture thereof, or as a mixture of these and a low-molecular compound such as a monomer.

上記固定化二分子膜としては、 aC−XC@b(式中aおよびbは、例えば−N  (
CHi )3 、 SO3−POaポリオール、ポリエ
ーテルなどの親水基部分を表わし、Cj+Cl11+ 
およびC,は合計でC8以上の炭素鎖をもつアルキル基
、フルオロアルキル基。
The immobilized bilayer membrane may be aC-XC@b (where a and b are, for example, -N (
CHi)3, SO3-POa represents a hydrophilic group moiety such as polyol or polyether, and Cj+Cl11+
and C, is an alkyl group or fluoroalkyl group having a carbon chain of C8 or more in total.

アルキレン基等の疎水基部分を表わし、Xはジフェニル
アゾメチン、ビフェニル、ナフタレン、アントラセン基
などのリジッドセグメント(硬直部分を表わす。)で表
わされる、トリアルキル型、ジアルキル型および/また
はモノアルキル型のアンモニウム塩、スルホン酸塩、カ
ルボン酸基などの合成脂質および/または C1 / 式:a \ 7 (式中、a、C,、C,、は上記定義の通り)で表わさ
れる、ホスファチジルコリン、ホスファチジルセリンな
どの天然脂質をポリマーにより固定化したフィルムをあ
げることができる。
represents a hydrophobic group moiety such as an alkylene group, and X is a trialkyl type, dialkyl type and/or monoalkyl type ammonium represented by a rigid segment (representing a rigid portion) such as diphenylazomethine, biphenyl, naphthalene, anthracene group, etc. Synthetic lipids such as salts, sulfonates, carboxylic acid groups, etc. and/or C1 / phosphatidylcholine, phosphatidylserine, etc., represented by the formula: a\7 (where a, C,,C,, are as defined above) Examples include films in which natural lipids are immobilized with polymers.

本発明で用いられる固定化二分子膜フィルムの具体例と
して、(1)前記合成脂質および/または天然脂質をポ
リ塩化ビニル、ポリスチレン、ポリカーボネート、ポリ
ビニルアルコール、アセチルセルロースなどの高分子化
合物とブレンドしてキャストした薄膜; (iilミリ
ポアフィルタ−、デュラガードなどの微細多孔構造をも
つフィルターの細孔に前記合成脂質および/または天然
脂質のクロロホルム溶液を含浸させて乾燥させたちの;
涌)カチオン性親水基をもつ前記合成脂質および/また
は天然脂質の水分散液と、ポリスチレンスルホン酸、ヘ
パリン、ポリビニルスルホン酸、ポリアクリル酸、ポリ
グルタミン酸などのアニオン性高分子水溶液とを混合し
て生ずるポリイオンコンプレックス粉末をクロロホルム
に溶かし、キャストして得られる薄膜;(Mアニオン性
親水基をもつ脂質とポリアリルアミン、ポリエチレンイ
ミン、4級化ポリアミノスチレンなどのカチオン性高分
子からなるポリイオンコンプレックス型二分子膜フィル
ム;fvl前記合成脂質および/または天然脂質のラン
グミュア−プロジェット型累積膜;Ml(i)〜(V)
と高分子膜との組合せ;および(viQlil〜輌)の
組合せをあげることができる。上記M+の場合水分によ
る悪影響を防止することができる。
As a specific example of the immobilized bilayer film used in the present invention, (1) the synthetic lipid and/or natural lipid is blended with a polymer compound such as polyvinyl chloride, polystyrene, polycarbonate, polyvinyl alcohol, or acetyl cellulose. Cast thin film; (i.e., by impregnating the pores of a filter with a microporous structure such as Millipore filter or Duraguard with a chloroform solution of the synthetic lipid and/or natural lipid and drying it;
(w) Mixing the aqueous dispersion of the synthetic lipid and/or natural lipid having a cationic hydrophilic group with an aqueous solution of an anionic polymer such as polystyrene sulfonic acid, heparin, polyvinyl sulfonic acid, polyacrylic acid, polyglutamic acid, etc. A thin film obtained by dissolving the resulting polyion complex powder in chloroform and casting it; (a polyion complex type bimolecule consisting of a lipid having an anionic hydrophilic group and a cationic polymer such as polyallylamine, polyethyleneimine, or quaternized polyaminostyrene) Membrane film; fvl Langmuir-Prodgett type cumulative membrane of the synthetic lipids and/or natural lipids; Ml(i) to (V)
Examples include a combination of and a polymer membrane; and a combination of (viQlil~輌). In the case of M+, the adverse effects of moisture can be prevented.

本発明の吸着膜として用いられる上記高分子膜を構成す
る高分子化合物の例として、有機合成高分子化合物、有
機天然高分子化合物、無機合成高分子化合物、無機天然
高分子化合物などがあげられる。有機合成高分子化合物
の例としてポリスチレン、ポリビニルクロライド、合成
樹脂、合成ゴムなどがあげられる。有機天然高分子化合
物の例としてセルロース、デンプン、天然ゴム、タンパ
ク質などがあげられる。無機合成高分子化合物の例とし
てポリ塩化ホスホニトリルなどがあげられる。無機天然
高分子化合物の例としてウンモ、アスベストなどがあげ
られる。
Examples of the polymer compounds constituting the polymer membrane used as the adsorption membrane of the present invention include organic synthetic polymer compounds, organic natural polymer compounds, inorganic synthetic polymer compounds, and inorganic natural polymer compounds. Examples of organic synthetic polymer compounds include polystyrene, polyvinyl chloride, synthetic resins, and synthetic rubber. Examples of organic natural polymer compounds include cellulose, starch, natural rubber, and protein. Examples of inorganic synthetic polymer compounds include polychlorinated phosphonitrile. Examples of inorganic natural polymer compounds include ummo, asbestos, and the like.

上記高分子膜は、一般に非脱イオン溶液中に含有される
物質の種類により選択的に作用する。
The polymer membrane generally acts selectively depending on the type of substance contained in the non-deionized solution.

例えば匂い物質としての低級脂肪酸エステル類には高分
子膜としてγ−メチルーL−グルタメートを用いるのが
好ましく、低分子のケトン類には高分子膜としてポリス
チレンまたはポリビニルクロライドを用いるのが好まし
く、低分子のカルボン酸には高分子膜としてポリビニル
アルコールを用いるのが好ましく、悪臭物質としてのス
チレンには高分子膜としてポリスチレンを用いるのが好
ましい。
For example, it is preferable to use γ-methyl-L-glutamate as a polymer membrane for lower fatty acid esters as odorants, and it is preferable to use polystyrene or polyvinyl chloride as a polymer membrane for low-molecular ketones. It is preferable to use polyvinyl alcohol as a polymer membrane for the carboxylic acid, and it is preferable to use polystyrene as a polymer membrane for styrene as a malodorous substance.

本発明の片面バリヤー被服水晶発振子上にキャストされ
、非脱イオン溶液中に含有されるイオンと化学結合する
吸着膜として用いられる高分子膜としては、例えば該イ
オンと結合する官能基を有する高分子膜などがあげられ
る。
The polymer membrane used as an adsorption membrane that is cast on the single-sided barrier coated crystal oscillator of the present invention and chemically bonds with the ions contained in the non-deionized solution includes, for example, a polymer membrane having a functional group that bonds with the ions. Examples include molecular membranes.

本発明における苦味物質は、本発明の吸着膜に吸着する
ものであれば特に制限はなく、無機酸。
The bitter substance in the present invention is not particularly limited as long as it is adsorbed to the adsorption membrane of the present invention, and includes inorganic acids.

有機酸などの酸性物質、苛性ソーダ、アンモニア。Acidic substances such as organic acids, caustic soda, and ammonia.

ピリジン、トリエチルアミンなどの無機および有機の塩
基性物質、無機塩、有機塩などの塩類、医薬品、農薬な
ども包含することができる。
Inorganic and organic basic substances such as pyridine and triethylamine, salts such as inorganic salts and organic salts, pharmaceuticals, agricultural chemicals, and the like can also be included.

該苦味物質の代表例として、ストリキニーネ、キニーネ
、ニコチン、フェニルチオウレア、ババベリン、カフェ
イン、ナリンギン、オクタアセチルショ糖、オリゴペプ
チドなどがあげられる。本発明における匂い物質は、本
発明の吸着膜に吸着するものであれば特に制限はなく、
広義には狭義の匂い物質の他に香料、麻酔薬、悪臭物質
、医薬品、農薬なども包含することができる。
Typical examples of the bitter substances include strychnine, quinine, nicotine, phenylthiourea, bababerine, caffeine, naringin, octaacetyl sucrose, and oligopeptides. The odorant in the present invention is not particularly limited as long as it is adsorbed to the adsorption membrane of the present invention.
In a broad sense, it can include fragrances, anesthetics, malodorous substances, pharmaceuticals, agricultural chemicals, etc. in addition to odorants in the narrow sense.

上記狭義の匂い物質の代表例として、β−ヨノン、オク
タツールなどの脂肪族アルコール、カンルア、酢酸アミ
ル、バニリン、エチルブチレート、フェノール、アルデ
ヒド類などをあげることができる。
Representative examples of the above-mentioned odorants in the narrow sense include aliphatic alcohols such as β-ionone and octatool, kanlua, amyl acetate, vanillin, ethyl butyrate, phenol, and aldehydes.

上記香料の代表例としてアニシルアルデヒド、ウンデカ
ノール、アニスアルコール、アニソール、フェニルエチ
ルアセテート、シトラール、メチルザリシレート、ベン
ジルアセテート、テトラヒドロゲラニオール、チルピノ
ール、ゲラニルアセテートなどをあげることができる。
Representative examples of the above-mentioned fragrances include anisylaldehyde, undecanol, anis alcohol, anisole, phenylethyl acetate, citral, methylsalicylate, benzyl acetate, tetrahydrogeraniol, tilpinol, and geranyl acetate.

上記悪臭物質の例として、ケトン類、アミン類、イミン
類、アセトアルデヒドなどのアルデヒド類、有機酸など
であって悪臭を放つ物質、メチルメルカプタン、硫化水
素、硫化メタン、二硫化メチルなどの硫黄化合物、スチ
レン、これらの混合物、各種産業廃棄物であって悪臭を
放つ物質およびそれらの混合物、口臭を発生する物質お
よびそれらの混合物などがあげられる。
Examples of the above-mentioned malodorous substances include ketones, amines, imines, aldehydes such as acetaldehyde, organic acids that emit malodors, sulfur compounds such as methyl mercaptan, hydrogen sulfide, methane sulfide, and methyl disulfide. Examples include styrene, mixtures thereof, various industrial waste substances that emit bad odors and mixtures thereof, substances that cause bad breath and mixtures thereof.

上記麻酔薬について一般麻酔薬(麻酔作用を持つ化合物
)の例を第1表に示す。第1表中、ボテンシーは、麻酔
薬の強度を表わす値であり、ここではおたまじゃくしで
の値を示した。
Regarding the above anesthetics, examples of general anesthetics (compounds having an anesthetic effect) are shown in Table 1. In Table 1, botency is a value representing the strength of the anesthetic, and here the value for tadpoles is shown.

第  1  表 麻酔薬化合物 メ   タ   ノ   −   ル エ   タ   ノ   −   ル ア    セ    ト    ン l−プロバノール ブ     タ     ノ     ンジエチルエー
テル l −ブ  タ  ノ  −  ル バラアルデヒド ベンジルアルコール ク  ロ  ロ  ホ  ル  ム l−ヘキサノール ハ   ロ   セ   ン メトキシフラン l−オクタノール ベ    ン    タ    ン l−ノ す ノ − ル ヘ   キ   サ   ン 1− デ  カ  ノ  −  ル ボテンシー l、00 2.43 3.47 9.43 1.20X1.0 2.99X 10 4、.4.3X10 5.44X 10 5.01X 102 7.62X 102 1.12X 103 4.47X 103 4.88X 103 7.93X 103 1.51X 10’ 4.03X 10’ 6.75X 10’ t、oox to5 [発明の効果コ 本発明によれば、第1に片面バリヤー被覆水晶発振子を
用い、その周波数を測定して非脱イオン溶液中に含有さ
れる物質またはイオンを定量する方法において、周波数
測定中の温度調節および撹拌を容易に行うことが可能で
あると共に大型のセルあるいは多量の非脱イオン溶液お
よび蒸留水を必要とすることなく、片面バリヤー被覆水
晶発振子を非脱イオン溶液中に浸漬したままの状態で周
波数を測定して非脱イオン溶液中に含有される物質、例
えば匂い物質ならびに苦味物質あるいはCa”、Mg”
、Mn”などのイオンを、蒸留水中におけると同程度の
ナノグラム(ng)のオーダーで正確に定量することが
できる。
Table 1 Anesthetic Compounds Methanol L-Probanol Butanone Diethyl Ether L-Butanol Balaldehyde Benzyl Alcohol Chloroform L-Hexanol Halosene Methoxyfuran l-octanolbentane l-nohexane l-decanol potency l,00 2.43 3.47 9.43 1.20X1.0 2.99X 104,. 4.3X 10 5.44 [Effects of the Invention] According to the present invention, firstly, in a method for quantifying substances or ions contained in a non-deionized solution by using a single-sided barrier-coated crystal oscillator and measuring its frequency, A single-sided barrier-coated quartz crystal is immersed in a non-deionized solution, allowing for easy temperature control and stirring without the need for large cells or large amounts of non-deionized solution and distilled water. By measuring the frequency in the raw state, it is possible to determine the substances contained in the non-deionized solution, such as odorants and bitter substances, or Ca'', Mg''
, Mn'', etc. can be accurately quantified on the order of nanograms (ng) as in distilled water.

[実施例〕 実施例1 第1図に示されるように、ATカット9.00Mt(z
の水晶発振子の水晶板1の金蒸着電極2aおよび2b(
5mmφ)のうちの一方2a上に、ジアルキルアンモニ
ウム塩イオン(2C,8N”2C2)とポリスチレンス
ルホン酸イオン(PSS−)とを70℃で反応せしめて
ポリイオンコンプレックスの沈でんを生ぜせしめ、再沈
でんさせ、乾燥後クロロホルムに溶解して0.5μ信の
厚さでキャストし固定化二分子膜とした。水晶板1の片
側で電極2bの回りにその周辺部より半径方向約3關の
間隔をおいてシリコン系ポリマー接着剤3aを円周方向
に塗布し、その上に縦10關×横10關×厚さ3111
1のシリコンゴム板の中心部を径約6關の円形にくり抜
いたもの4をはってシールし、次いでその上に上記接着
剤3bを塗布し、その上に厚さ0.2〜1關のプラスチ
ック板6をのせてシールし、電極2bとの間に絶縁空間
5を形成せしめ、電極の片面を絶縁空間5を介してバリ
ヤー被覆した片面バリヤー被覆水晶発振子を得た。
[Example] Example 1 As shown in Fig. 1, AT cut 9.00Mt (z
The gold-deposited electrodes 2a and 2b of the crystal plate 1 of the crystal oscillator (
5 mmφ), dialkyl ammonium salt ions (2C, 8N"2C2) and polystyrene sulfonate ions (PSS-) are reacted at 70°C to produce a precipitate of a polyion complex, and re-precipitate. After drying, it was dissolved in chloroform and cast to a thickness of 0.5 microns to form an immobilized bilayer film.On one side of the quartz plate 1, around the electrode 2b at a distance of about 3 angles in the radial direction from the periphery. Apply the silicone polymer adhesive 3a in the circumferential direction, and apply a layer of 10 mm vertically x 10 mm horizontally x 3111 mm thick on top of it.
A circular piece 4 with a diameter of approximately 6 mm is cut out from the center of the silicone rubber plate 1, and then sealed.Then, the adhesive 3b is applied on top of the hollowed out circular piece 4 with a diameter of 0.2 to 1 mm. A plastic plate 6 was placed and sealed to form an insulating space 5 between the electrode 2b and one side of the electrode was coated with a barrier via the insulating space 5 to obtain a single-sided barrier-coated crystal oscillator.

実施例2 市販のビール中の匂い物質および苦味物質の定量実験を
以下の通り行なった。
Example 2 An experiment for quantifying odorants and bitter substances in commercially available beer was conducted as follows.

実施例1で得られた片面バリヤー被覆水晶発振子を先づ
蒸留水に浸漬して周波数をハ1定し、ついで上記ビール
中に浸漬して匂い物質および苦味物質を固定化二分子膜
に吸着させ、浸漬したままの状態で周波数を測定したと
ころ、その吸着にともなう周波数変化量は1800Hz
であって、それと比例関係にある匂い物質および苦味物
質の吸@量は1680ngであった。
The single-sided barrier-coated crystal oscillator obtained in Example 1 was first immersed in distilled water to determine the frequency, and then immersed in the above beer to adsorb odorants and bitter substances to the immobilized bilayer membrane. When the frequency was measured while immersed, the amount of frequency change due to adsorption was 1800Hz.
The amount of odorants and bitter substances absorbed in proportion to this was 1680 ng.

比較例1 バリヤー被覆をしない以外実施例1と同様の固定化二分
子膜被覆水晶発振子を上記ビール中に浸漬したままの状
態で周波数の測定を行なったところ発振せず測定が不可
能であった。
Comparative Example 1 A fixed bilayer membrane coated crystal oscillator similar to that of Example 1 except that it was not coated with a barrier was measured for frequency while immersed in the beer, but no oscillation occurred and measurement was impossible. Ta.

実施例3 実施例2におけるビールに代えて市販の日本酒を用いた
以外実施例2と同様の実験を行なったところ、周波数変
化は1300Hzであって、それと比例関係にある日本
酒中の匂い物質および苦味物質の吸着量は1385ng
であった。
Example 3 An experiment similar to Example 2 was conducted except that commercially available sake was used instead of beer in Example 2. The frequency change was 1300 Hz, and the odorants and bitterness in the sake were proportional to the change in frequency. The amount of substance adsorbed is 1385ng
Met.

比較例2 バリヤー被覆をしない水晶発振子を用いた以外、実施例
3と同様に周波数の測定を行なったところ、発振せず測
定が不可能であった。
Comparative Example 2 When the frequency was measured in the same manner as in Example 3 except that a crystal oscillator without barrier coating was used, no oscillation occurred and measurement was impossible.

実施例4 実施例2におけるビールに代えて市販の牛乳を用いる以
外、実施例2と同様の定量実験を行なったところ、周波
数変化は2700Hzであって、それと比例関係にある
牛乳中の匂い物質および苦味物質の吸着量は2835n
gであった。
Example 4 A quantitative experiment similar to Example 2 was conducted except that commercially available milk was used instead of beer in Example 2. The frequency change was 2700 Hz, and the odorants in milk and The adsorption amount of bitter substances is 2835n
It was g.

比較例3 バリヤー被覆をしない水晶発振子を用いた以外、実施例
4と同様に周波数の測定を行なったところ、発振せず測
定が不可能であった。
Comparative Example 3 When the frequency was measured in the same manner as in Example 4 except that a crystal oscillator without barrier coating was used, no oscillation occurred and measurement was impossible.

実施例5 吸着膜として高分子膜たるポリビニルクロライドを用い
た以外、実施例2と同様の実験を行なったところ、周波
数変化は4901(zであって、ビール中の匂い物質お
よび苦味物質の吸着量は515ngであった。
Example 5 An experiment similar to Example 2 was conducted except that polyvinyl chloride, which is a polymer membrane, was used as the adsorption membrane. The frequency change was 4901 (z, which is the amount of adsorption of odorants and bitter substances in beer). was 515 ng.

比較例4 バリヤー被覆をしない水晶発振子を用いた以外、実施例
5と同様に周波数の測定を行なったところ、発振せず測
定が不可能であった。
Comparative Example 4 When the frequency was measured in the same manner as in Example 5 except that a crystal oscillator without barrier coating was used, no oscillation occurred and measurement was impossible.

実施例6 吸着膜として高分子膜たるポリビニルクロライドを用い
た以外、実施例3と同様の実験を行なったところ、周波
数変化は820Hzであって、日本酒中の匂い物質およ
び苦味物質の吸着量は872ngであった。
Example 6 An experiment similar to Example 3 was conducted except that polyvinyl chloride, which is a polymer membrane, was used as the adsorption membrane. The frequency change was 820 Hz, and the amount of adsorbed odorants and bitter substances in Japanese sake was 872 ng. Met.

比較例5 バリヤー被覆をしない水晶発振子を用いた以外、実施例
6と同様に周波数の測定を行なったところ、発振せず測
定が不可能であった。
Comparative Example 5 When the frequency was measured in the same manner as in Example 6 except that a crystal oscillator without barrier coating was used, no oscillation occurred and measurement was impossible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の片面バリヤー被覆水晶発振子の第1
の態様を示す断面図であり、第1図において1は水晶板
、2aおよび2bは電極、3aおよび3bは接着剤、4
はシリコンゴム、5は絶縁空間、6はプラスチック板、
7は吸着膜である。 第2図は、本発明の片面バリヤー被覆水晶発振子の第2
の態様を示す断面図であり、第2図において1は水晶板
、2aおよび2bは電極、3は接着剤、4は絶縁空間、
5はプラスチック部材、6は吸着膜である。 第3図は、本発明の片面バリヤー被覆水晶発振子の第3
の態様を示す断面図であり、第3図において、1は水晶
板、2aおよび2bは電極、3は絶縁空間、4は水晶板
1と一体的に形成されたバリヤー 5は吸着膜である。
FIG. 1 shows the first part of the single-sided barrier coated crystal oscillator of the present invention.
1 is a cross-sectional view showing an aspect of the invention. In FIG. 1, 1 is a crystal plate, 2a and 2b are electrodes, 3a and 3b are adhesives, and 4
is silicone rubber, 5 is insulation space, 6 is plastic plate,
7 is an adsorption film. FIG. 2 shows the second half of the single-sided barrier coated crystal oscillator of the present invention.
2 is a cross-sectional view showing an aspect of the invention. In FIG. 2, 1 is a crystal plate, 2a and 2b are electrodes, 3 is an adhesive, 4 is an insulating space,
5 is a plastic member, and 6 is an adsorption film. FIG.
In FIG. 3, 1 is a crystal plate, 2a and 2b are electrodes, 3 is an insulating space, 4 is a barrier integrally formed with the crystal plate 1, and 5 is an adsorption film.

Claims (1)

【特許請求の範囲】 1、水晶発振子を用いて、非脱イオン溶液中に含有され
る物質またはイオンを定量する方法において、該水晶発
振子の両電極の一方を、これと実質上密着することなく
、一定の絶縁空間を介して該非脱イオン溶液が透過しな
いようにバリヤー被覆し、他方の電極上に吸着膜をキャ
ストし、次いで両電極の片面がバリヤー被覆され、他面
が該吸着膜で被覆された水晶発振子を該非脱イオン溶液
中に浸漬し、該非脱イオン溶液中に含有される物質また
はイオンをそれぞれ該吸着膜に吸着または化学結合させ
、吸着または化学結合の前後における周波数の変化を、
該片面バリヤー被覆水晶発振子を非脱イオン溶液中に浸
漬したままの状態で測定して非脱イオン溶液中に含有さ
れる物質またはイオンを定量することを特徴とする該非
脱イオン溶液中に含有される物質またはイオンの定量方
法。 2、非脱イオン溶液中に含有される物質またはイオンを
定量する方法に用いられる水晶発振子であって、その両
電極の一方を、これと実質上密着することなく一定の絶
縁空間を介して該非脱イオン溶液が透過しないようにバ
リヤー被覆し、他方の電極上に吸着膜をキャストしてな
る前記片面バリヤー被覆水晶発振子。
[Claims] 1. A method for quantifying substances or ions contained in a non-deionized solution using a crystal oscillator, in which one of both electrodes of the crystal oscillator is brought into substantially close contact with the crystal oscillator. A barrier coating is applied to prevent the non-deionized solution from permeating through a certain insulating space without the need for a barrier coating, and an adsorption membrane is cast on the other electrode, and then one side of both electrodes is coated with the barrier coating and the other side is coated with the adsorption membrane. A crystal oscillator coated with is immersed in the non-deionized solution, and the substances or ions contained in the non-deionized solution are respectively adsorbed or chemically bonded to the adsorption film, and the frequencies before and after the adsorption or chemical bonding are determined. change,
The substance or ion contained in the non-deionized solution is determined by measuring the single-sided barrier-coated crystal oscillator while immersed in the non-deionized solution. method for quantifying substances or ions. 2. A crystal oscillator used in a method for quantifying substances or ions contained in a non-deionized solution, in which one of the two electrodes is connected to the crystal oscillator through a certain insulating space without being in substantial contact with the crystal oscillator. The single-sided barrier-coated crystal oscillator is coated with a barrier so that the non-deionized solution does not pass therethrough, and an adsorption film is cast on the other electrode.
JP22319189A 1988-09-10 1989-08-31 Method for quantifying substances or ions contained in non-deionized solution and single-sided barrier-coated quartz oscillator used in the method Expired - Fee Related JP2759683B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22319189A JP2759683B2 (en) 1989-08-31 1989-08-31 Method for quantifying substances or ions contained in non-deionized solution and single-sided barrier-coated quartz oscillator used in the method
DE68911442T DE68911442T2 (en) 1988-09-10 1989-09-07 Method for determining the amount of substances in an ionic solution or in a non-ionized solution and crystal oscillator for this purpose.
EP89309071A EP0359473B1 (en) 1988-09-10 1989-09-07 A method of determining the amount of the substances or ions contained in an ionic solution or a non-deionized solution and a crystal oscillator used therefor
US07/404,513 US5049808A (en) 1988-09-10 1989-09-08 Method of determining the amount of the substances or ions contained in an ionic solution or a non-deionized solution and a one-sidebarrier-covered crystal oscillator used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22319189A JP2759683B2 (en) 1989-08-31 1989-08-31 Method for quantifying substances or ions contained in non-deionized solution and single-sided barrier-coated quartz oscillator used in the method

Publications (2)

Publication Number Publication Date
JPH0387633A true JPH0387633A (en) 1991-04-12
JP2759683B2 JP2759683B2 (en) 1998-05-28

Family

ID=16794228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22319189A Expired - Fee Related JP2759683B2 (en) 1988-09-10 1989-08-31 Method for quantifying substances or ions contained in non-deionized solution and single-sided barrier-coated quartz oscillator used in the method

Country Status (1)

Country Link
JP (1) JP2759683B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180333A (en) * 1998-12-17 2000-06-30 Sapporo Breweries Ltd Method for evaluating taste of alcoholic drink
JP2011002397A (en) * 2009-06-22 2011-01-06 Hitachi Ltd Sensor for water quality evaluation, water quality evaluation method of supply water using the same, and operation control method of water treatment plant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0004547D0 (en) * 2000-12-07 2000-12-07 Amersham Pharmacia Biotech Kk Chip quartz oscillator and sensor
JP4817742B2 (en) * 2004-10-29 2011-11-16 キヤノン株式会社 Method for detecting the direction of high concentrations of pollutants in soil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180333A (en) * 1998-12-17 2000-06-30 Sapporo Breweries Ltd Method for evaluating taste of alcoholic drink
JP2011002397A (en) * 2009-06-22 2011-01-06 Hitachi Ltd Sensor for water quality evaluation, water quality evaluation method of supply water using the same, and operation control method of water treatment plant

Also Published As

Publication number Publication date
JP2759683B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
Murphy et al. Polymer membranes in clinical sensor applications: II. The design and fabrication of permselective hydrogels for electrochemical devices
EP0272044B1 (en) Vacuum diagnostic device
US5846422A (en) Large pore synthetic polymer membranes
JPH11503826A (en) Method of defining electrode area
JPH0210902B2 (en)
JPH03137927A (en) Hydrophilic, semitransparent polytetrafluoroethylene membrane and method of its production
JPS62116252A (en) Method and device for electrochemical analysis
Nikolelis et al. Stabilized bilayer lipid membranes for flow‐through experiments
JPH0387633A (en) Method for quantitatively determining material or ion to be incorporated during non-deionized welding and crystal oscillator coated with barrier on one surface to be used in this method
JPH087205B2 (en) Device for measuring reagent concentration
JPH09170998A (en) Reference electrode assembly
Ji et al. A thin-layer electrochemical detector coated with nafion film for liquid chromatography
AU592771B2 (en) Device composed of polymers with a membrane structure and incorporated solids particles
US5049808A (en) Method of determining the amount of the substances or ions contained in an ionic solution or a non-deionized solution and a one-sidebarrier-covered crystal oscillator used therefor
JPH0547777B2 (en)
Kuniyoshi et al. Chemiluminescence sensor with Mn (III)-tetrakis (4-sulfonatophenyl)-porphyrin immobilized on dioctadecyldimethylammonium chloride bilayer membranes incorporated into PVC film
Fukuda et al. Alamethicin channels as a signal transduction element in an immobilized single giant unilamellar vesicle
US6551480B1 (en) Reference electrode
JPH049742A (en) Method for normally oscillating quartz oscillator in conductive atmosphere, support covered quartz oscillator used therein and method for quantifying substance or ion contained in conductive atmosphere using the same
JP3357914B2 (en) Method for detecting low molecular compounds in solution
JPH0387634A (en) Method for quantitatively determining material or ion to be incorporated during ion welding and crystal oscillator coated with barrier on one surface to be used in this method
JPH06167435A (en) Measuring device for odor
GB2208006A (en) Gas sensing device
JP3279928B2 (en) Diaphragm type electrochemical gas detector
Yamauchi et al. Membrane characteristics of composite collodion membrane I: Water and salt transports across membranes incorporating perfluorobenzoic acid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees