JPH038735A - Preparation of fluoride glass optical fiber preform - Google Patents

Preparation of fluoride glass optical fiber preform

Info

Publication number
JPH038735A
JPH038735A JP14062689A JP14062689A JPH038735A JP H038735 A JPH038735 A JP H038735A JP 14062689 A JP14062689 A JP 14062689A JP 14062689 A JP14062689 A JP 14062689A JP H038735 A JPH038735 A JP H038735A
Authority
JP
Japan
Prior art keywords
fluoride glass
core
optical fiber
fluoride
glass tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14062689A
Other languages
Japanese (ja)
Inventor
Yoshitaka Iida
飯田 義隆
Toshiaki Shibata
柴田 俊昭
Motoharu Miyakoshi
基晴 宮越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14062689A priority Critical patent/JPH038735A/en
Publication of JPH038735A publication Critical patent/JPH038735A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prepare the subject base material capable of suppressing the optical loss thereof caused by the interfacial irregularity and heterogeneous crystalliza tion between the core and clad of the optical fiber by pouring melted fluoride glass into an upstanding fluoride glass tube and cooling and solidifying the glass in a specific condition. CONSTITUTION:Melted fluoride glass for the core of an optical fiber is poured into a fluoride glass tube for the clad of the optical fiber and simultaneously maintained so as not to contact with the inner wall of the fluoride glass tube until the melted fluoride glass for the core reaches the dropping point thereof in the glass tube for the clad. The core melted fluoride glass which has reached the dropping point is cooled and solidified to provide the preform. The prepara tion method prevents that the fluoride glass tube for the clad is irregularly and heterogeneously again heated by the melted fluoride glass for the core so as to cause the irregularity, crystallization, etc., at an interface between the two kinds of the fluoride glass, thereby permitting to prepare the fluoride glass optical fiber preform having an excellent transmission characteristic in a good yield.

Description

【発明の詳細な説明】 1産業上の利用分野」 本発明はフッ化物ガラスを素材とする光フアイバ母材の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application The present invention relates to a method for manufacturing an optical fiber matrix made of fluoride glass.

r従来の技術」 赤外線伝送用として、フッ化物ガラス光ファイバが知ら
れている。
2. Prior Art Fluoride glass optical fibers are known for infrared transmission.

フッ化物ガラス光ファイバは、石英ガラス系光ファイバ
と比べ、より長波長の光を透過することができ、レイリ
ー散乱損失も小さいので、可視光から波長13 gm帯
の赤外線までを伝送する光ファイバとして有用である。
Compared to silica glass optical fibers, fluoride glass optical fibers can transmit longer wavelength light and have lower Rayleigh scattering loss, so they can be used as optical fibers that transmit from visible light to infrared wavelengths in the 13gm band. Useful.

フッ化物ガラス光ファイバ母材の製造技術としては、二
重ルツボ法のほか、ビルトインキヤスティング法、ロー
テイシュナルキャスティング法などのガラス鋳込法が一
般に採用されている。
In addition to the double crucible method, glass casting methods such as the built-in casting method and the rotary casting method are generally employed as manufacturing techniques for the fluoride glass optical fiber base material.

「発明が解決しようとする課題J フッ化物ガラスは、酸化物ガラスと異なり、ガラス軟化
温度域での結晶化、温度変化による粘性の急変など、ガ
ラス形成能が低いので、これを材料とする光フアイバ母
材の製造難度が高い。
"Problem to be Solved by the Invention J Unlike oxide glasses, fluoride glasses have low glass-forming ability, such as crystallization in the glass softening temperature range and sudden changes in viscosity due to temperature changes. The fiber base material is highly difficult to manufacture.

たとえば、二重ルツボ法による母材製造法の場合、コア
、クラッド界面への0)II混入、コア、クラッド界面
での結晶化などが起こりがたいが、温度に対するフッ化
物ガラスの粘性変動がきわめて大きいため、コア、クラ
ッド構造すなわち導波路構造をもつ溶融フッ化物ガラス
の粘性制御、流動制御が困難となる。
For example, in the case of the base material manufacturing method using the double crucible method, contamination of 0)II at the interface between the core and cladding and crystallization at the interface between the core and cladding are unlikely to occur, but the viscosity of fluoride glass fluctuates significantly with temperature. Due to its large size, it is difficult to control the viscosity and flow of molten fluoride glass having a core and cladding structure, that is, a waveguide structure.

ゆえに、二重ルツボ法によるときは、溶融フッ化物ガラ
スの不正な流動性に対処することができず、ルツボ壁面
からコア、クラッド界面への気泡混入が生じるなど、光
ファイバの散乱損失が大きくなる。
Therefore, when using the double crucible method, it is not possible to deal with the irregular flowability of molten fluoride glass, and the scattering loss of the optical fiber increases, such as air bubbles entering from the crucible wall to the core and cladding interface. .

その他、ガラス鋳込法による母材製造法では、成形型内
にクラッド用の溶融フッ化物ガラスを流しこんでチュー
ブを成形(冷却固化)した後、該クラッド用フッ化物ガ
ラスチューブ内にコア用の溶融フッ化物ガラスを注入し
て光フアイバ母材を製造するが、当該ガラス注入時、高
温のコア用溶融フッ化物ガラスが、冷却固化したクラッ
ド用フッ化物ガラスチューブの内壁に沿って流れるので
、そのガラスチューブ内壁が不規則かつ不均一に再加熱
される。
In addition, in the base material manufacturing method using the glass casting method, after pouring molten fluoride glass for the cladding into a mold and forming a tube (cooling and solidifying), a fluoride glass for the core is poured into the fluoride glass tube for the cladding. An optical fiber base material is produced by injecting molten fluoride glass. At the time of injecting the glass, the high temperature molten fluoride glass for the core flows along the inner wall of the fluoride glass tube for the cladding, which has been cooled and solidified. The inner wall of the glass tube is reheated irregularly and unevenly.

それゆえ、ガラス鋳込法によるときも、コア、クラッド
の界面不整、結晶化(散乱損失の原因)を惹き起すこと
になる。
Therefore, even when using the glass casting method, interface irregularities and crystallization (causing scattering loss) between the core and cladding occur.

本発明はこのような技術的課題に鑑み、コア、クラッド
の界面不整、結晶化に起因した損失を抑制することので
きるフッ化物ガラス光ファイバ母材の製造方法を提供し
ようとするものである。
In view of such technical problems, the present invention seeks to provide a method for manufacturing a fluoride glass optical fiber preform that can suppress loss due to irregularities in the interface between the core and cladding and crystallization.

1課題を解決するための手段」 本発明に係るフッ化物ガラス光ファイバ母材の製造方法
は、所期の目的を達成するため、コア用の溶融フッ化物
ガラスを起立したクラッド用のフッ化物ガラスチューブ
内に注入するとともにコア用溶融フッ化物ガラスがクラ
ッド用ガラスチューブ内の落下点に達するまでの間、こ
れら溶融フッ化物ガラスとフッ化物ガラスチューブ内壁
とを非接触状態に保持し、かつ、落下点に達したコア用
フッ化物ガラス溶融物を冷却固化することを特徴とする
In order to achieve the intended purpose, the method for manufacturing a fluoride glass optical fiber preform according to the present invention is to produce a fluoride glass for the cladding by standing up a molten fluoride glass for the core. While injecting the molten fluoride glass into the tube, the molten fluoride glass for the core is kept in a non-contact state with the inner wall of the fluoride glass tube until it reaches the falling point in the glass tube for the cladding, and It is characterized by cooling and solidifying the core fluoride glass melt that has reached a certain point.

r作用J 本発明方法は、コア用の溶融フッ化物ガラスを起立した
クラッド用フッ化物ガラスチューブ内に注入し、該ガラ
スチューブ内のコア用溶融フッ化物ガラスを冷却固化し
てフッ化物ガラス光ファイバ母材を作製するが、そのガ
ラス注入時においてコア用溶融フッ化物ガラスとクラッ
ド用フッ化物ガラスチューブ内壁とを非接触状態に保持
するので、フラーラド用のフッ化物ガラスチューブがコ
ア用の溶融フッ化物ガラスにより不規則かつ不均一に再
加熱されることがない。
r Effect J The method of the present invention involves injecting molten fluoride glass for the core into an upright fluoride glass tube for the cladding, cooling and solidifying the molten fluoride glass for the core in the glass tube to form a fluoride glass optical fiber. The base material is prepared, but during glass injection, the molten fluoride glass for the core and the inner wall of the fluoride glass tube for the cladding are kept in a non-contact state, so that the fluoride glass tube for Fullerad is the same as the molten fluoride glass for the core. The glass does not reheat irregularly and unevenly.

したがって、本発明方法を介して製造された光フアイバ
母材の場合は、コア用フッ化物ガラスとクラッド用フッ
化物ガラスとの界面不整、結晶化が殆ど生じていない。
Therefore, in the case of the optical fiber base material manufactured by the method of the present invention, there is almost no interfacial irregularity or crystallization between the fluoride glass for the core and the fluoride glass for the cladding.

ゆえに、かかる光フアイバ母材からは、散乱損失のない
フッ化物ガラス光ファイバが得られる。
Therefore, a fluoride glass optical fiber without scattering loss can be obtained from such an optical fiber preform.

r実 施 例」 本発明に係るフッ化物ガラス光ファイバ母材の製造方法
を図示の実施例に基づいて説明する。
Embodiment A method for manufacturing a fluoride glass optical fiber preform according to the present invention will be described based on illustrated embodiments.

第1図において、基台11は、相互に組み立てられた板
状の水平部12と垂直部13とからなる。
In FIG. 1, the base 11 consists of a plate-shaped horizontal part 12 and a vertical part 13 that are assembled together.

水平部12上には、X軸(左右)移動機能およびZ軸(
前後)移動機能を有する公知ないし周知の移動ステージ
14と、該移動ステージ14を介して前後左右に移動自
在なるよう支持された公知ないし周知のクランプ15と
、該クランプ15を介して縦型に取りつけられた成形型
16とが装備されている。
On the horizontal section 12, there is an X-axis (left/right) movement function and a Z-axis (left/right) movement function.
A known or well-known moving stage 14 having a movement function (back and forth), a well-known or well-known clamp 15 supported so as to be movable back and forth and left and right via the moving stage 14, and a vertically mounted stage via the clamp 15. The mold 16 is equipped with a mold 16.

成形型16は、−例として、グラッシーカーボンのごと
き耐熱材料製の底付き円筒容器からなる。
The mold 16 - for example, consists of a bottomed cylindrical container made of a heat-resistant material such as glassy carbon.

垂直部13には、第2図にも示す通り、Y軸(上下)用
の昇降機構17と、該昇降機構17を介して昇降自在な
るよう支持された漏斗ホルダ18と、該漏斗ホルダ18
に取りつけられた漏斗19とが装備されており、成形型
16上の漏斗ホルダ18により保持された漏斗13は、
摺鉢状のテーパ筒20と、そのテーパ筒20の底部より
下方に向けて突出した細管21とよりなる。
As shown in FIG. 2, the vertical part 13 includes a lifting mechanism 17 for the Y axis (up and down), a funnel holder 18 supported so as to be able to rise and fall freely via the lifting mechanism 17, and the funnel holder 18.
The funnel 13 held by the funnel holder 18 on the mold 16 is equipped with a funnel 19 attached to the mold 16.
It consists of a mortar-shaped taper tube 20 and a thin tube 21 projecting downward from the bottom of the taper tube 20.

昇降機構17は、たとえば、駆動ネジ軸を備えたもの、
油空圧シリンダを備えたものからなり、漏斗ホルダ18
は、たとえば、保温性、耐熱性を有する材質からなり(
場合によりヒータを内蔵)、漏斗19は、たとえば、A
uのごとき貴金属製である。
The elevating mechanism 17 is, for example, one equipped with a drive screw shaft,
The funnel holder 18 is equipped with a hydraulic and pneumatic cylinder.
For example, is made of a material that has heat retention and heat resistance (
(with a built-in heater in some cases), the funnel 19 is, for example,
It is made of precious metal such as u.

さらに、円筒型の電気炉からなる加熱器22は、成形型
18の外周を覆うように配置され、かつ1図糸しない取
付具を介して、垂直部13に固定されている。
Furthermore, a heater 22 made of a cylindrical electric furnace is arranged to cover the outer periphery of the mold 18 and is fixed to the vertical part 13 via a fixture that does not connect in FIG.

第2図において、フッ化物ガラスを溶融するための転炉
式のルツボ23は、たとえば、pt製のごとき耐熱金属
材料からなり、かかるルツボ23は、図示しない走行手
段を具備して漏斗19上に配置されている。
In FIG. 2, a converter-type crucible 23 for melting fluoride glass is made of a heat-resistant metal material such as PT, and the crucible 23 is equipped with a traveling means (not shown) and is mounted on a funnel 19. It is located.

上述した図示例において、フッ化物ガラス光ファイバ母
材を製造するときは、以下のようになる。
In the illustrated example described above, when manufacturing the fluoride glass optical fiber preform, the process is as follows.

第1図の基台11上において、クランプ15を介して移
動ステージ14に垂直に取りつけられた成形型16は、
その内部にクラッド用のフッ化物ガラスチューブ24を
有している。
On the base 11 of FIG. 1, the mold 16 is vertically attached to the moving stage 14 via the clamp 15.
It has a fluoride glass tube 24 for cladding inside.

クラッド用のフッ化物ガラスチューブ24は、加熱器2
2を介して260℃程度に保温される。
The fluoride glass tube 24 for cladding is connected to the heater 2
The temperature is maintained at approximately 260°C through the

ちなみに、クラッド用のフッ化物ガラスチューブ24は
、ロテーショナルキャスティング法にて成形されたもの
であり、その際の成形装置から成形型16とともに取り
外された当該チューブ24が、上記のごとく移動ステー
ジ14に装着される。
Incidentally, the fluoride glass tube 24 for the cladding is molded by the rotational casting method, and the tube 24, which is removed together with the mold 16 from the molding apparatus at that time, is placed on the moving stage 14 as described above. It will be installed.

上記ロテーショナルキャスティング法によるとき、フッ
化物ガラスチューブ24の原料としては、ZrFa 、
BaF2.LaF3.HfF4.NaF、AlF3を、
その組成比が42Z rFa−23BaF2−4LaF
:+ −14HfF4−15NaF−3,8+oo l
$A HF3となるように秤量し、そのフッ化物原料(
50g)にNHF4・HF(18g)を添加したものを
用いる。
When using the above rotational casting method, the raw materials for the fluoride glass tube 24 include ZrFa,
BaF2. LaF3. HfF4. NaF, AlF3,
Its composition ratio is 42Z rFa-23BaF2-4LaF
:+ -14HfF4-15NaF-3,8+oo l
Weigh out $A HF3, and add the fluoride raw material (
50g) to which NHF4.HF (18g) was added.

かかる原料を加熱溶融するとき、たとえば、 N2から
なる不活性ガス雰囲気下において860℃、30分間加
熱し、その後、当該溶融フッ化物ガラスを急冷する。
When heating and melting such a raw material, for example, it is heated at 860° C. for 30 minutes in an inert gas atmosphere consisting of N2, and then the molten fluoride glass is rapidly cooled.

第1図、第に図において、クラッド用のフッ化物ガラス
チューブ24内には、ルツボ23を介して溶融されたコ
ア用の溶融フッ化物ガラス25を注入する。
In FIG. 1 and FIG. 1, a molten fluoride glass 25 for a core, which has been melted through a crucible 23, is injected into a fluoride glass tube 24 for a cladding.

これに際しては、移動ステージ14により成形型16を
X軸方向、Z軸方向へ微調整して、クラッド用フッ化物
ガラスチューブ24の垂直軸線と漏斗19の垂直軸線と
を相互に一致させ、かつ、上昇位置で待機していた漏斗
ホルダ18を昇降機構17により下降させて、漏斗19
の細管21をクラッド用フッ化物カラスチューブ24内
の底部付近まで挿入し、その後、ルツボ23内のコア用
溶融フッ化物ガラス25を漏斗19のテーパ筒20内に
流しこむ。
At this time, the mold 16 is finely adjusted in the X-axis direction and the Z-axis direction by the moving stage 14 so that the vertical axis of the fluoride glass tube 24 for cladding and the vertical axis of the funnel 19 are aligned with each other, and The funnel holder 18, which was waiting in the raised position, is lowered by the lifting mechanism 17, and the funnel 19
The thin tube 21 is inserted into the fluoride glass tube 24 for cladding to near the bottom, and then the molten fluoride glass 25 for the core in the crucible 23 is poured into the tapered tube 20 of the funnel 19.

テーパ筒20内のコア用溶融フッ化物ガラス25は細管
21を通ってクラッド用フッ化物ガラスチューブ24内
へ流入するとともに、その流入量の増加にともなって、
クラッド用フッ化物ガラスチューブ24内の溶融ガラス
液面が上昇する。
The molten fluoride glass 25 for the core inside the tapered tube 20 flows into the fluoride glass tube 24 for the cladding through the thin tube 21, and as the amount of the inflow increases,
The molten glass liquid level inside the fluoride glass tube 24 for cladding rises.

かかる液面上昇と対応させて、漏斗18を昇降機構17
により上昇させつつ、細管21をクラッド用のフッ化物
ガラスチューブ24内から徐々に抜きとり、かつ、当該
チューブ24内を所定量のコア用溶融フッ化物ガラス2
5で満たす。
In response to this rise in the liquid level, the funnel 18 is moved up and down by the lifting mechanism 17.
While raising the thin tube 21 from inside the fluoride glass tube 24 for cladding, the tube 24 is filled with a predetermined amount of molten fluoride glass 2 for core.
Fill with 5.

さらに、クラッド用フッ化物ガラスチューブ24内のコ
ア用溶融フッ化物ガラス25を急冷して、これら両フッ
化物ガラスが一体化された光フアイバ母材26を得る。
Furthermore, the core molten fluoride glass 25 in the cladding fluoride glass tube 24 is rapidly cooled to obtain an optical fiber base material 26 in which both of these fluoride glasses are integrated.

ちなみに、コア用フッ化物ガラス25の原料としては、
ZrFa 、BaF2 、PbF2 、LaF3.Na
F、AlF3を、その組成比が58ZrFa−21Ba
F?−2PbF2−4LaF3−15NaF−3,8+
oo1%AlF3となるように秤量し、そのフッ化物原
料(30g)にNHF4・HF(l1g)を添加したも
のを用いる。
By the way, the raw materials for the fluoride glass 25 for the core are:
ZrFa, BaF2, PbF2, LaF3. Na
F, AlF3 with a composition ratio of 58ZrFa-21Ba
F? -2PbF2-4LaF3-15NaF-3,8+
The fluoride raw material (30 g) was weighed so as to have 1% AlF3, and NHF4.HF (11 g) was added thereto.

かかる原料の加熱、溶融、冷却など、これらの条件は前
記と同じであり、第1図、第2図に例示した母材製造手
段は、たとえば、N2ガスで置換されたグローブボック
ス内に設置される。
These conditions such as heating, melting, and cooling of the raw materials are the same as described above, and the base material manufacturing means illustrated in FIGS. 1 and 2 is installed, for example, in a glove box purged with N2 gas. Ru.

上述した実施例において、母材外径(クラツド径) I
Oamφ、コア径e++mφ、長さ200II1mのフ
ッ化物ガラス光ファイバ母材つくり、これを検査したと
ころ、コア、クラッド界面の微小気泡、結晶化等がみら
れなかった。
In the embodiments described above, the base material outer diameter (cladding diameter) I
A fluoride glass optical fiber base material with Oamφ, core diameter e++mφ, and length 200II1 m was prepared and inspected, and no microbubbles or crystallization were observed at the interface between the core and the cladding.

さらに、上記母材を周知の溶融紡糸法により線引してフ
ァイバ径150gmφ、長ざlkmのフッ化物ガラス光
ファイバを得た。
Furthermore, the above-mentioned base material was drawn by a well-known melt spinning method to obtain a fluoride glass optical fiber having a fiber diameter of 150 gmφ and a length of 1 km.

かかる光ファイバの伝送特性は、波長2.35graに
おいて1dB/lvであった。
The transmission characteristic of this optical fiber was 1 dB/lv at a wavelength of 2.35 gra.

「発明の効果1 以上説明した通り、本発明方法は、母材製造にともなう
ガラス注入において、コア用溶融フッ化物ガラスがクラ
ッド用ガラスチューブ内の落下点に達するまでの間、こ
れら溶融フッ化物ガラスとフッ化物ガラスチューブ内壁
とを非接触状態に保持するから、クラッド用フッ化物ガ
ラスチューブがコア用溶融フッ化物ガラスにより不規則
かつ不均一に再加熱されることがなく、これらツー2化
物ガラスの界面不整、結晶化などが生じない。
"Effect of the Invention 1 As explained above, the method of the present invention allows the molten fluoride glass for the core to reach the falling point in the glass tube for the cladding during glass injection during the production of the base material. Since the fluoride glass tube and the inner wall of the fluoride glass tube are kept in a non-contact state, the fluoride glass tube for the cladding is not irregularly and non-uniformly reheated by the molten fluoride glass for the core. No interface irregularities or crystallization occur.

ゆえに、本発明方法によるときは、伝送特性の優れたフ
ッ化物ガラス光ファイバの母材を歩留りよく製造するこ
とができる。
Therefore, when using the method of the present invention, a base material of a fluoride glass optical fiber having excellent transmission characteristics can be manufactured with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るフッ化物ガラス光ファイバ母材の
製造方法を実施する際の一例を略示した断面図、第2図
は同上の要部拡大図である。 11・・・・・・基台 12・・・・・・基台の水平部 13・・・・・・基台の垂直部 14・・・・・・移動ステージ 15・・・・・・クランプ 16・・・・・・成形型 17・・・・・・昇降機構 18・・・・・・漏斗ホルダ 19・・・・・・漏斗 20・・・・・・漏斗のテーパ筒 21・・・・・・漏斗の細管 22・・・・・・加熱器 23・・・・・・ルツボ 24・・・・・・クラッド用のフッ化物ガラス25・・
・・・・コア用のフッ化物ガラス2B・・・・・・光フ
アイバ母材
FIG. 1 is a cross-sectional view schematically showing an example of the method for manufacturing a fluoride glass optical fiber preform according to the present invention, and FIG. 2 is an enlarged view of the same essential parts. 11...Base 12...Horizontal part of the base 13...Vertical part of the base 14...Movement stage 15...Clamp 16...Mold 17...Elevating mechanism 18...Funnel holder 19...Funnel 20...Funnel taper tube 21... ... Funnel thin tube 22 ... Heater 23 ... Crucible 24 ... Fluoride glass for cladding 25 ...
...Fluoride glass 2B for core...Optical fiber base material

Claims (1)

【特許請求の範囲】[Claims] コア用の溶融フッ化物ガラスを起立したクラッド用のフ
ッ化物ガラスチューブ内に注入するとともに、コア用溶
融フッ化物ガラスがクラッド用ガラスチューブ内の落下
点に達するまでの間、これら溶融フッ化物ガラスとフッ
化物ガラスチューブ内壁とを非接触状態に保持し、かつ
、落下点に達したコア用溶融フッ化物ガラスを冷却固化
することを特徴とするフッ化物ガラス光ファイバ母材の
製造方法。
The molten fluoride glass for the core is injected into the upright fluoride glass tube for the cladding, and the molten fluoride glass and the fluoride glass for the core reach the falling point in the cladding glass tube. A method for producing a fluoride glass optical fiber preform, characterized by maintaining the inner wall of a fluoride glass tube in a non-contact state, and cooling and solidifying the molten fluoride glass for the core that has reached a falling point.
JP14062689A 1989-06-02 1989-06-02 Preparation of fluoride glass optical fiber preform Pending JPH038735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14062689A JPH038735A (en) 1989-06-02 1989-06-02 Preparation of fluoride glass optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14062689A JPH038735A (en) 1989-06-02 1989-06-02 Preparation of fluoride glass optical fiber preform

Publications (1)

Publication Number Publication Date
JPH038735A true JPH038735A (en) 1991-01-16

Family

ID=15273078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14062689A Pending JPH038735A (en) 1989-06-02 1989-06-02 Preparation of fluoride glass optical fiber preform

Country Status (1)

Country Link
JP (1) JPH038735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147848A (en) * 1991-12-03 1995-06-13 Toho Leo Kk Method for executing to support tree

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147848A (en) * 1991-12-03 1995-06-13 Toho Leo Kk Method for executing to support tree

Similar Documents

Publication Publication Date Title
US5160521A (en) Method for making optical fiber preforms
US5656058A (en) Apparatus for inserting a core fiber into a partially molten cladding glass to form an optical fiber preform
JPH068187B2 (en) Fluorine glass optical fiber and optical element manufacturing method
US4163654A (en) Method of manufacturing graded index optical fibers
US5679127A (en) Apparatus for drawing glass from a containment vessel to make optical fiber preforms
JPH0776107B2 (en) Method for manufacturing preform for non-oxide glass fiber
US5055120A (en) Fluoride glass fibers with reduced defects
US5308371A (en) Method of forming fluoride glass fiber preform
JPH038735A (en) Preparation of fluoride glass optical fiber preform
KR100390329B1 (en) Method of manufacturing an optical fiber
US3607163A (en) Method for making glass tubes
JPH0660028B2 (en) Method for manufacturing preform for optical fiber
JPS6126502B2 (en)
JPH0583495B2 (en)
JP2784385B2 (en) Equipment for manufacturing jacket tubes for optical fibers
JPS58125627A (en) Preparation of infrared transmission optical fiber preform by inside casting
JPS596821B2 (en) Method for manufacturing multicomponent glass fiber
JPH0218294B2 (en)
JP2556569B2 (en) Method for manufacturing base material for fluoride glass fiber
JPS60176939A (en) Apparatus for producing preform for optical fiber
JPH08133768A (en) Production of glass molding and production of optical fiber
JPH0327492B2 (en)
JPH038736A (en) Preparation of fluoride glass optical fiber preform
JPH03232734A (en) Production of preform for fluoride glass fiber and apparatus therefor
JPH0667769B2 (en) Method and apparatus for manufacturing base material for optical fiber