JPH0387355A - Coating of substrate with copper - Google Patents

Coating of substrate with copper

Info

Publication number
JPH0387355A
JPH0387355A JP2215097A JP21509790A JPH0387355A JP H0387355 A JPH0387355 A JP H0387355A JP 2215097 A JP2215097 A JP 2215097A JP 21509790 A JP21509790 A JP 21509790A JP H0387355 A JPH0387355 A JP H0387355A
Authority
JP
Japan
Prior art keywords
copper
substrate
oxygen
argon
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2215097A
Other languages
Japanese (ja)
Inventor
Rainer Ludwig
ライナー・ルートヴイツヒ
Rolf Adam
ロルフ・アダム
Anton Dietrich
アントン・デイートリツヒ
Reiner Kukla
ライナー・ククラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Publication of JPH0387355A publication Critical patent/JPH0387355A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/16Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To improve the fixability of the copper film on a substrate by disposing argon and oxygen introducing ports and depositing pure copper as a conductive film within an argon atmosphere after the formation of a copper oxide film.
CONSTITUTION: The gaseous argon introducing port 21 is added to the apparatus for coating the substrate 1 with copper by coupling a DC powder source to the sputtering cathode 5 in vacuum chambers 15, 15a, depositing sputtered particles on the substrate 1 by electrical cooperative action with a copper target 3 and introducing the gaseous argon to the substrate. The copper oxide film acting as a binder is formed on the substrate 1 by controlling an oxygen quantity via a flow rate control valve 19. The pure copper is deposited as the conductive film thereon within the argon atmosphere after the regulation of the processing chambers 15, 15a. As a result, the fixability of the copper film is improved.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直流電源を持ち、これは真空可能加工室中に配
置された少なくとも1つのスパッター陰極1つと結合さ
れ、該陰極は電気的に銅ターゲットと共同作用し、該タ
ーゲットはスパッターできかつそのスパッター粒子が基
板上に析出し、その際真空可能加工室にアルゴンガスを
導入できる装置を使用し、例えば酸化アルミニウムセラ
ミック板またはポリイミドフィルムの基板を銅でコーチ
ングする方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention has a direct current power source coupled to at least one sputter cathode disposed in a vacuum-enabled processing chamber, the cathode electrically connected to a copper A substrate of, for example, an aluminum oxide ceramic plate or a polyimide film is co-acted with a target which can be sputtered and whose sputtered particles are deposited on a substrate, using a device which can introduce argon gas into a vacuum-enabled process chamber. On how to coach with copper.

〔従来の技術〕[Conventional technology]

支持 電気配線、いわゆるプリント配線用足体板として酸化ア
ルミニウム筐たは合成樹脂からのなる切片を、第1製造
段階でチタンからの固着剤でコーチングし、その際その
固着剤に第2製造段階で導電剤として銅でスパッター法
を使用してコーチングして使用することは公知である。
A section made of an aluminum oxide housing or a synthetic resin as a supporting electrical wiring, so-called printed circuit board, is coated with a bonding agent made of titanium in the first production step, the bonding agent being coated in the second production step. It is known to use copper as a conductive agent by coating it by sputtering.

その後で該銅皮膜をホトレジストで覆い写真技術的工程
を経た後浴で例えばぶつ化水素酸からの浴でエツチング
する。
The copper coating is then covered with a photoresist and etched in a post-photographic process, for example in a bath of hydrofluoric acid.

この従来の方法は一方で時間がかかシ従って高価でおる
という欠点があシ、他方で屡々製品基板上に化学薬品の
跡が残シ、これがその後で板ないしは完成配線板を使用
不可能にする欠点がある。
This conventional method has the disadvantage, on the one hand, that it is time consuming and therefore expensive, and on the other hand it often leaves chemical traces on the product board, which subsequently renders the board or the finished circuit board unusable. There are drawbacks to doing so.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って本発明の課題はチタンからの固着剤皮膜を断念す
ることができ電気伝導性皮膜釦よび電気回路のためにコ
ーチングする方法を見出すことであった。
The object of the present invention was therefore to find a method of coating electrically conductive coatings for buttons and electrical circuits, which makes it possible to abandon adhesive coatings from titanium.

その上にな釦従来のないしは既存の装置筐たは設備をそ
のために不適当ならしむることなく、ないしはそれらに
著しい、または費用を要する改造lたは変更を行わなけ
ればならないということもなく基板上のスパッターされ
た銅皮膜の固着性が著しく改良されるべきである。
In addition, the button can be mounted on the board without making conventional or existing equipment or equipment unsuitable for this purpose or without having to make significant or costly modifications or changes to them. The adhesion of the top sputtered copper coating should be significantly improved.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題は本発明により、アルゴン導入口に加えて酸素
のための導入口を備え、その際酸素を導入することは該
導入管路に挿入した弁を介して制御でき酸素の量は第1
の加工段階の開固着剤として作用する酸化銅皮膜を生成
し、その上にアルゴン雰囲気を調整した後に純銅を導電
性皮膜として析出するように配量することで解決される
According to the present invention, the above problem is solved by providing an inlet for oxygen in addition to the argon inlet, in which case the introduction of oxygen can be controlled via a valve inserted in the inlet pipe, and the amount of oxygen can be controlled by the first
The solution is to form a copper oxide film that acts as an opening fixing agent in the processing step, and then, after adjusting the argon atmosphere, dispense pure copper so that it is deposited as a conductive film.

〔実施例〕〔Example〕

本発明は種々の実施可能性がある;その1つを添付の図
に模式に詳細に示した。すなわち、第1図に釦いて基板
1はAl2O3よりなる板の形で示され、これは薄い、
導電性の銅皮膜2で装備さるべきである。この基板1に
銅ターゲット3が向い合っていて、これがスパッターさ
れる。
The invention has various possibilities of implementation, one of which is schematically shown in more detail in the attached figures. That is, in FIG. 1, the substrate 1 is shown in the form of a plate made of Al2O3, which is thin and
It should be equipped with a conductive copper coating 2. A copper target 3 faces this substrate 1, and is sputtered.

該ターゲット3は断面U形のエレメント4を介して電極
5と結合していて、該電極はヨーク6上に載って訃シ、
これはエレメント4とその間にろ個の永久磁石γ、8.
9を入れている。3個の永久磁石7,8.9の極はター
ゲット3に向う極性は互に交替していて、外側の永久磁
石7.90両者のS極はそれぞれ中央の永久磁石8のN
極と釦よそ円弧状の磁場をターゲット4全通して作用し
ている。この磁場はターゲット3の前のプラズマを密に
し、その結果プラズマは磁場がその円弧の最大を有する
処で最大の密度を持つ。プラズマ中のイオンは直流電源
10より発せられる直流電圧にもとづき構成される電場
によシ加速される。この直流電源10はその@極と2つ
の導電性インダクタンス1112を介し電極5と結合さ
れている。該電場はターゲット3の表面に垂直に立ちプ
ラズマの陽イオンをこのターゲット3の方向に加速する
The target 3 is connected to an electrode 5 via an element 4 having a U-shaped cross section, and the electrode rests on a yoke 6 and dies.
This consists of element 4 and permanent magnets γ, 8.
I have entered 9. The poles of the three permanent magnets 7, 8, and 9 are alternately facing the target 3, and the S poles of the outer permanent magnets 7, 90 are the N poles of the central permanent magnet 8, respectively.
An arc-shaped magnetic field is applied to the entire target 4 around the pole and button. This magnetic field densifies the plasma in front of the target 3, so that the plasma has a maximum density where the magnetic field has its arc maximum. Ions in the plasma are accelerated by an electric field constructed based on a DC voltage generated by a DC power supply 10. This DC power supply 10 is coupled to the electrode 5 via its @ pole and two conductive inductances 1112. The electric field stands perpendicular to the surface of the target 3 and accelerates positive ions of the plasma toward the target 3.

これによって多くの渣たは少い多くの原子または粒子が
ターゲット3から打ち出され、それも特に磁場が最大で
ある領域13.14からである。スパッターされた原子
または粒子は基板1の方向に移動し、そこでこれらは薄
い皮膜2として析出する。
This causes more or fewer atoms or particles to be ejected from the target 3, especially from the region 13.14 where the magnetic field is at a maximum. The sputtered atoms or particles move towards the substrate 1, where they are deposited as a thin film 2.

前述の装置の制御のために、データを処理し制御司令を
与えるコンピュータを装備することができる。このコン
ピュータに例えば加工室15.15a中の測定した粒子
圧の値を入力することができる。これら3よび他のデー
タにもとづきコンピュータは例えばガス気流を弁18゜
19$−よびガス導入管22.23を介して制御しかつ
陰極5の電圧を調整することができる。
For control of the aforementioned device, a computer can be provided which processes the data and provides control commands. For example, the value of the measured particle pressure in the processing chamber 15.15a can be entered into this computer. On the basis of these and other data, the computer can, for example, control the gas flow via the valves 18, 19 and the gas inlet pipes 22, 23 and adjust the voltage at the cathode 5.

筐た該コンピュータは他のすべての変数、例えば陰極電
流訃よび磁場強度を制御する位置にある。このようなコ
ンピュータは公知であるからその構成の記載はしないこ
とにする。
The enclosed computer is in position to control all other variables, such as cathode current and magnetic field strength. Since such computers are well known, their configuration will not be described.

板状の基板1上の銅皮膜2の固着性を改良するためには
、1ず基板1の表面に非常に薄い固着剤皮膜を施こす。
In order to improve the adhesion of the copper coating 2 on the plate-shaped substrate 1, first a very thin adhesive coating is applied to the surface of the substrate 1.

それには矢印Fの方向に加工室25を通過して運ばれる
基板1をアルゴン釦よび酸素からのガス混合物にさらし
、その際容器17からの酸素成分をこれが進行する工程
により直に完全に使いつくされるように配量し、その結
果その後で純粋なアルゴン雰囲気が加工室25中で基板
1の周囲を支配しそれに相応して純銅を酸化銅からなる
固着剤皮膜の上にスパッタすることである。
For this purpose, the substrate 1, which is conveyed through the processing chamber 25 in the direction of the arrow F, is exposed to a gas mixture of an argon button and oxygen, the oxygen component from the container 17 being immediately completely used up by the process which is proceeding. so that a pure argon atmosphere then prevails around the substrate 1 in the processing chamber 25 and correspondingly pure copper is sputtered onto the binder film consisting of copper oxide. .

支 担持体ないしは基板1に酸化銅皮膜を施すことは特に二
つの重要な長所がある:すなわち、支 1、鍵持体、すなわち例えば基板1に対する純銅皮膜2
の固着は非常に良好であるから電子部品(IC1抵抗、
コンデンサー等)を直接この皮膜にはんだづけすること
ができ、これがその際または後に機械的応力の際にはが
れる(表面実装素子)という危険がない。
The application of a copper oxide coating to the support or substrate 1 has two particularly important advantages: the pure copper coating 2 on the support 1, on the key carrier, i.e. for example on the substrate 1.
The adhesion of the electronic components (IC1 resistor,
Capacitors, etc.) can be soldered directly to this coating, without the risk that it will come off during or later during mechanical stress (surface-mounted components).

2、 これは例えば不連続のプリント導電体を構成する
ためにエツチング加法が適用できる。
2. This can be applied, for example, to an etching process to construct discontinuous printed conductors.

この加工では強く腐蝕する液体(例えばふつ化水素酸)
を持つ浴で加工品を処理することが省略できるからであ
る。
This process uses strongly corrosive liquids (e.g. hydrofluoric acid).
This is because it is possible to omit processing the processed product in a bath with a high temperature.

第2図による実施例の場合はストリップコーチング装置
で、本装置では2つの電極30゜31がコーチング室3
2に装備され、そのター−テラ)33.34から同時に
銅がストリップ状基板35が巻出しロール36からコー
チングロール37を介して巻込みロールに巻かれる間に
スパッターされる。陰極34の領域に向ってガス導入管
が開口し、それを介してガス貯蔵容器41から酸素が陰
極31の領域に流入できる。
The embodiment according to FIG. 2 is a strip coating device, in which two electrodes 30° 31 are connected to the coating chamber 3.
At the same time, copper is sputtered from the substrate 33, 34 while the strip substrate 35 is being wound from an unwinding roll 36 via a coating roll 37 to a winding roll. A gas inlet pipe opens in the area of the cathode 34 , via which oxygen can flow into the area of the cathode 31 from the gas storage container 41 .

第2のガス導入管40を通してアルゴンが貯蔵容器42
から加工内32に流入する。電子制御系45はコーチン
グ加工の間、ガス量を、ストリップ状基板35上の一面
に第1陰極31の領域で酸化鋼のみかぁ・よび第2の陰
極30の領域では純銅を析出するよう配量せしめる。
Argon is supplied to the storage vessel 42 through the second gas introduction pipe 40.
Flows into the machining interior 32 from there. During the coating process, the electronic control system 45 meters the amount of gas such that only oxidized steel is deposited on the strip-shaped substrate 35 in the area of the first cathode 31 and pure copper in the area of the second cathode 30. urge

第2図による装置をよシ良く理解するためなお説明すれ
ば、タービン)30.31はブロックに設置されて調整
でき冷却液体を導く管46゜46aないしは47,4γ
aに接続され、核管は同時にターゲットないしはその磁
石に電流を直流電源10から供給する。ガス導入のため
の電磁弁43.44を制御する電子制御器45はな釦詳
しい一連のパラメータが必要でアシ、このために(これ
はよりよい展望のため詳しくは描いてない)また1つの
電源釦よび例えば加工室中の圧力を検出するセンサーと
結合させる。
For a better understanding of the device according to FIG. 2, it may be further explained that the turbine 30.31 is installed in the block and can be adjusted by a tube 46° 46a or 47,4γ for conducting the cooling liquid.
a, and the nuclear tube simultaneously supplies current to the target or its magnet from a DC power source 10. The electronic controller 45 that controls the solenoid valves 43 and 44 for gas introduction requires a detailed set of parameters, for which purpose (this is not depicted in detail for a better perspective) and a power supply. It is coupled to a button and, for example, a sensor that detects the pressure in the processing chamber.

この際本発明に重要なことは固着皮膜を製造する間の流
入する酸素釦よび流入するアルゴンの量が互に適当な比
にあシかつまた通過するストリップpよびスパッター粒
子流の速度が適当に調整されていることである。
In this case, what is important for the present invention is that the amounts of oxygen and argon flowing in during the production of the adhesive film are in an appropriate ratio to each other, and that the speed of the passing strip P and sputter particle flow is appropriate. It is something that has been adjusted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による実施例で1個の陰極を使用して板
状基板をコーチングするスパッター装置の略示断面図あ
・よび第2図は本発明による実施例に釦けるストリップ
をフーチングするたたの2個の陰極を有するスパッター
装置の略示断面図である。 1・・・基板、5・・・陰極、10・・・直a電源、1
5・・・加工室、15a・・・加工室、19・・・升、
20・・・酸素導入口、21・・・アルゴン導入口、3
o・・・陰極、・・・陰極、 2・・・加工室、 3・−・ターケゞツ ト、 4・・・ターゲット、 5・・・基板、 9・・・導入管、 0・・・導入管
FIG. 1 is a schematic cross-sectional view of a sputtering apparatus for coating a plate-shaped substrate using one cathode in an embodiment of the present invention, and FIG. 1 is a schematic cross-sectional view of a sputtering device having two cathodes; FIG. 1...Substrate, 5...Cathode, 10...Direct a power supply, 1
5... Processing room, 15a... Processing room, 19... Masu,
20...Oxygen inlet, 21...Argon inlet, 3
o...Cathode,...Cathode, 2...Processing chamber, 3...Target, 4...Target, 5...Substrate, 9...Introduction tube, 0...Introduction tube

Claims (1)

【特許請求の範囲】[Claims] 1.直流電源(10)を持ち、該電源は真空可能加工室
(15,15a,32)中に配置された少なくとも1つ
のスパッター陰極(5;30,31)と結合され、該陰
極は銅ターゲット(3;33,34)と電気的に共同作
用し、該ターゲットはスパッターできかつそのスパッタ
ー粒子は基板(1;35)上に析出し、その際該真空可
能加工室にアルゴンガスを導入できる装置を使用して銅
で基板をコーチングする方法において、アルゴンガス導
入口(21,40)に加えて酸素のための導入口(20
,39)を備え、その際酸素の導入は導入管路(23,
39)に挿入された弁 (19,43)を介して制御でき酸素の量を、第1加工
段階の間は基板(1,35)に固着剤として作用する酸
化銅皮膜を生成し、その上に加工室(15,15a;3
2)でアルゴン雰囲気を調整の後に純銅を導電性皮膜と
して析出するように配量できることを特徴とする銅で基
板をコーチングする方法。
1. It has a direct current power source (10), which power source is coupled to at least one sputter cathode (5; 30, 31) arranged in a vacuum-enabled processing chamber (15, 15a, 32), said cathode is connected to a copper target (3). ; 33, 34), the target can be sputtered and the sputtered particles are deposited on the substrate (1; 35), using a device capable of introducing argon gas into the vacuum-enabled processing chamber. In addition to the argon gas inlet (21, 40), an inlet for oxygen (20) is used to coat the substrate with copper.
, 39), and the oxygen is introduced through the introduction pipe (23, 39).
The amount of oxygen can be controlled via a valve (19, 43) inserted in the substrate (1, 39) during the first processing step to produce a copper oxide film which acts as a bonding agent on the substrate (1, 35) and processing room (15, 15a; 3
A method for coating a substrate with copper, which is characterized in that after adjusting the argon atmosphere in step 2), the amount of pure copper can be deposited as a conductive film.
JP2215097A 1989-08-16 1990-08-16 Coating of substrate with copper Pending JPH0387355A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3926877.2 1989-08-16
DE3926877A DE3926877A1 (en) 1989-08-16 1989-08-16 METHOD FOR COATING A DIELECTRIC SUBSTRATE WITH COPPER

Publications (1)

Publication Number Publication Date
JPH0387355A true JPH0387355A (en) 1991-04-12

Family

ID=6387118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215097A Pending JPH0387355A (en) 1989-08-16 1990-08-16 Coating of substrate with copper

Country Status (3)

Country Link
US (1) US5108571A (en)
JP (1) JPH0387355A (en)
DE (1) DE3926877A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148634A (en) * 1991-11-22 1993-06-15 Nec Corp Sputtering apparatus
JP3631246B2 (en) * 1992-09-30 2005-03-23 アドバンスド エナージィ インダストリーズ,インコーポレイテッド Formally precise thin film coating system
US5427669A (en) * 1992-12-30 1995-06-27 Advanced Energy Industries, Inc. Thin film DC plasma processing system
US6217717B1 (en) 1992-12-30 2001-04-17 Advanced Energy Industries, Inc. Periodically clearing thin film plasma processing system
US5718813A (en) * 1992-12-30 1998-02-17 Advanced Energy Industries, Inc. Enhanced reactive DC sputtering system
US5367285A (en) * 1993-02-26 1994-11-22 Lake Shore Cryotronics, Inc. Metal oxy-nitride resistance films and methods of making the same
US5346601A (en) * 1993-05-11 1994-09-13 Andrew Barada Sputter coating collimator with integral reactive gas distribution
JP3175894B2 (en) * 1994-03-25 2001-06-11 株式会社半導体エネルギー研究所 Plasma processing apparatus and plasma processing method
JPH08190091A (en) * 1995-01-11 1996-07-23 Aneruba Kk Thin film substrate for liquid crystal display, liquid crystal display using the thin film substrate and producing device for thin film substrate of liquid crystal display
DE19506515C1 (en) * 1995-02-24 1996-03-07 Fraunhofer Ges Forschung Reactive coating process using a magnetron vaporisation source
WO1996031899A1 (en) 1995-04-07 1996-10-10 Advanced Energy Industries, Inc. Adjustable energy quantum thin film plasma processing system
US5576939A (en) * 1995-05-05 1996-11-19 Drummond; Geoffrey N. Enhanced thin film DC plasma power supply
US6171714B1 (en) 1996-04-18 2001-01-09 Gould Electronics Inc. Adhesiveless flexible laminate and process for making adhesiveless flexible laminate
US5882492A (en) * 1996-06-21 1999-03-16 Sierra Applied Sciences, Inc. A.C. plasma processing system
US5682067A (en) * 1996-06-21 1997-10-28 Sierra Applied Sciences, Inc. Circuit for reversing polarity on electrodes
SE509933C2 (en) * 1996-09-16 1999-03-22 Scandinavian Solar Ab Methods and apparatus for producing a spectrally selective absorbent layer for solar collectors and produced layer
BE1010797A3 (en) * 1996-12-10 1999-02-02 Cockerill Rech & Dev Method and device for forming a coating on a substrate, by sputtering.
US6011704A (en) * 1997-11-07 2000-01-04 Sierra Applied Sciences, Inc. Auto-ranging power supply
US5910886A (en) * 1997-11-07 1999-06-08 Sierra Applied Sciences, Inc. Phase-shift power supply
US5993613A (en) * 1997-11-07 1999-11-30 Sierra Applied Sciences, Inc. Method and apparatus for periodic polarity reversal during an active state
US5990668A (en) * 1997-11-07 1999-11-23 Sierra Applied Sciences, Inc. A.C. power supply having combined regulator and pulsing circuits
US5889391A (en) * 1997-11-07 1999-03-30 Sierra Applied Sciences, Inc. Power supply having combined regulator and pulsing circuits
DE19850592C1 (en) * 1998-11-03 2000-10-12 Lpkf Laser & Electronics Ag Adhesion promoter layer for creating adhesive conductor structures on electronic insulation materials
US6770175B2 (en) * 2001-04-16 2004-08-03 Sanyo Electric Co., Ltd. Apparatus for and method of forming electrode for lithium secondary cell
JP4673858B2 (en) * 2005-01-19 2011-04-20 株式会社アルバック Sputtering apparatus and film forming method
DE102007021896A1 (en) * 2007-05-10 2008-11-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Flexible printed circuit board material and method of making the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT215159B (en) * 1959-06-23 1961-05-25 Balzers Hochvakuum Process for the production of a firm connection between workpieces made of polyhalogenolefins and a. Materials
DE2533524C3 (en) * 1975-07-26 1978-05-18 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Process for the production of a covering made of copper or a copper alloy on a carrier body
DE2821119C2 (en) * 1978-05-13 1983-08-25 Leybold-Heraeus GmbH, 5000 Köln Method and arrangement for regulating the discharge process in a cathode sputtering system
DE3017713A1 (en) * 1980-05-08 1981-11-12 Siemens AG, 1000 Berlin und 8000 München Metallising polymer films - by sputtering adhesion promoting layer onto film and then vacuum depositing metal, used for resistance layers
US4302498A (en) * 1980-10-28 1981-11-24 Rca Corporation Laminated conducting film on an integrated circuit substrate and method of forming the laminate
US4608243A (en) * 1983-04-04 1986-08-26 Borg-Warner Corporation High hardness hafnium nitride

Also Published As

Publication number Publication date
DE3926877A1 (en) 1991-02-21
US5108571A (en) 1992-04-28

Similar Documents

Publication Publication Date Title
JPH0387355A (en) Coating of substrate with copper
EP2390380B1 (en) Sputtering equipment, sputtering method and method for manufacturing an electronic device
US4557796A (en) Method of dry copper etching and its implementation
WO2011007834A1 (en) Film-forming apparatus and film-forming method
JPH04325680A (en) Device for attaching reactive film onto substrate
JP2007150012A (en) Device and method for processing plasma
JPH06220627A (en) Film forming device
JPH03134168A (en) Device and method of covering plastic substrate with metal
CN102471879B (en) Film-forming apparatus
JPS5816068A (en) Target electrode structure for planer magnetron system spattering device
KR101087514B1 (en) Dry etching method
JPS61246368A (en) Depositing method for metallic film
JPH09316632A (en) Method for depositing optically transparent and conductive layer on substrate consisting of transparent material
TW202008464A (en) Plasma processing method and plasma processing device
CN111128702A (en) Preparation method of metal electrode
JPS63153266A (en) Sputtering device
JP2002343775A (en) Etching device
JP2002252213A (en) Plasma etching method
US5403663A (en) Process for coating a polycarbonate substrate with an aluminum-silicon alloy
JP3099153B2 (en) Film processing equipment
CN113699484A (en) Shell, coating process thereof and electronic equipment
RU2211881C2 (en) Process forming film coat and facility for its realization
JPH0250958A (en) Film-forming equipment by sputtering method
JPS63307254A (en) Apparatus for forming thin oxide film
JPS619571A (en) Manufacture of thin film