JPH0387560A - Hot-water supply apparatus - Google Patents

Hot-water supply apparatus

Info

Publication number
JPH0387560A
JPH0387560A JP1223531A JP22353189A JPH0387560A JP H0387560 A JPH0387560 A JP H0387560A JP 1223531 A JP1223531 A JP 1223531A JP 22353189 A JP22353189 A JP 22353189A JP H0387560 A JPH0387560 A JP H0387560A
Authority
JP
Japan
Prior art keywords
hot water
valve
flow rate
bypass
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1223531A
Other languages
Japanese (ja)
Inventor
Yukinori Ozaki
行則 尾崎
Masamitsu Kondo
正満 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1223531A priority Critical patent/JPH0387560A/en
Publication of JPH0387560A publication Critical patent/JPH0387560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PURPOSE:To perform control even at a low flow rate regardless of open or close of bypass valve by method wherein when the total flow rate is reduced with the bypass valve open, the bypass valve is further moved in the opening direction. CONSTITUTION:When the set temperature of a controller 49 is set at a low temperature, a motor 50 is brought in operation and a valve disc 33 is opened. At this time, the valve disc is moved to the left and a stem provided on the valve disc 33 opens a valve disc 43 of a bypass valve 41 to divide water flowing from an inlet 22 into two streams toward a heat exchanger 25 and a bypass pipe 45. With the bypass valve open, control of the total flow rate is performed by adjusting the clearance between a circular flow path 31 and a diverging circular cone 34. At this time, as the bypass valve 41 is in full-open state and the inlet pressure is high, the opening of the bypass valve 41 can be set wide even when the clearance is set narrow. Therefore, the total flow can be reduced to a low flow rate with the bypass valve 41 full open.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷水を温水にする給湯機に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a water heater that turns cold water into hot water.

従来の技術 従来この種の技術は、例えば特公昭60〜259854
号公報に示さている。第5図においてlは水量制御器で
あり、入水器2から入った水は前記水量制御器の入口弁
室3→出ロ弁室4→熱交換器5→出湯管もの順に流れ前
記熱交換器5により冷水が温水に熱交換される。前記入
口弁室3と出口弁室4は主制御井孔7が設けられており
、前記主制御孔7には主制御弁8が設けられている。前
記主制御弁8には係止リング9を有する弁棒10が固定
されている。また前記出口弁室4と前記出湯管6はバイ
パス路11で連通されており、その途中には復帰バネ1
2により付勢されたバイパス制御弁13が設けられてい
る。前記弁棒10はリング機構14を介してモータ15
に連結されている。16は水量検出器、17はバーナ、
18は出湯温度設定器、19は給湯制御器であり20は
加熱制御器である。 21.22は各々入ロサー逅スタ
、出口サーミスタである。この様に構成された従来例に
おける動作を説明すると、出湯温度設定器18の設定温
度が例えば70°Cと高い場合バイパス制御弁13は第
4図のごとく閉成状態にある。この状態で出湯管6の先
にある蛇口(図示せず)を開成すると水量検出器16が
流れを検出しバーナ17が燃焼されずに熱交換器5で熱
交換され出湯管6から給湯されることになる。この時主
制御弁8は次の様な動きをする。即ちバーナ17の燃焼
量が決まっており、出湯温度設定器1Bで設定した温度
が決まっており、前記入ロサーξスタ21で入水温を測
定しているため、必要流量を演算することが出来る。従
ってこの様に演算された流量に前記主制御弁8により流
量!l1節することになる。流量を減少させる時にはモ
ータ15を駆動し弁棒1oを図中上において上方向に引
き上げることにより前記主制御弁8と前記主制御弁孔7
の間隔が狭くなり流量が減少する。この時流量は水量検
出器16により計測しつつ必要流量まで減少する。流量
を調節する際の前記主制御弁8と前記主制御孔7との間
隔は同し流量を設定する場合であっても、入水路2、大
口弁室3の圧力により異なっている。圧力が高い場合に
は間隔は狭く、圧力が低い場合には間隔は広くなる0次
に出湯温度設定器1日の設定温度を低く(例えば40℃
)設定した時の動作を説明する。このときには出湯温度
を低く設定しているため大量の湯を得ることができる。
Conventional technology Conventionally, this type of technology is known, for example, from Japanese Patent Publication No. 60-259854.
This is shown in the publication. In FIG. 5, l is a water flow controller, and the water that enters from the water inlet 2 flows in the order of the inlet valve chamber 3 of the water flow controller → the outlet valve chamber 4 → the heat exchanger 5 → the outlet pipe. 5, heat is exchanged from cold water to hot water. The inlet valve chamber 3 and the outlet valve chamber 4 are provided with a main control well 7, and the main control hole 7 is provided with a main control valve 8. A valve stem 10 having a locking ring 9 is fixed to the main control valve 8 . Further, the outlet valve chamber 4 and the hot water outlet pipe 6 are communicated with each other through a bypass path 11, and a return spring 1 is provided in the middle of the bypass path 11.
A bypass control valve 13 energized by 2 is provided. The valve stem 10 is connected to a motor 15 via a ring mechanism 14.
is connected to. 16 is a water amount detector, 17 is a burner,
18 is a hot water temperature setting device, 19 is a hot water supply controller, and 20 is a heating controller. 21 and 22 are an input losser detector and an output thermistor, respectively. To explain the operation of the conventional example configured in this way, when the set temperature of the outlet hot water temperature setting device 18 is as high as 70° C., the bypass control valve 13 is in a closed state as shown in FIG. 4. In this state, when the faucet (not shown) at the end of the hot water tap pipe 6 is opened, the water flow detector 16 detects the flow, and the burner 17 is not burned, but the heat exchanger 5 exchanges heat and hot water is supplied from the hot water tap pipe 6. It turns out. At this time, the main control valve 8 moves as follows. That is, since the combustion amount of the burner 17 is determined, the temperature set by the outlet hot water temperature setting device 1B is determined, and the inlet water temperature is measured by the input losser ξ star 21, the required flow rate can be calculated. Therefore, the flow rate is calculated by the main control valve 8 based on the flow rate calculated in this way! There will be 11 sections. When reducing the flow rate, the main control valve 8 and the main control valve hole 7 are removed by driving the motor 15 and pulling the valve stem 1o upward in the figure.
The interval between the two becomes narrower and the flow rate decreases. At this time, the flow rate is reduced to the required flow rate while being measured by the water amount detector 16. The distance between the main control valve 8 and the main control hole 7 when adjusting the flow rate differs depending on the pressure of the inlet channel 2 and the large mouth valve chamber 3 even when the same flow rate is set. When the pressure is high, the interval is narrow, and when the pressure is low, the interval is wide.
) Explain the behavior when set. At this time, the hot water temperature is set low, so a large amount of hot water can be obtained.

従ってモータ15が作動し弁体lOを図中下方向に移動
する。その結果係止リング9がバイパス制御弁13に当
接し復帰バネ12を押しバイパス制御弁13は開成され
る。
Therefore, the motor 15 operates to move the valve body 10 downward in the figure. As a result, the locking ring 9 comes into contact with the bypass control valve 13 and pushes the return spring 12, thereby opening the bypass control valve 13.

この時入水路2から入った水の流れは熱交換器5の流れ
と、バイパス路11の流れに分流されることになる。こ
の時、熱交換器5例とバイパス路ll側に流れる流量比
は一定であるが、トータル流量は前記主制御弁8でiu
yすることになる。
At this time, the flow of water entering from the inlet channel 2 is divided into a flow through the heat exchanger 5 and a flow through the bypass path 11. At this time, the ratio of the flow rate flowing to the five heat exchangers and the bypass path ll side is constant, but the total flow rate is iu
y will be done.

発明が解決しようとする課題 しかしながら従来例においてはトータル流量を制御する
時に課題が生じる。即ちバイパス制御弁13が閉じ係止
リング9がバイパス制御弁13に当接している状態で主
制御孔7と主制御弁8は一定の開度を設ける必要がある
。(高温設定時に質1tiJi1節をするため)今、バ
イパス制御弁13が開いた状態で、入水路2の圧力が高
い場合にはトータル流量が大きくなるため主制御弁8を
図中上方向に移動し、主制御孔7と主制御弁8の間隔を
狭くし流量を感少させる。この時バイパス制御弁13の
開度も小さくなりバイパス路11を流れる流量が減少す
ると言う問題があった。また従来例は主制御弁8の流量
節部を1箇所で構成しているため、係止リング9がバイ
パス制御弁13に当接している際にも主制御孔7と主制
御弁8は一定の間隔を設けておかねばならず、バイパス
制御弁13が開いた状態で特に入水路2圧力が高い場合
、流量を減少させる時に少流量まで絞ることが出来ない
ものであった。
Problems to be Solved by the Invention However, in the conventional example, problems arise when controlling the total flow rate. That is, the main control hole 7 and the main control valve 8 need to have a certain degree of opening when the bypass control valve 13 is closed and the locking ring 9 is in contact with the bypass control valve 13. (To perform quality control when setting a high temperature) Now, with the bypass control valve 13 open, if the pressure in the inlet channel 2 is high, the total flow rate will increase, so move the main control valve 8 upward in the diagram. However, the distance between the main control hole 7 and the main control valve 8 is narrowed to reduce the flow rate. At this time, the opening degree of the bypass control valve 13 also becomes small, causing a problem in that the flow rate flowing through the bypass path 11 decreases. In addition, in the conventional example, the flow node of the main control valve 8 is configured at one location, so even when the locking ring 9 is in contact with the bypass control valve 13, the main control hole 7 and the main control valve 8 are constant. Therefore, when the bypass control valve 13 is open and the pressure in the inlet channel 2 is high, it is impossible to reduce the flow rate to a small amount.

そこで本発明の目的は高水圧でバイパス制御弁が開いた
状態であっても、閉じた状態であっても、少流量まで絞
ることが出来る制御性にすぐれた給湯機を提供すること
を目的とするものである。
Therefore, an object of the present invention is to provide a water heater with excellent controllability that can reduce the flow rate to a small amount even when the bypass control valve is open or closed at high water pressure. It is something to do.

課題を解決するための手段 前記目的を達成するために本発明は、バーナと、このバ
ーナにより冷水を温水にする熱交換器と、この熱交換器
への入水管と、前記熱交換器からの出湯管と、前記入水
前取いは出湯管のいずれかに設けられ正逆の2方向に移
動する弁体部を有し前記2方向に移動した際、各々2箇
所で流量制御する流量制御弁と、前記流量制御弁を駆動
する駆動手段と、前記入水管と前記出湯管を連通ずるバ
イパス管と、前記出湯管からの出湯温度を設定する湯温
設定器と、前記バイパス管に設けられ前記湯温設定器の
設定温度に応じて前記流量制御弁に連動して流量を変化
させるバイパス弁を設けたものである。
Means for Solving the Problems In order to achieve the above objects, the present invention includes a burner, a heat exchanger that converts cold water into hot water using the burner, a water inlet pipe to the heat exchanger, and a water inlet pipe from the heat exchanger. The hot water outlet pipe and the water entry front intake have a valve body that is provided in either of the hot water outlet pipes and moves in two directions, forward and reverse, and when moving in the two directions, the flow rate is controlled at two locations respectively.Flow control A valve, a driving means for driving the flow rate control valve, a bypass pipe for communicating the water inlet pipe and the hot water outlet pipe, a hot water temperature setting device for setting the temperature of hot water discharged from the hot water outlet pipe, and a hot water temperature setting device provided in the bypass pipe. A bypass valve is provided that changes the flow rate in conjunction with the flow rate control valve according to the set temperature of the hot water temperature setting device.

作用 本発明の制御弁は上記構成により、バイパス弁を開成し
た時と閉成した時の流量制御弁の流量制御位置を独立さ
せると共に、バイパス弁が開底した状態でトータル流量
を減少するときバイパス弁を更に開成する方向に移動す
るため、バイパス弁の開閉に関係なく少流量まで流量制
御が出来るものである。
Operation The control valve of the present invention has the above-mentioned configuration, so that the flow control position of the flow control valve is independent when the bypass valve is opened and when it is closed, and when the total flow rate is reduced with the bypass valve open, the bypass Since the valve is moved in the direction of opening the valve further, the flow rate can be controlled down to a small flow rate regardless of whether the bypass valve is opened or closed.

実施例 以下、本発明の一実施例を図面にもとづいて説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は〜第4図において、21はバルブ本体であり、
バルブ本体21には入口22と出口23が設けられてお
り、前記出口23からは水量センサ24、熱交換!S2
5、給湯出口26へと配管されている。前記バルブ本体
21内は上次圧力室27と2次圧力室28と前記1次圧
力室27と前記2次圧力室28を連通部29から槽底さ
れている。この連通部29は前記1次圧力室27から下
流側に漸次流路面積が縮少する縮少円錐流路部30と、
前記縮少円錐流路部30から流路面積が一定な円筒流路
部31と、前記円筒流路部31から前記2次圧力室28
に漸次流路面積が拡大する拡大円錐流路部32で槽底さ
れている。また前記連通部29の中には前記連通部29
を摺動する弁体33が設けられている。この弁体33は
前記1次圧力室27から下流側に漸次前記弁体断面積が
拡大する拡大円錐部34と、前記拡大円錐部34から弁
体断面積が一定な円筒部35と、前記円筒部35から前
記2次圧力室28に漸次前記弁体断面積が縮少する縮少
円錐部36で槽底されている。そして前記連通部29の
前記縮少円錐流路部30の円錐角度と、前記弁体33の
縮少円錐部36の円錐角度を同角度にし、前記拡大円錐
流路部32の円錐角度と、前記弁体33の前記拡大円錐
部34の円錐角度を同角度としている。また弁体33に
はガイド板37が設けられており、このガイド板37は
、前記円筒流路部31内を摺動する際のガイドを行って
いる。前記弁体33はピストン38を連結されており、
このピストン38は2次圧力室28の圧力を導入する圧
力室39を構成している。40は導入孔である。更に4
1はバイパス弁でこのバイパス弁41の内部にはスプリ
ング42で付勢された弁体43が設けられている。44
は前記弁体43を開底するための軸体であり前記弁体3
3に設けられている。
In Figures 1 to 4, 21 is the valve body;
The valve body 21 is provided with an inlet 22 and an outlet 23, and from the outlet 23 there is a water flow sensor 24 and a heat exchanger! S2
5. It is piped to the hot water outlet 26. Inside the valve body 21, an upper pressure chamber 27, a secondary pressure chamber 28, the primary pressure chamber 27, and the secondary pressure chamber 28 are connected to each other from a communication portion 29 to the bottom of the tank. This communication portion 29 includes a reduced conical flow path portion 30 whose flow path area gradually decreases downstream from the primary pressure chamber 27;
A cylindrical flow path portion 31 having a constant flow path area is formed from the reduced conical flow path portion 30, and a cylindrical flow path portion 31 having a constant flow path area is formed from the cylindrical flow path portion 31, and the secondary pressure chamber 28 is formed from the cylindrical flow path portion 31.
The bottom of the tank is formed by an enlarged conical flow path section 32 whose flow path area gradually increases. Further, in the communication portion 29, the communication portion 29
A valve body 33 that slides is provided. The valve body 33 includes an enlarged conical part 34 whose cross-sectional area gradually increases downstream from the primary pressure chamber 27, a cylindrical part 35 whose cross-sectional area is constant from the enlarged conical part 34, and a cylindrical part 35 whose cross-sectional area is constant. The tank bottom is formed by a reducing conical part 36 in which the cross-sectional area of the valve body gradually decreases from the part 35 to the secondary pressure chamber 28. Then, the cone angle of the reduced conical flow path portion 30 of the communication portion 29 and the cone angle of the reduced cone portion 36 of the valve body 33 are made the same angle, and the cone angle of the expanded conical flow path portion 32 and the The conical angles of the enlarged conical portion 34 of the valve body 33 are made to be the same angle. Further, the valve body 33 is provided with a guide plate 37, and this guide plate 37 guides when sliding inside the cylindrical flow path portion 31. The valve body 33 is connected to a piston 38,
This piston 38 constitutes a pressure chamber 39 into which the pressure of the secondary pressure chamber 28 is introduced. 40 is an introduction hole. 4 more
1 is a bypass valve, and a valve body 43 biased by a spring 42 is provided inside this bypass valve 41. 44
is a shaft body for opening the bottom of the valve body 43;
3.

尚前記バイパス弁41からはバイパス管45により給湯
出026側へ配管されている。4Gは制御器であり、こ
のvI御器46へは入水温サー逅スタ47、出給湯す−
處スタ48、コントローラ49、水量センサ24の信号
が入り、制御する対称としてはモータ50やバーナ51
を制御するガス制御弁52等がある。53は付勢スプリ
ングである1次に、本発明の一実施例における動作を説
明する。コントローラ49の温度設定を例えば70’C
にすると、モータ50が動作し弁体33は第3図の状態
となる。この時バイパス弁41は閉成状態にある、70
’Cの給湯温度を得るために入口22から入り熱交換器
25に流れる流量を制御する必要がある0本発明におい
ては縮少円錐流路部30と弁体33の円筒部35の間隔
により流it!11!するものである。1次圧力室27
の圧力が高い場合には前記間隔が狭くなり目的の流量ま
で絞ることになる当然のことながら流量は常に水量セン
サ24で測定されており目的の流量に達した時モータ5
0を停止させてi量制御が終ることになる。一方コント
ローラ49の温度設定を40°Cの低温にした場合モー
タ50が作動し弁体33は第4図の状態となる。この時
には弁体33図中左側に移動し弁体33に設けられた軸
体がバイパス弁41の弁体43を開底し人口22から流
入した水は熱交換器25とバイパス管45の流れに分流
される。バイパス弁41が開いた状態でのトータル流量
制御は円管流路部31と弁体33の前記拡大円錐部34
の間隔により行われる。この時にはバイパス弁41は全
開状態にあり、入口圧が大きくなり前記間隔を狭くして
もバイパス弁41の開度を大きく取ることが出来るもの
である。逆に言えばバイパス弁41を全開にした状態で
トータル流量を小流量までに絞ることをか出来るもので
ある。
The bypass valve 41 is connected to the hot water supply outlet 026 by a bypass pipe 45. 4G is a controller, and this vI controller 46 is connected to an inlet water temperature sensor 47 and an output hot water supply unit.
Signals from the heater 48, the controller 49, and the water sensor 24 are input, and the objects to be controlled are the motor 50 and the burner 51.
There is a gas control valve 52 etc. for controlling the gas. Reference numeral 53 denotes a biasing spring.First, the operation in one embodiment of the present invention will be described. For example, set the temperature of the controller 49 to 70'C.
Then, the motor 50 operates and the valve body 33 is in the state shown in FIG. At this time, the bypass valve 41 is in a closed state, 70
In order to obtain a hot water temperature of It! 11! It is something to do. Primary pressure chamber 27
When the pressure of
0 is stopped and i amount control ends. On the other hand, when the temperature setting of the controller 49 is set to a low temperature of 40° C., the motor 50 is activated and the valve body 33 is in the state shown in FIG. 4. At this time, the valve body 33 moves to the left side in the diagram, and the shaft body provided on the valve body 33 opens the valve body 43 of the bypass valve 41, and the water flowing from the population 22 flows into the heat exchanger 25 and the bypass pipe 45. Diverted. The total flow rate control when the bypass valve 41 is open is performed using the circular pipe passage section 31 and the enlarged conical section 34 of the valve body 33.
This is done at intervals of At this time, the bypass valve 41 is in a fully open state, and the inlet pressure increases, so even if the interval is narrowed, the opening degree of the bypass valve 41 can be increased. In other words, the total flow rate can be reduced to a small flow rate with the bypass valve 41 fully open.

発明の効果 以上のように、本発明はバーナと、このバーナにより冷
水を温水にする熱交換器と、この熱交換器への入水管と
、前記熱交換器からの出湯管と、前記入水管或いは出湯
管のいずれかに設けられ正逆の2方向に移動する弁体部
を有し前記2方向に移動した際2箇所で各々流量制御す
る流量制御弁と、前記流量制御弁を駆動する駆動手段と
、前記入水管と前記出湯管を連通ずるバイパス管と、前
記出湯管らの出湯温度を設定する湯温設定器占、前記バ
イパス管に設けられ前記湯温設定器の設定温度に応じて
前記流量制御弁に連動して流星を変化させるバイパス弁
とを設けることにより、バイパス弁が閉じている時は弁
体が正の方向に移動し小流量まで流量制御出来ると共に
、バイパス弁が開の状態の時は弁体が逆の方向に移動し
前記バイパス弁が開の状態を十分保ちながら小流量まで
流量制御することが出来、入口圧力が高くなっても流量
制御機能に優れた給湯機を得ることが出来るものである
Effects of the Invention As described above, the present invention provides a burner, a heat exchanger that converts cold water into hot water using the burner, a water inlet pipe to the heat exchanger, a hot water outlet pipe from the heat exchanger, and the water inlet pipe. Alternatively, a flow rate control valve that is provided in either of the hot water taps and has a valve body that moves in two directions, forward and reverse, and controls the flow rate at two locations when moving in the two directions, and a drive that drives the flow rate control valve. means, a bypass pipe communicating the water inlet pipe and the hot water outlet pipe, a hot water temperature setting device for setting the hot water temperature of the hot water outlet pipes, and a hot water temperature setting device provided in the bypass pipe and setting the hot water temperature setting device according to the temperature setting of the hot water temperature setting device. By providing a bypass valve that changes the meteor in conjunction with the flow rate control valve, the valve body moves in the positive direction when the bypass valve is closed, making it possible to control the flow rate down to a small flow rate. When the valve body is in this state, the valve body moves in the opposite direction and the bypass valve can maintain the open state sufficiently while controlling the flow rate down to a small flow rate, creating a water heater with excellent flow control function even when the inlet pressure becomes high. It is something that can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す給湯機の回路構成図
、第2図は弁体の斜視図、第3図、第4図は同流量制御
状態を示す回路構成図、第5図は従来の給湯機を示す回
路構成図である。 21・・・・・・流量制御弁(バルブ本体)、22・・
・・・・入口、25・・・・・・熱交換器、26・・・
・・・出湯管(給湯出口)、41・・・・・・バイパス
弁、45・・・・・・バイパス管、49・・・・・・t
lk’lA設定器、50・・・・・・駆動手段(モータ
)。
FIG. 1 is a circuit configuration diagram of a water heater showing an embodiment of the present invention, FIG. 2 is a perspective view of a valve body, FIGS. 3 and 4 are circuit configuration diagrams showing the same flow rate control state, and FIG. The figure is a circuit configuration diagram showing a conventional water heater. 21...Flow control valve (valve body), 22...
...Inlet, 25...Heat exchanger, 26...
...Hot water pipe (hot water supply outlet), 41...Bypass valve, 45...Bypass pipe, 49...t
lk'lA setting device, 50... Drive means (motor).

Claims (1)

【特許請求の範囲】[Claims]  バーナと、このバーナにより冷水を温水にする熱交換
器と、この熱交換器への入水管と、前記熱交換器からの
出湯管と、前記入水管或いは出湯管のいずれかに設けら
れ正逆の2方向に移動する弁体部を有し前記2方向に移
動した際2箇所で各々流量制御する流量制御弁と、前記
流量制御弁を駆動する駆動手段と、前記入水管と前記出
湯管を連通するバイパス管と、前記出湯管からの出湯温
度を設定する湯温設定器と、前記バイパス管に設けられ
前記湯温設定器の設定温度に応じて前記流量制御弁に連
動して流量を変化させるバイパス弁とからなる給湯機。
A burner, a heat exchanger that uses the burner to turn cold water into hot water, a water inlet pipe to the heat exchanger, a hot water outlet pipe from the heat exchanger, and a forward and reverse direction provided in either the water inlet pipe or the hot water outlet pipe. a flow control valve having a valve body that moves in two directions and controls the flow rate at two locations when moving in the two directions; a driving means for driving the flow control valve; and a drive means for driving the water inlet pipe and the hot water outlet pipe. a bypass pipe that communicates with the hot water; a hot water temperature setting device that sets the hot water temperature from the hot water exit pipe; and a hot water temperature setting device that is provided in the bypass pipe and changes the flow rate in conjunction with the flow rate control valve according to the set temperature of the hot water temperature setting device. A water heater consisting of a bypass valve.
JP1223531A 1989-08-30 1989-08-30 Hot-water supply apparatus Pending JPH0387560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1223531A JPH0387560A (en) 1989-08-30 1989-08-30 Hot-water supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1223531A JPH0387560A (en) 1989-08-30 1989-08-30 Hot-water supply apparatus

Publications (1)

Publication Number Publication Date
JPH0387560A true JPH0387560A (en) 1991-04-12

Family

ID=16799611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223531A Pending JPH0387560A (en) 1989-08-30 1989-08-30 Hot-water supply apparatus

Country Status (1)

Country Link
JP (1) JPH0387560A (en)

Similar Documents

Publication Publication Date Title
JPH11287337A (en) Mixing proportional valve
JPH0387560A (en) Hot-water supply apparatus
JPH0465305B2 (en)
JPS59155674A (en) Mixing valve for hot water and water
JP2669084B2 (en) Fluid control valve
JPS5833024A (en) Gas combustion controller
JP2864605B2 (en) Fluid control valve device
JP2002228261A (en) Water heater
JP3258700B2 (en) Hot water supply temperature adjustment device of hot water supply device
JP2715611B2 (en) Fluid control valve device
JPS6015028Y2 (en) Mixing type water heater hot water mixing device
JPS6231231B2 (en)
JPS5852111B2 (en) hot water mixing device
JPH0142766Y2 (en)
JPH029338Y2 (en)
JPH07317927A (en) Hot water supplying device
JP2578173B2 (en) Hot water mixing equipment
JPH03181744A (en) Hot-water supply apparatus
JP2985198B2 (en) Fluid control valve
JPS63318382A (en) Flow rate controller
KR910002708B1 (en) Temperature adjusting device of gas water heater
JP2831502B2 (en) Shower equipment
JPS6121345B2 (en)
JPH05215398A (en) Controlling method for initial hot water output amount of hot water supplying apparatus
JPH0255688B2 (en)