JPH0387374A - Method of creating phosphate coat on metal and application of this method - Google Patents

Method of creating phosphate coat on metal and application of this method

Info

Publication number
JPH0387374A
JPH0387374A JP2220940A JP22094090A JPH0387374A JP H0387374 A JPH0387374 A JP H0387374A JP 2220940 A JP2220940 A JP 2220940A JP 22094090 A JP22094090 A JP 22094090A JP H0387374 A JPH0387374 A JP H0387374A
Authority
JP
Japan
Prior art keywords
solution
phosphating solution
phosphating
brought
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2220940A
Other languages
Japanese (ja)
Other versions
JP2992619B2 (en
Inventor
Horst Gehmecker
ホルスト・ゲヒメッカー
Dieter Hauffe
ディーター・ハウフェ
Dirk Meyer
デイルク・マイヤー
Gerhard Mueller
ゲルハルト・ミューラー
Werner Rausch
バーナー・ラウシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of JPH0387374A publication Critical patent/JPH0387374A/en
Application granted granted Critical
Publication of JP2992619B2 publication Critical patent/JP2992619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • C23C22/184Orthophosphates containing manganese cations containing also zinc cations containing also nickel cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/16Orthophosphates containing zinc cations containing also peroxy-compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/77Controlling or regulating of the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

In a process for phosphating iron and steel surfaces according to the low-zinc technology, a nitrite-free aqueous acidic phosphating solution of 30 to 65 DEG C is used which contains 0.4 to 1.7 g/l of Zn 7 to 25 g/l of P2O5 2 to 30 g/l of NO3 and in which the weight ratio of free P2O5 to total P2O5 is adjusted to a value in the range from 0.04 to 0.20. H2O2 or alkali metal perborate is added to the phosphating solution in an amount such that - in the incorporated state - its maximum peroxide concentration is 17 mg/l, preferably 8 mg/l (calculated as H2O2), or its maximum Fe(II) concentration is 60 mg/l, preferably 30 mg/l (calculated as Fe). It is particularly advantageous to control the addition of H2O2 and/or alkali metal perborate according to the electrochemical potential determined with a redox electrode. The phosphating solution may additionally contain Mn, Ni, Co, Mg and/or Ca or fluoroborate, fluorosilicate and/or fluoride. The process can be used in particular for the preparation of metal surfaces for coating. <IMAGE>

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は亜鉛、リン酸塩及び硝酸塩を含有し、亜硝酸塩
を含有しないリン酸処理用溶液を用いて低亜鉛法により
鉄及び鋼の表面をリン酸処理して金属上にリン酸塩被膜
をつくる方法及びこの方法を塗装のための鉄及び鋼の表
面の予備処理に用いることに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the surface treatment of iron and steel by a low zinc method using a phosphating solution containing zinc, phosphates and nitrates, but not nitrites. The present invention relates to a method for preparing phosphate coatings on metals by phosphoric acid treatment and the use of this method in the pretreatment of iron and steel surfaces for painting.

〔従来の技術〕[Conventional technology]

リン酸亜鉛処理法は金属加工産業において大規模に利用
されている。この方法で被処理金属表面につくられるリ
ン酸塩層は滑りを軽減し削りくずの出ない冷間加工を容
易にし、腐食防止に役立ち、また塗膜の接着基礎として
役立つ。
Zinc phosphate processing methods are used on a large scale in the metalworking industry. The phosphate layer created by this method on the metal surface reduces slippage, facilitates chip-free cold working, helps prevent corrosion, and serves as an adhesion basis for coatings.

塗装前の予備処理として低亜鉛法によるリン酸処理は特
別の利益を与え。その際に用いられる浴溶液はわずかに
約0.4〜1.7g/lの濃度の亜鉛を含有し、鋼上に
リン薬石を高い割合で含むリン酸塩層を形威し、このリ
ン薬石は高亜鉛含量のリン酸処理浴で得られるホープア
イトより良好な塗膜接着性と腐食応力の塗膜下移行に対
する高い抵抗性を生じる。
As a pre-treatment before painting, phosphoric acid treatment with a low zinc method offers particular benefits. The bath solution used in this case contains only a zinc concentration of about 0.4 to 1.7 g/l and forms a phosphate layer on the steel containing a high proportion of phosphate stone. gives better coating adhesion and higher resistance to sub-coating migration of corrosive stresses than the hopeite obtained in high zinc content phosphating baths.

亜硝酸塩、塩素酸塩及び有機ニトロ化合物は低亜鉛リン
酸処理浴における促進剤として特に役立つことがわかっ
ている。これらは短時間で高品質で均一な被覆リン酸塩
層を与える。また、低亜鉛リン酸処理浴においてペルオ
キシド類を促進剤として用いることも公知である。ペル
オキシド類は作業場の衛生面及び環境保護の理由で前記
の促進剤より好ましいが、従来使用された処理条件下で
はその促進作用は十分ではない。ペルオキシ化合物の別
の欠点は処理を長時間行ってもわずかに中程度の耐食性
を有する比較的薄いリン酸塩層が得られることである。
Nitrite, chlorate and organic nitro compounds have been found to be particularly useful as accelerators in low zinc phosphate treatment baths. These give high quality and uniform coated phosphate layers in a short time. It is also known to use peroxides as accelerators in low zinc phosphate treatment baths. Although peroxides are preferred over the aforementioned accelerators for reasons of workplace hygiene and environmental protection, their accelerating action is not sufficient under the processing conditions conventionally used. Another disadvantage of peroxy compounds is that even after long processing times relatively thin phosphate layers are obtained with only moderate corrosion resistance.

(発明が解決しようとする課題〕 本発明の課題は亜硝酸塩を含有しない低亜鉛リン酸処理
用溶液により鉄及び鋼を必要に応して亜鉛めっき鋼、亜
鉛合金被覆鋼、アルミニウムめっき鋼及びアルミニウム
と共にリン酸亜鉛処理するために、公知の特に前記の欠
点のない方法を提供することである。
(Problem to be Solved by the Invention) The problem of the present invention is to treat iron and steel as necessary with a low zinc phosphating solution that does not contain nitrites. The object of the present invention is to provide a method for the treatment with zinc phosphate that does not have the known drawbacks, especially those mentioned above.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題は冒頭に述べた方法において本発明に従って、
Znを0.4〜1.7g//2、p2o、を7〜25g
/l及びN03を2〜30g/l含有し、全P2O5に
対する遊離P2O5の重量比を0.04〜0.20に調
節したリン酸処理用溶液に表面を30〜65℃で接触さ
せること及び作用状態においてリン酸処理用溶液の最大
ペルオキシド濃度が17mg/ Q  (H20□とし
て計算)及び同溶液の最大Fe(II)濃度が60mg
/ 1  (Feとして計算)である1の1120□又
はアルカリ過ホウ酸塩をリン酸処理用溶液に加えること
により解決される。
The problem is solved according to the invention in the manner mentioned at the outset.
0.4-1.7g//2 of Zn, 7-25g of p2o
Contacting the surface at 30 to 65°C with a phosphoric acid treatment solution containing 2 to 30 g/l and N03 and adjusting the weight ratio of free P2O5 to total P2O5 to 0.04 to 0.20, and action. The maximum peroxide concentration of the phosphoric acid treatment solution is 17 mg/Q (calculated as H20□) and the maximum Fe(II) concentration of the same solution is 60 mg.
/ 1 (calculated as Fe) by adding 1120 □ or an alkali perborate to the phosphating solution.

本発明の方法は鉄及び鋼の表面処理するためのものであ
る。鉄及び鋼と共に低合金鋼、亜鉛めっき鋼、亜鉛合金
めっき鋼、即ち、例えばZnAj2、ZnFe及びZn
N iで被覆された鋼、アルミニウムめっき鋼、アルミ
ニウム及びその合金を処理することができる。
The method of the invention is for surface treatment of iron and steel. Iron and steel as well as low alloy steel, galvanized steel, zinc alloy coated steel, i.e. for example ZnAj2, ZnFe and Zn
Ni coated steel, aluminized steel, aluminum and its alloys can be treated.

リン酸処理は30〜65℃の温度範囲で行なわれる。The phosphoric acid treatment is carried out at a temperature range of 30-65°C.

30℃より低いとリン酸処理速度が近代的大量生産にと
って充分ではな(、一方、65℃より高い温度では、例
えば装置の表面に著しく外被が付着するといった欠点が
生じる。
Below 30° C., the phosphating rate is not sufficient for modern mass production (while at temperatures above 65° C., disadvantages arise, such as significant encrustation on the surfaces of the equipment).

いわゆる低亜鉛法の常道としてリン酸処理用溶液中のZ
n : P2O5の重量比は好ましくは(0,075〜
0゜15):1である。
Z in the phosphoric acid treatment solution is a common practice in the so-called low zinc method.
The weight ratio of n: P2O5 is preferably (0,075 to
0°15):1.

リン酸処理用溶液のペルオキシド又はFe(II)の含
量は例えば過マンガン酸カリ滴定による通常の方法で決
定される。本発明の好適態様によれば、H20□及び/
又はアルカリ過ホウ酸塩の添加をレドックス電極により
決定される電気化学ポテンシャルに従って調節されるリ
ン酸処理用溶液に表面を接触させる。例えば、プラチナ
電極と、カロメル電極又は銀−塩化銀電極といった適当
な参照電極を用いてリン酸処理用溶液を連続的に監視す
ることができ、定常的なFe(If)イオン濃度及び定
常的な過酸化水素濃度が前記範囲内に止まるようにペル
オキシドの添加を行うことができる。
The peroxide or Fe(II) content of the phosphating solution is determined in a conventional manner, for example by potassium permanganate titration. According to a preferred embodiment of the present invention, H20□ and/or
Alternatively, the surface is contacted with a phosphating solution in which the addition of alkaline perborate is adjusted according to the electrochemical potential determined by the redox electrode. For example, a platinum electrode and a suitable reference electrode, such as a calomel electrode or a silver-silver chloride electrode, can be used to continuously monitor the phosphating solution, providing a constant Fe(If) ion concentration and a constant Addition of peroxide can be carried out such that the hydrogen peroxide concentration remains within the above range.

本発明の方法において用いられるリン酸処理用溶液中の
カチオンとアニオンの種類と量の選択は全P2O5に対
する遊A11P z Osの比が0.04と0.20の
間にあるように行われる。一般的に、高い浴温度及び/
又は高い亜鉛濃度の場合、この比は前記範囲の高い領域
を選択すべきであり、低い浴温度及び/又は低い亜鉛濃
度の場合、この比は低い領域を選択すべきである。
The selection of the type and amount of cations and anions in the phosphating solution used in the process of the invention is such that the ratio of free A11P z Os to total P2O5 is between 0.04 and 0.20. Typically high bath temperatures and/or
Or in the case of high zinc concentrations, this ratio should be selected in the high range of said range, and in the case of low bath temperatures and/or low zinc concentrations, this ratio should be selected in the low range.

本発明の好適態様によれば、リン酸処理用溶液の最大ペ
ルオキシド濃度が8mg/i、及び同溶液の最大Fe(
If)濃度が30mg/lとなるような量の11□0□
及び/又はアルカリ過ホウ酸塩を加えたリン酸処理用溶
液に表面を接触させる。
According to a preferred embodiment of the invention, the maximum peroxide concentration of the phosphating solution is 8 mg/i and the maximum Fe (
If) 11□0□ in an amount such that the concentration is 30 mg/l
and/or contacting the surface with a phosphating solution containing an alkaline perborate.

本発明の別の好適態様によれば、マンガンを3g/l以
下の量、ニッケル及び/又はコバルトを3 g/l以下
の量、マグネシウムを3 g/I!以下の量及び/又は
カルシウムを3g/l以下の量でさらに含有したリン酸
処理用溶液に表面を接触させる。マンガン及び/又はマ
グネシウム及び/又はカルシウムを併用することにより
亜鉛及び任意に鉄(n)の外にこれらのカチオンも含有
したリン酸塩被膜が得られる。このような混合リン酸塩
は耐アルカリ性の高いことが特長であり、塗料の接着ベ
ースとして特に適している。リン酸処理用溶液の泪への
攻撃性を高めるため及び、亜鉛表面も一緒に処理される
場合には亜鉛表面のリン酸処理を向上させるためにニッ
ケル及び/又はコバルトを加えるのが好ましい。必要に
応じて少量の銅を添加するとリン酸処理用溶液の促進作
用が増大する。アルカリ及び/又はアンモニウムは主と
して所望の酸比を調節するのに用いられる。
According to another preferred embodiment of the invention, manganese in an amount of 3 g/l or less, nickel and/or cobalt in an amount of 3 g/l or less, magnesium in an amount of 3 g/l! The surface is contacted with a phosphating solution further containing calcium in an amount of: The combined use of manganese and/or magnesium and/or calcium results in phosphate coatings containing these cations in addition to zinc and optionally iron (n). Such mixed phosphates are characterized by high alkali resistance and are particularly suitable as adhesive bases for paints. It is preferred to add nickel and/or cobalt to increase the aggressiveness of the phosphating solution to tears and to improve the phosphating of the zinc surface if the zinc surface is also treated. The addition of small amounts of copper, if necessary, increases the accelerating effect of the phosphating solution. Alkali and/or ammonium are primarily used to adjust the desired acid ratio.

本発明の別の好適態様によれば、フルオロホウ酸塩を3
g/IBF、として計算)以下の量及び/又はケイフッ
化物を3 g / l C3=Fbとして計算)以下の
量及び/又はフッ化物を1.5g/F!(Fとして計算
)以下の量で含有したリン酸処理用溶液に表面を接触さ
せる。フルオロホウ酸、ケイフッ化物及び/又はフッ化
物の各アニオンは一般にリン酸処理速度を高め、その上
にアルミニウム含有亜鉛表面の処理を意図する場合には
特に有利である。アルミニウム及びその合金の結晶性リ
ン酸処理のためには遊離のフン化物(F−)の存在は不
可欠である。
According to another preferred embodiment of the invention, the fluoroborate salt is
g/IBF) and/or silicofluoride in an amount of 3 g/l Calculated as C3=Fb) and/or in an amount of 1.5 g/F! (Calculated as F) The surface is brought into contact with a phosphoric acid treatment solution containing the following amounts: Fluoroboric acid, silicofluoride and/or fluoride anions generally increase the rate of phosphoric acid treatment and are particularly advantageous when further treatment of aluminum-containing zinc surfaces is intended. The presence of free fluoride (F-) is essential for crystalline phosphoric acid treatment of aluminum and its alloys.

塩化物と硫酸塩はリン酸処理用溶液の電気的中性の調節
のため及び、特別な場合には、攻撃性の向上のために用
いられる。任意に併用される例えば酒石酸及び/又はク
エン酸といったポリヒドロキシカルボン酸は得られるリ
ン酸塩被膜の厚さ及び単位表面当りの重量に影響を与え
ることができる。
Chlorides and sulfates are used to adjust the electroneutrality of the phosphating solution and, in special cases, to improve its aggressiveness. The optionally used polyhydroxycarboxylic acids, such as tartaric acid and/or citric acid, can influence the thickness and weight per unit surface of the resulting phosphate coating.

リン酸処理用溶液がさらにマンガン及び/又はニッケル
及び/又はコバルト及び/又はマグネシウムを含有する
場合、Mn : Zn、(Ni及び/又はCo): Z
n、 Mg : Zn及び/又はCa : Znの重量
割合はそれぞれ最高で2:1とすべきである。
When the phosphating solution further contains manganese and/or nickel and/or cobalt and/or magnesium, Mn:Zn, (Ni and/or Co): Z
The weight ratio of Mg:Zn and/or Ca:Zn should be at most 2:1, respectively.

本発明の別の有利な態様によれば、作用中の浴のリン酸
処理用溶液の遊離P2O5が炭酸マンガン、炭酸亜鉛及
び/又は酸化亜鉛の添加により調節されるリン酸処理用
溶液に表面を接触させる。その際、これらの各成分を水
性分散液として加えるのが好ましい。
According to another advantageous embodiment of the invention, the free P2O5 of the phosphating solution of the working bath is adjusted by adding manganese carbonate, zinc carbonate and/or zinc oxide to the surface. bring into contact. At that time, it is preferable to add each of these components as an aqueous dispersion.

本発明の方法はスプレー法、浸漬法、スプレー浸漬又は
フローコート法により行うことができる。
The method of the present invention can be carried out by a spray method, a dipping method, a spray dipping method, or a flow coating method.

本発明の別の好適態様によれば、水が除去され、その分
は後続の洗浄水により埋め合わされるようにしたリン酸
処理用溶液に表面を接触させる。水はリン酸処理浴から
例えば蒸発、逆浸透及び/又は電気透析により除去する
ことができる。特にH2O2をペルオキシド成分として
用いる場合、これらの工程によりリン酸処理後の洗浄工
程からリン酸塩で汚染された廃水を生しないように本発
明の方法を行うことが可能である。好ましくは洗浄浴カ
スケードとして構成された洗浄工程は最後の洗浄浴が塩
を含まない又は塩が少ない水で行われ、この水は洗浄工
程から洗浄工程へ向う加工物と逆方向に流れてリン酸処
理浴に供給される。こうして供給された水はリン酸処理
浴において、前記の通りリン酸処理用溶液から除去され
た水を埋め合わセる。リン酸処理用溶液から例えば逆浸
透又は霊気透析により除去された水は洗浄工程に再循環
させることができる。
According to another preferred embodiment of the invention, the surface is contacted with a phosphating solution in which water is removed and compensated for by subsequent wash water. Water can be removed from the phosphating bath, for example, by evaporation, reverse osmosis and/or electrodialysis. Particularly when H2O2 is used as peroxide component, these steps make it possible to carry out the process of the invention in such a way that no phosphate-contaminated wastewater is produced from the washing step after phosphoric acid treatment. The washing steps, preferably configured as a washing bath cascade, are carried out with the last washing bath being salt-free or low-salt water, which flows in the opposite direction of the workpiece from washing step to washing step to absorb the phosphoric acid. supplied to the processing bath. The water thus supplied is used in the phosphating bath to compensate for the water removed from the phosphating solution as described above. Water removed from the phosphating solution, for example by reverse osmosis or aerothermic dialysis, can be recycled to the washing process.

本発明の別の好適態様によれば、補充の再の遊離P2O
5と全P2O5の割合が、(−0,50〜+0.20)
  :1であるリン酸塩の添加により補充されたリン酸
処理用溶液に表面を接触させる。′i遊離P2O5と全
P20、の割合に関する前記規定において、負の値は遊
11Pzosは存在せず、むしろリン酸塩の一部が第ニ
リン酸塩の段階にあることを意味する。−0,19の値
は全P2O5の19%が第ニリン酸塩として存在するこ
とを意味する。
According to another preferred embodiment of the invention, replenishment of free P2O
The ratio of 5 and total P2O5 is (-0.50 to +0.20)
The surface is contacted with a phosphating solution supplemented by the addition of phosphate salt: 1:1. In the above definition for the ratio of free P2O5 and total P20, a negative value means that no free 11Pzos is present, but rather that some of the phosphate is in the diphosphate stage. A value of -0.19 means that 19% of the total P2O5 is present as diphosphate.

別の定義によれば、補充の際のリン酸塩成分は一方は5
0%の第ニリン酸塩と50%の第一リン酸塩(P2O3
として計算)によって限定され、他方は80%の第一リ
ン酸塩と20%の遊離リン酸塩(P2O5として計算)
によって限定された範囲内にある。
According to another definition, the phosphate component in supplementation is on the one hand 5
0% diphosphate and 50% monophosphate (P2O3
the other is limited by 80% primary phosphate and 20% free phosphate (calculated as P2O5)
within the range limited by.

液体補充濃厚液は′t1離P2O5と全P2O5が前記
の範囲内では安定ではないので、本発明における補充は
通常少なくとも2つの濃厚液に分けて行われる。
Since the liquid replenishment concentrate is not stable within the above-mentioned ranges of P2O5 and total P2O5, replenishment in the present invention is usually carried out in at least two concentrates.

本発明の方法、特に塗布リン酸処理用溶液が補充される
好適態様の方法により、均一で完全なリン酸塩被膜を与
え、かつ鉄と鋼のみならずそれらに付随した表面、即ち
、亜鉛めっき、亜鉛合金めっき又はアルミニウムめっき
の鋼及びアルミニウムに申し分のない被膜を与えること
が長時間可能である。
The method of the present invention, particularly the method of the preferred embodiment in which the coating phosphating solution is replenished, provides a uniform and complete phosphate coating and is effective for coating iron and steel as well as their associated surfaces, i.e. galvanized. , zinc alloy plated or aluminium plated steel and aluminum can be provided with a satisfactory coating for a long time.

本発明の方法は特に浸漬電着による塗装のための表面の
予備処理に特別に有利である。その場合、電気泳動性浸
漬電着のための予備処理として特に有意義である。
The method of the invention is particularly advantageous for the pretreatment of surfaces for painting, especially by immersion electrodeposition. In that case, it is particularly useful as a pretreatment for electrophoretic immersion electrodeposition.

[実施例〕 本発明を以下の実施例により例示的かつ詳細に説明する
[Example] The present invention will be exemplified and explained in detail using the following example.

夫施明土 スプレー処理用に調整されたリン酸処理用溶液は、 Zn   0.8g/l   遊F’1lPzOz=1
.04 g / QNi   1.0g/N   全P
2O5−13g#!Mn   1.Og/jl!   
遊離酸 −0,9ポイントNa   2.6g/lf 
  総酸  =23ポイントt’zos  13.0虜
/I NO:l   2.1 g / e であり、H,O□濃度を11.0□の添加により10〜
70m371の範囲で変化させ、H20□の存在しない
場合は鋼板の処理により鉄(n)の濃度を10〜90m
g/ l Fe(II)の範囲で変化させた。
The solution for phosphoric acid treatment prepared for the spray treatment of Fushi Akeito is as follows: Zn 0.8g/l Free F'1lPzOz=1
.. 04 g/QNi 1.0g/N Total P
2O5-13g#! Mn 1. Og/jl!
Free acid -0.9 points Na 2.6g/lf
Total acid = 23 points t'zos 13.0 g/I NO:l 2.1 g/e, and the concentration of H,O□ was increased from 10 to 10 by adding 11.0□.
If H20□ does not exist, the concentration of iron (n) is changed from 10 to 90 m by processing the steel plate.
It was varied in the range of g/l Fe(II).

有機溶剤で脱脂した鋼板を前記浴を用いて58℃でスプ
レーした。第1図は3分間のスプレーにより得られたリ
ン酸塩被膜重量を示す。第2図はこの実験で判明した最
小リン酸処理時間、即ち、切仮に均一に被膜したリン酸
塩被膜を付着させるのに必要な処理時間を示す。いずれ
の図も本発明の方法により得られる有利な結果を表わし
ている。
A steel plate degreased with an organic solvent was sprayed with the bath at 58°C. FIG. 1 shows the phosphate coating weight obtained by spraying for 3 minutes. FIG. 2 shows the minimum phosphoric acid treatment time found in this experiment, ie, the treatment time required to deposit a uniform phosphate coating on the cut. Both figures represent the advantageous results obtained by the method of the invention.

尖嵐斑斐 鋼(80%)と電気亜鉛めっき鋼(20%)の脱脂鋼板
を容Ffi 5 eのリン酸処理用装置内で次の組成の
リン酸処理用溶液でリン酸処理した。
Degreased steel sheets of Senran Ikki steel (80%) and electrogalvanized steel (20%) were phosphoricated with a phosphating solution having the following composition in a phosphating apparatus of capacity Ffi 5 e.

Zn   0.8g/l   M薄酸 =0.9ポイン
トNi   LOg/l   総酸  =23ポイント
Mn   1.0g/l Na   2.6g/lf1 has  13.0 g / I N(h   2.1g、#。
Zn 0.8g/l M weak acid = 0.9 points Ni LOg/l total acid = 23 points Mn 1.0g/l Na 2.6g/lf1 has 13.0 g/IN(h 2.1g, # .

この溶液の温度は55〜60℃であった。処理はスプレ
ーにより3分間行った。0.1n(/hの処理割合にお
ける処理容量は3 nf / lであった。浴の組成は
炭酸亜鉛及び適当な組成の補充溶液の添加により全工程
を通じて維持された。一定ポインドに補充するため表面
1ボ当り19gの下記補充濃厚液が必要であった。
The temperature of this solution was 55-60°C. The treatment was carried out by spraying for 3 minutes. The treatment capacity at a treatment rate of 0.1 n/h was 3 nf/l. The composition of the bath was maintained throughout the process by the addition of zinc carbonate and a replenishment solution of appropriate composition. 19 g of the following replenishment concentrate was required per surface.

P2O5       23.4% Na        1.89% 門n        1.74% Ni        1.34% Zn        3.39% F、(III)       0.01%NOi   
       3.09%it AIi p z o 
5と全P2O5の割合を調節するためさらに1.8g/
ボの塩基性炭酸亜鉛(53,5%Zn)を加えた。この
補充は遊離P、O,と全P2O5の割合が(−〇。
P2O5 23.4% Na 1.89% Gate n 1.74% Ni 1.34% Zn 3.39% F, (III) 0.01%NOi
3.09%it AIi p zo
5 and total P2O5, an additional 1.8 g/
Basic zinc carbonate (53.5% Zn) was added. This replenishment results in a ratio of free P, O, and total P2O5 to (-0).

18):1に相当する。18): corresponds to 1.

過酸化水素は測定した電気化学ポテンシャルに従って、
浴中の定常的Fe(II)イオン濃度とH20濃度が最
高で10mg/j!となる量を用いた。得られたリン酸
塩被膜は全体に均一で完全であり、被膜重量は鋼では2
.0±0.2g/%、電気亜鉛めっき洞では2.5±0
.2g/ボであった。
According to the measured electrochemical potential, hydrogen peroxide
The maximum constant Fe(II) ion concentration and H20 concentration in the bath is 10 mg/j! The amount was used. The resulting phosphate coating is uniform and complete throughout, with a coating weight of 2 on steel.
.. 0±0.2g/%, 2.5±0 in electrogalvanized cavities
.. It was 2g/bo.

実施例3 Aj2軸St及びA1門g3級の鋼(60%)、電気亜
鉛めっき鋼(30%)及びアルミニウム(10%)の脱
脂鋼板を容fft5Nのリン酸処理用装置で次の組成の
リン酸処理用溶液により処理した。
Example 3 A degreased steel plate made of AJ 2-shaft St and A1 G3 grade steel (60%), electrogalvanized steel (30%) and aluminum (10%) was treated with phosphoric acid having the following composition using a phosphoric acid treatment device with a capacity of 5N. Treated with an acid treatment solution.

Zn   0.8g/l   遊離酸 =1.INi 
  1.Og/lfi   総酸  =23Mn   
1.Og/l Na    3.2 g / ’ P2O513,0g / ’ NOz   2.1 g / Q F     O,5g/l 前記の条件及びFe(U)とH,O□の各定常的な濃度
を最高で6mg/lfiに維持したとき、均一で完全な
被膜が3種類の材料上に次にの被膜重量で得られた。
Zn 0.8g/l free acid =1. INi
1. Og/lfi total acid = 23Mn
1. Og/l Na 3.2 g/'P2O513,0g/'NOz 2.1 g/QFO,5g/l Under the above conditions and the steady concentrations of Fe(U), H, and O□, the maximum When maintained at 6 mg/lfi, uniform and complete coatings were obtained on the three materials at the following coating weights:

I:2.1 ±0.2g/ボ 電着亜鉛:2.6±0.2g/ボ AfMgSi  :  2.9±0.3g/rdAfM
g、:  3.1 ±0.3g/rd
I: 2.1 ± 0.2 g/Bo electrodeposited zinc: 2.6 ± 0.2 g/Bo AfMgSi: 2.9 ± 0.3 g/rdAfM
g,: 3.1 ±0.3g/rd

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3分間のスプレーにより得られたリン酸塩被膜
重量を示し、第2図は最小リン酸処理時間を示す。
Figure 1 shows the phosphate coating weight obtained with a 3 minute spray and Figure 2 shows the minimum phosphating time.

Claims (9)

【特許請求の範囲】[Claims] 1.亜鉛、リン酸塩及び硝酸塩を含有し、亜硝酸塩を含
有しないリン酸処理用溶液を用いて低亜鉛法により鉄お
よび鋼の表面をリン酸処理して金属上にリン酸塩被膜を
つくる方法において、Znを0.4〜1.7g/l、P
_2O_5を7〜25g/l及びNO_3を2〜30g
/l含有し、全P_2O_5に対する遊離P_2O_5
の重量比を0.04〜0.20に調節したリン酸処理用
酸性水溶液に前記表面を30〜65℃で接触させること
及び作用状態においてリン酸処理用溶液の最大ペルオキ
シド濃度が17mg/l(H_2O_2として計算)及
び同溶液の最大Fe(II)濃度が60mg/l(Feと
して計算)である量のH_2O_2又はアルカリ過ホウ
酸塩を前記リン酸処理用溶液に加えることを特徴とする
方法。
1. In a method of phosphating the surface of iron and steel by a low zinc method using a phosphating solution containing zinc, phosphates and nitrates but not nitrites to form a phosphate film on the metal. , Zn 0.4-1.7g/l, P
_2O_5 7-25g/l and NO_3 2-30g
/l of free P_2O_5 relative to total P_2O_5
The surface is brought into contact with an acidic aqueous phosphoric acid solution having a weight ratio of 0.04 to 0.20 at 30 to 65°C, and the maximum peroxide concentration of the phosphoric acid solution in the working state is 17 mg/l ( A method characterized in that H_2O_2 or an alkali perborate is added to the phosphating solution in an amount such that the maximum Fe(II) concentration of the solution is 60 mg/l (calculated as Fe).
2.H_2O_2及び/又はアルカリ過ホウ酸塩の添加
をレドックス電極により決定される電気化学ポテンシャ
ルに従って調節されるリン酸処理用溶液に前記表面を接
触させることを特徴とする請求項1記載の方法。
2. 2. Process according to claim 1, characterized in that the surface is brought into contact with a phosphating solution in which the addition of H_2O_2 and/or alkali perborate is adjusted according to the electrochemical potential determined by a redox electrode.
3.リン酸処理用溶液の最大ペルオキシド濃度が8mg
/l及び同溶液の最大Fe(II)濃度が30mg/lと
なるような量のH_2O_2及び/又はアルカリ過ホウ
酸塩を加えたリン酸処理用溶液に前記表面を接触させる
ことを特徴とする請求項1又は2記載の方法。
3. Maximum peroxide concentration of phosphating solution is 8mg
The surface is brought into contact with a phosphating solution to which an amount of H_2O_2 and/or alkali perborate is added such that the maximum Fe(II) concentration of the solution is 30 mg/l and the maximum Fe(II) concentration of the solution is 30 mg/l. The method according to claim 1 or 2.
4.マンガンを3g/l以下の量、ニッケル及び/又は
コバルトを3g/l以下の量、マグネシウムを3g/l
以下の量及び/又はカルシウムを3g/l以下の量でさ
らに含有したリン酸処理用溶液に前記表面を接触させる
ことを特徴とする請求項1、2又は、3のいずれか1項
に記載の方法。
4. Manganese in an amount of 3 g/l or less, nickel and/or cobalt in an amount of 3 g/l or less, magnesium 3 g/l
4. The surface according to claim 1, 2 or 3, characterized in that the surface is contacted with a phosphating solution further containing calcium in an amount of: Method.
5.フルオロホウ酸塩を3g/l(BF_4として計算
)以下の量及び/又はケイフッ化物を3g/l(S_i
F_bとして計算)以下の量及び/又はフッ化物を1.
5g/l(Fとして計算)以下の量で含有したリン酸処
理用溶液に前記表面を接触させることを特徴とする請求
項1〜4のいずれか1項に記載の方法。
5. Fluoroborates in amounts up to 3 g/l (calculated as BF_4) and/or silicofluorides in amounts up to 3 g/l (S_i
Calculated as F_b) the following amounts and/or fluoride: 1.
5. A method according to claim 1, characterized in that the surface is brought into contact with a phosphating solution containing not more than 5 g/l (calculated as F).
6.作用中の浴のリン酸処理用溶液の遊離P_2O_5
が炭酸マンガン、炭酸亜鉛及び/又は酸化亜鉛の添加に
より調節されるリン酸処理用溶液に前記表面を接触させ
ることを特徴とする請求項1〜5のいずれか1項に記載
の方法。
6. Free P_2O_5 of the phosphating solution of the working bath
6. A method according to claim 1, characterized in that the surface is brought into contact with a phosphating solution, wherein the surface is adjusted by the addition of manganese carbonate, zinc carbonate and/or zinc oxide.
7.水が除去され、その分は後続の洗浄工程の洗浄水に
より埋め合わされるようにしたリン酸処理用溶液に前記
表面を接触させることを特徴とする請求項1〜6のいず
れか1項に記載の方法。
7. 7. The surface is brought into contact with a phosphating solution such that water is removed and compensated for by wash water of a subsequent wash step. the method of.
8.補充の際の遊離P_2O_5の割合が(−0.50
〜+0.20):1のリン酸塩の添加により補充された
リン酸処理用溶液に前記表面を接触させる請求項1〜7
のいずれか1項に記載の方法。
8. The proportion of free P_2O_5 during replenishment is (-0.50
~+0.20): 1 to 10% of the phosphoric acid treatment solution supplemented by the addition of 1 phosphate salt.
The method according to any one of the above.
9.特に浸積電着、好ましくは電気泳動法浸漬電着によ
り塗装するための鉄及び鋼の表面の予備処理に請求項1
〜8のいずれか1項に記載の方法を使用する用途。
9. Claim 1 for the preliminary treatment of iron and steel surfaces, especially for coating by electrophoretic immersion electrodeposition, preferably by electrophoretic immersion electrodeposition.
A use using the method according to any one of items 1 to 8.
JP2220940A 1989-08-22 1990-08-22 Method of making phosphate coating on metal and uses of this method Expired - Fee Related JP2992619B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3927614A DE3927614A1 (en) 1989-08-22 1989-08-22 METHOD OF GENERATING PHOSPHATURE SUPPLIES ON METALS
DE3927614.7 1989-08-22

Publications (2)

Publication Number Publication Date
JPH0387374A true JPH0387374A (en) 1991-04-12
JP2992619B2 JP2992619B2 (en) 1999-12-20

Family

ID=6387566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220940A Expired - Fee Related JP2992619B2 (en) 1989-08-22 1990-08-22 Method of making phosphate coating on metal and uses of this method

Country Status (11)

Country Link
EP (1) EP0414296B1 (en)
JP (1) JP2992619B2 (en)
AT (1) ATE91159T1 (en)
BR (1) BR9004117A (en)
CA (1) CA2022728C (en)
DD (1) DD299662A5 (en)
DE (2) DE3927614A1 (en)
ES (1) ES2042199T3 (en)
PL (1) PL286572A1 (en)
PT (1) PT95053B (en)
ZA (1) ZA906673B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790614A (en) * 1993-09-22 1995-04-04 Elna Co Ltd Aluminum or aluminum alloys and their chemical conversion treatment

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219453B2 (en) * 1992-03-17 2001-10-15 日本パーカライジング株式会社 Manufacturing method of galvanized steel sheet with excellent blackening resistance
DE4243214A1 (en) * 1992-12-19 1994-06-23 Metallgesellschaft Ag Process for the production of phosphate coatings
AU699822B2 (en) * 1995-03-07 1998-12-17 Henkel Corporation Composition and process for forming an underpaint coating on metals
US5888315A (en) * 1995-03-07 1999-03-30 Henkel Corporation Composition and process for forming an underpaint coating on metals
DE19523919A1 (en) * 1995-06-30 1997-01-02 Metallgesellschaft Ag Process for supplementing phosphating solution
DE19544614A1 (en) * 1995-11-30 1997-06-05 Metallgesellschaft Ag Process for phosphating metal surfaces
US5797987A (en) * 1995-12-14 1998-08-25 Ppg Industries, Inc. Zinc phosphate conversion coating compositions and process
DE19808755A1 (en) 1998-03-02 1999-09-09 Henkel Kgaa Layer weight control for strip phosphating
WO1999048819A1 (en) * 1998-03-25 1999-09-30 Henkel Kommanditgesellschaft Auf Aktien Treatment of waste water during phosphating
DE10118552A1 (en) * 2001-04-14 2002-10-17 Henkel Kgaa Determination and optionally regulation of accelerator concentration in zinc phosphonating solution for steel, zinc (alloy)-plated steel and aluminum (alloy) uses biochemical hydrogen peroxide sensor giving electrical signal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1796218B1 (en) * 1968-09-23 1971-10-07 Metallgesellschaft Ag METAL PHOSPHATING METHOD
GB1585057A (en) * 1976-06-28 1981-02-25 Ici Ltd Sensing concentration of coating solution
JPS5811513B2 (en) * 1979-02-13 1983-03-03 日本ペイント株式会社 How to protect metal surfaces
JPS6043491A (en) * 1983-08-19 1985-03-08 Nippon Denso Co Ltd Formation of phosphate film on iron and steel surfaces
JPS63270478A (en) * 1986-12-09 1988-11-08 Nippon Denso Co Ltd Phosphating method
DE3712339A1 (en) * 1987-04-11 1988-10-20 Metallgesellschaft Ag METHOD FOR PHOSPHATIZING BEFORE ELECTROPLATING

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790614A (en) * 1993-09-22 1995-04-04 Elna Co Ltd Aluminum or aluminum alloys and their chemical conversion treatment

Also Published As

Publication number Publication date
ATE91159T1 (en) 1993-07-15
DD299662A5 (en) 1992-04-30
BR9004117A (en) 1991-09-03
JP2992619B2 (en) 1999-12-20
EP0414296B1 (en) 1993-06-30
PT95053A (en) 1991-04-18
CA2022728A1 (en) 1991-02-23
ZA906673B (en) 1992-04-29
PL286572A1 (en) 1992-02-10
ES2042199T3 (en) 1993-12-01
DE59001884D1 (en) 1993-08-05
EP0414296A1 (en) 1991-02-27
CA2022728C (en) 2000-02-01
PT95053B (en) 1997-04-30
DE3927614A1 (en) 1991-02-28

Similar Documents

Publication Publication Date Title
EP0315059B1 (en) Process and composition for zinc phosphate coating
JP2680618B2 (en) Metal phosphate treatment method
JP3063920B2 (en) How to treat metal surfaces with phosphate
CA1200470A (en) Low zinc content, replenishment
US5976272A (en) No-rinse phosphating process
CA1183430A (en) Process for the phosphatising of metals
JP3000108B2 (en) Method for forming phosphate coating on metal surface
JP2004500479A (en) A series of methods of phosphating, post-rinsing and cathodic electrodeposition
JP2845246B2 (en) Method of forming phosphate film
US6027579A (en) Non-chrome rinse for phosphate coated ferrous metals
JPH0387374A (en) Method of creating phosphate coat on metal and application of this method
CA1224121A (en) Process for phosphating metals
CA1245951A (en) Process for the zinc/calcium phosphatizing of metal surfaces at low treatment temperatures
JPS63157879A (en) Method forming phosphate film to surface of metal
US5795408A (en) Process for the phosphatising treatment of steel strip or sheet galvanized on one side or alloy galvanized on one side
US5516372A (en) Process for phosphating steel strip galvanized on one side
JPH03267378A (en) Method for phosphating metal surface and phosphating solution
EP0675972B1 (en) Substantially nickel-free phosphate conversion coating composition and process
US5597465A (en) Acid aqueous phosphatic solution and process using same for phosphating metal surfaces
CA1206852A (en) Process and composition for phosphating metal surfaces
JPH10204649A (en) Aqueous phosphate treating solution for metallic surface and its treatment
JP2607549B2 (en) Method of forming phosphate film
US4708744A (en) Process for phosphating metal surfaces and especially iron surfaces
KR20010074665A (en) Control of layer weight during the phosphating of strip
CA2236512C (en) Process of phosphatizing metal surfaces

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees