JPH0386370A - Heat resistant structural body - Google Patents

Heat resistant structural body

Info

Publication number
JPH0386370A
JPH0386370A JP1224273A JP22427389A JPH0386370A JP H0386370 A JPH0386370 A JP H0386370A JP 1224273 A JP1224273 A JP 1224273A JP 22427389 A JP22427389 A JP 22427389A JP H0386370 A JPH0386370 A JP H0386370A
Authority
JP
Japan
Prior art keywords
based brazing
iron
stainless steel
heat
resistant structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1224273A
Other languages
Japanese (ja)
Inventor
Tetsuo Toyoda
哲郎 豊田
Katsunori Matsuoka
克憲 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aircraft Industry Co Ltd
Original Assignee
Showa Aircraft Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aircraft Industry Co Ltd filed Critical Showa Aircraft Industry Co Ltd
Priority to JP1224273A priority Critical patent/JPH0386370A/en
Priority to DE69015605T priority patent/DE69015605T2/en
Priority to US07/667,383 priority patent/US5316997A/en
Priority to EP90910891A priority patent/EP0437626B1/en
Priority to PCT/JP1990/000969 priority patent/WO1991001876A1/en
Publication of JPH0386370A publication Critical patent/JPH0386370A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To manufacture a heat resistant structural body usable under high temp. atmosphere by alternately joining corrugated sheets and flat sheets made of stainless steel through iron-based brazing filler metal to make honeycomb structure. CONSTITUTION:The stainless steel-made corrugated sheets 1 formed by continuously bending as wave shaped ruggedness and the stainless steel-made flat sheets 2 are alternately joined by using the iron-based brazing filler metal 3 to form the honeycomb structure which is flattened assembly of hollow column type cell 4. By this method, formation of the different kinds of compositions in base material, development of crack, corrosion of the base material, lowering of heat resistant temp., etc., are prevented, and the heat resistant structural body having excellent durability at high temp. is obtd. and advantageously used to catalyst converter for cleaning waste gas from a car engine.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高温環境下で使用される耐熱構造体に関する
。すなわち、波板材と平板材とが交互に接合されてハニ
カム構造をなし、例えば、自動車エンジンの排気ガス清
浄化用の触媒コンバータに用いられ、担持母体として触
媒が付着される耐熱構造体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a heat-resistant structure used in a high-temperature environment. That is, it relates to a heat-resistant structure in which corrugated sheets and flat sheets are alternately joined to form a honeycomb structure, and is used, for example, in a catalytic converter for purifying exhaust gas of an automobile engine, and to which a catalyst is attached as a support base. be.

「従来の技術」 このような耐熱構造体としては、波形の凹凸が連続的に
折曲形成されたステンレス鋼製の波板材と、平坦なステ
ンレス鋼製の平板材とが、アモルファスニッケル基ろう
材等のニッケル基ろう材を介し、交互に接合されてハニ
カム構造をなしたものが、従来より用いられている。
``Prior art'' Such a heat-resistant structure consists of a stainless steel corrugated sheet material in which corrugated irregularities are continuously bent, and a flat stainless steel flat sheet material, which is made of an amorphous nickel-based brazing material. A honeycomb structure formed by alternately joining each other via a nickel-based brazing material, such as nickel-based brazing material, has been used in the past.

すなわち、従来のこの種耐熱構造体は高温環境下での使
用に耐えるべく、その母材たる波板材。
In other words, this kind of conventional heat-resistant structure uses corrugated sheet material as its base material in order to withstand use in high-temperature environments.

平板材としては耐蝕性、耐熱性に優れたステンレス鋼製
のものが用いられ、又ろう材としても同様に耐蝕性、耐
熱性に優れたニッケル基ろう材が用いられていた。そし
てこの耐熱構造体は、このような波板材と平板材とがニ
ッケル基ろう材を介し、交互に巻き付けられ接合されて
ロール状をなすか、又は多層に積層され接合されて積層
ブロック状をなすことにより、ハニカム構造をなし、触
媒の担持母体その他の各種用途に使用されていた。
The plate material used was made of stainless steel, which has excellent corrosion resistance and heat resistance, and the brazing material used was a nickel-based brazing material, which also had excellent corrosion resistance and heat resistance. This heat-resistant structure is made of corrugated sheet materials and flat sheet materials that are alternately wound and bonded via a nickel-based brazing material to form a roll shape, or are laminated and bonded in multiple layers to form a laminated block shape. As a result, it forms a honeycomb structure and is used as a support for catalysts and for various other purposes.

「発明が解決しようとする課題」 ところでこのような従来の耐熱構造体にあっては、次の
問題が指摘されていた。
"Problems to be Solved by the Invention" By the way, the following problems have been pointed out in such conventional heat-resistant structures.

第1に、アモルファスニッケル基ろろ材等のニッケル基
ろう材は高価であり、もってコスト面に問題があった。
Firstly, nickel-based brazing materials such as amorphous nickel-based filter materials are expensive, which poses a cost problem.

第2に、ステンレス鋼製の母材たる波板材、平板材とニ
ッケル基ろう材とは、組成が大きく異なっている。そこ
でろう付は接合によりニッケル基ろう材が母材側に拡散
すると、母材の接合面たる界面が変化し異種組成化しや
すく、もって高温環境下での使用に悪影響を及ぼすこと
があった。
Second, the corrugated sheet material or flat sheet material, which is the base material made of stainless steel, and the nickel-based brazing material have significantly different compositions. Therefore, in brazing, when the nickel-based brazing filler metal diffuses into the base metal side due to joining, the interface between the base metals changes and tends to become a different composition, which has an adverse effect on use in high-temperature environments.

第3に、このようにステンレス鋼製例えばフェライト系
ステンレス鋼製の母材とニッケル基ろう材の組成が大き
く異なっているので、両者間の熱膨張率に差が生じ、も
って繰り返し使用すると両者間に亀裂が生じることがあ
った。
Thirdly, because the compositions of the base metal made of stainless steel, such as ferritic stainless steel, and the nickel-based brazing filler metal are significantly different, there is a difference in the coefficient of thermal expansion between the two, which results in a difference in the coefficient of thermal expansion between the two when used repeatedly. Cracks may occur.

第4に、ニッケル基ろう材がステンレス鋼製の母材を侵
食しやすく、特に母材の肉厚が薄い場合には母材に穴が
あくことさえあった。
Fourth, the nickel-based filler metal tends to corrode the stainless steel base metal, and even creates holes in the base metal, especially when the base metal is thin.

第5に、ニッケル基ろう材の融点がステンレス鋼製の母
材より低いので、この耐熱構造体は耐熱温度が、係るニ
ッケル基ろう材の再融点温度に依存し、これにより低く
設定されてしまうようになる。
Fifth, since the melting point of the nickel-based brazing material is lower than that of the stainless steel base material, the heat resistance temperature of this heat-resistant structure depends on the remelting point temperature of the nickel-based brazing material, and is therefore set low. It becomes like this.

そして、これら上述した第2.第3.第4.第5の各点
に起因して、この従来の耐熱構造体は、高温での耐久性
が劣り問題となっていた。
And these above-mentioned second. Third. 4th. Due to the fifth point, this conventional heat-resistant structure has a problem of poor durability at high temperatures.

第6に、そこでこれらの問題に対処する改善策として、
ニッケル基ろう材について、その使用量を少なく制限し
たり母材間に全面的ではなく部分的に配するようにした
りすることも、従来行われていた。しかしながら係る改
善策によっても、上述の各問題が確実に解消されるわけ
ではなく依然上述の各問題の発生が指摘されるとともに
、このような改善策によると、ニッケル基ろう材のセ・
ンティングが面倒であるとの問題も指摘されていた。
Sixth, as an improvement measure to address these issues,
It has also been conventional practice to limit the amount of nickel-based brazing filler metal used, or to place it partially between the base metals instead of entirely. However, even with such improvement measures, the above-mentioned problems cannot be completely resolved, and it has been pointed out that the above-mentioned problems still occur.
Another problem was pointed out that it was troublesome to do the mapping.

第7に、なおこのような従来の耐熱構造体を、例えば、
自動車エンジンの排気ガス清浄化用の触媒コンバータに
用い、担持母体として触媒が付着された場合にあっては
、その触媒浄化性能に問題が指摘されていた。
Seventhly, such a conventional heat-resistant structure, for example,
When used in a catalytic converter for purifying the exhaust gas of an automobile engine, and when a catalyst is attached as a supporting matrix, problems have been pointed out in the catalyst purifying performance.

すなわち、まずニッケル基ろう材の存在により、母材と
触媒間の下地処理用に介装されるアルごすのウォンシュ
コートが母材に付着しにくくなり、もって母材への触媒
の付着にも支障が生じることがあった。そして特に、例
え触媒が正常に付着したとしても、ニッケル基ろう材中
に触媒が溶は込み固溶してしまい、母材表面の触媒濃度
が低くなりやすかった。このように、従来の耐熱構造体
は触媒の担持母体として使用された場合、ニッケル基ろ
う材の存在により、触媒が付着しにくく又特にろう材中
に触媒が固溶しやすいので、触媒浄化性能が低下し排気
ガス清浄化効率が悪かった。
In other words, the presence of the nickel-based brazing filler metal makes it difficult for the washed coat of Algos, which is interposed between the base metal and the catalyst for surface treatment, to adhere to the base metal, which makes it difficult for the catalyst to adhere to the base metal. Problems also sometimes occurred. In particular, even if the catalyst adheres normally, the catalyst tends to dissolve into the nickel-based brazing material and become a solid solution, resulting in a low catalyst concentration on the surface of the base material. In this way, when a conventional heat-resistant structure is used as a supporting base for a catalyst, the presence of the nickel-based brazing material makes it difficult for the catalyst to adhere to it, and in particular, the catalyst tends to form a solid solution in the brazing material, resulting in poor catalyst purification performance. decreased, resulting in poor exhaust gas cleaning efficiency.

従来例ではこのような点が指摘されていた。This point was pointed out in the conventional example.

本発明は、このような実情に鑑み上記従来例の問題点を
解決すべくなされたものであって、鉄基ろう材を用いて
なることにより、コスト面に優れるとともに、母材の異
種組成化、亀裂の発生、母材の侵食、耐熱温度の低下等
の諸点が防止され、もってこれらにより高温での耐久性
に優れ、更に鉄基ろう材のセツティングも容易である、
耐熱構造体を提案することを目的とする。
In view of the above circumstances, the present invention has been made to solve the problems of the conventional methods described above.By using an iron-based brazing filler metal, the present invention is superior in terms of cost, and it is possible to use a different composition of the base material. This prevents various problems such as the occurrence of cracks, erosion of the base metal, and a decrease in heat resistance temperature, which results in excellent durability at high temperatures, and also facilitates the setting of iron-based brazing filler metals.
The purpose is to propose a heat-resistant structure.

「課題を解決するための手段」 この目的を達成する本発明の技術的手段は、次のとおり
である。
"Means for Solving the Problem" The technical means of the present invention to achieve this object are as follows.

この耐熱構造体は、波形の凹凸が連続的に折曲形成され
たステンレス鋼製の波板材と、平坦なステンレス鋼製の
平板材とが、鉄基ろう材を介し交互に接合されたハニカ
ム構造よりなる。
This heat-resistant structure has a honeycomb structure in which corrugated stainless steel sheets with continuous corrugated irregularities and flat stainless steel plates are alternately joined via iron-based brazing material. It becomes more.

「作  用」 本発明は、このような手段よりなるので次のごとく作用
する。
"Function" Since the present invention consists of such means, it works as follows.

この耐熱構造体にあっては、波板材と平板材との接合に
鉄基ろう材を用いてなる。そこで次の第1、第2.第3
.第4.第5.第6.第7のごとくなる。
In this heat-resistant structure, an iron-based brazing material is used to join the corrugated plate material and the flat plate material. Therefore, the following 1st and 2nd points. Third
.. 4th. Fifth. 6th. It will be like number 7.

第1に、鉄基ろう材は、アモルファスニッケル基ろう材
等のニッケル基ろう材に比し、安価である。
First, iron-based brazing materials are cheaper than nickel-based brazing materials such as amorphous nickel-based brazing materials.

第2に、鉄基ろう材と、ステンレス鋼製の母材たる波板
材、平板材とは、共に鉄基の点で組成が共通で似かよっ
ている。そこでろう付は接合により、鉄基ろう材がステ
ンレス鋼製の母材側に拡散しても、母材の界面が異種組
成化するようなことはない。
Second, the iron-based brazing material and the corrugated plate material and flat plate material, which are stainless steel base materials, both have the same composition and are similar in terms of the iron base. Therefore, by brazing, even if the iron-based brazing filler metal diffuses into the stainless steel base metal, the interface between the base metals will not have a different composition.

第3に、このように鉄基ろう材とステンレス鋼製の母材
とは、組成が似かまっている。そこで両者の熱膨張率の
差も小さく、熱膨張率の差が大の場合に生じる両者間の
亀裂の発生も回避される。
Thirdly, the iron-based brazing filler metal and the stainless steel base metal have similar compositions. Therefore, the difference in the coefficient of thermal expansion between the two is small, and the occurrence of cracks between the two, which would otherwise occur if the difference in the coefficient of thermal expansion is large, can be avoided.

第4に、鉄基ろう材は、ニッケル基ろう材とは異なり、
ステンレス鋼製の母材を侵食するようなことはない。
Fourth, iron-based brazing filler metals, unlike nickel-based brazing filler metals,
It does not attack the stainless steel base material.

第5に、鉄基ろう材は、ろう付は接合時にステンレス鋼
製の母材に十分拡散せしめることにより、その再融点温
度を母材と同程度まで引き上げることができる。
Fifth, by sufficiently diffusing the iron-based brazing material into the stainless steel base material during brazing and joining, the remelting point temperature of the iron-based brazing material can be raised to the same level as that of the base material.

第6に、鉄基ろう材にあっては、ろう付は接合後その表
面に安定した酸化被膜が生じる。
Sixth, in the case of iron-based brazing materials, a stable oxide film is formed on the surface of the brazing material after joining.

第7に、鉄基ろう材は母材たる波板材と平板材間に、例
えば従来の一般例と同様に全面的に配される等、そのセ
ツティングも容易である。
Seventhly, the iron-based brazing material is easily placed between the corrugated sheet material and the flat sheet material, which are the base materials, for example, as in the conventional general case, and is therefore easy to set.

「実 施 例」 以下本発明を、図面に示すその実施例に基づいて詳細に
説明する。
"Example" The present invention will be described in detail below based on the example shown in the drawings.

第1図は、本発明の実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

第2図は、その他の実施例を示す斜視図である。FIG. 2 is a perspective view showing another embodiment.

まずその構成等について説明する。First, its configuration etc. will be explained.

この耐熱構造体は、波形の凹凸が連続的に折曲形成され
たステンレス鋼製の波板材1と、平坦なステンレス鋼製
の平板材2とが、鉄基ろう材3を介し交互に接合された
ハニカム構造よりなる。
This heat-resistant structure is made by alternately joining corrugated stainless steel plates 1 with continuously bent corrugated irregularities and flat stainless steel plate plates 2 through iron-based brazing filler metals 3. It consists of a honeycomb structure.

これらについて詳述すると、まず母材たる波板材l、平
板材2の素材としては、フェライト系ステンレス鋼、オ
ーステナイト系ステンレス鋼、その他耐蝕性、耐熱性に
優れた各種のステンレス鋼が用いられる。そしてこのよ
うなステンレス鋼製の箔状平板材が、そのまま平板材2
として使用される。又波板材1は、このようなステンレ
ス鋼製の箔状平板材をコルゲート装置にてコルゲート加
工して得られ、所定の直線的な波形の凹凸が連続的に折
曲形成されてなる。又鉄基ろう材3は、鉄を主成分とし
、耐蝕性、耐熱性に優れてなることが知られ、粉末状、
ペースト状、アモルファス状等々の形態にて使用される
To explain these in detail, first, as materials for the corrugated plate material 1 and the flat plate material 2, which are base materials, ferritic stainless steel, austenitic stainless steel, and other various stainless steels having excellent corrosion resistance and heat resistance are used. Then, such a stainless steel foil-like flat plate material is used as a flat plate material 2.
used as. The corrugated sheet material 1 is obtained by corrugating such a foil-like flat sheet material made of stainless steel using a corrugating machine, and is formed by continuously bending predetermined linear wave-like irregularities. Further, the iron-based brazing filler metal 3 is known to have iron as its main component and to have excellent corrosion resistance and heat resistance.
It is used in forms such as paste and amorphous.

そしてこのようなステンレス鋼製の波板材1と平板材2
および鉄基ろう材3を用い、第1図のロール状又は第2
図の積層ブロック状の耐熱構造体が底形される。
And such stainless steel corrugated plate material 1 and flat plate material 2
and iron-based brazing filler metal 3.
The bottom of the laminated block-shaped heat-resistant structure shown in the figure is shaped.

まず第1図のロール状の耐熱構造体は、ステンレス鋼製
で帯状をなす1枚の波板材1と、ステンレス鋼製で帯状
をなす1枚の平板材2とが用いられてなる。その製造方
法について概説しておくと、まずこのような波板材1と
平板材2間に、アモルファス鉄基ろう材等の鉄基ろう材
3を例えば全面的にセツティングした後、係る波板材1
と平板材2が、−窓中心から交互に巻き付けつつ多重に
巻き取られる。なお又は、鉄基ろう材3のセツティング
と、波板材lと平板材2の巻き付けとを、同時併行的に
実施するようにしてもよい。そしてしかる後、加熱によ
り鉄基ろう材3を溶融せしめ、もって波板材lと平板材
2が接合されて、円、楕円等所定ロール状の耐熱構造体
が製造される。
First, the roll-shaped heat-resistant structure shown in FIG. 1 is made up of a corrugated sheet material 1 made of stainless steel and shaped like a belt, and a sheet of flat sheet material 2 made of stainless steel and shaped like a strip. To outline the manufacturing method, first, an iron-based brazing material 3 such as an amorphous iron-based brazing material is completely set between the corrugated sheet material 1 and the flat sheet material 2, and then the corrugated sheet material 1
and the flat plate material 2 are wound in multiple layers while being wound alternately from the center of the window. Alternatively, the setting of the iron-based brazing material 3 and the winding of the corrugated plate material 1 and the flat plate material 2 may be performed simultaneously. Thereafter, the iron-based brazing material 3 is melted by heating, and the corrugated plate material 1 and the flat plate material 2 are joined to produce a heat-resistant structure in a predetermined roll shape, such as a circle or an ellipse.

又第2図の積層ブロック状の耐熱構造体は、ステンレス
@製で所定長さのプレート状をなす複数枚の波板材1と
、ステンレス鋼製で同じ所定長さのプレート状をなす複
数枚の平板材2とが、用いられてなる。その製造方法に
ついて概説しておくと、まずこのような波板材lと平板
材2を、それぞれ鉄基ろう材3を例えば全面的にセツテ
ィングし介装しつつ、交互に順次上下に重積する。なお
このような介装と重積は、同時併行でなく前後して実施
するようにしてもよい。そしてしかる後、これを上下か
ら加圧加熱することにより鉄基ろう材3を溶融せしめ、
もって波板材1と平板材2とが接合されて、所定積層ブ
ロック状の耐熱構造体が製造される。
The heat-resistant structure in the form of a laminated block shown in Fig. 2 includes a plurality of corrugated plates 1 made of stainless steel and having a predetermined length, and a plurality of plate-like plates made of stainless steel and having the same predetermined length. A flat plate material 2 is used. To give an overview of the manufacturing method, first, such corrugated sheet material 1 and flat sheet material 2 are alternately stacked one on top of the other, with iron-based brazing material 3 being set and interposed on the entire surface, respectively. . Note that such interposition and intussusception may not be performed simultaneously but may be performed one after the other. After that, the iron-based brazing material 3 is melted by applying pressure and heating from above and below,
The corrugated sheet material 1 and the flat sheet material 2 are thus joined, and a heat-resistant structure in the form of a predetermined laminated block is manufactured.

なお本発明に係る耐熱構造体は、第1図のロール状又は
第2図の積層ブロック状のものに限らず、その地番種形
状のものも可能である。
The heat-resistant structure according to the present invention is not limited to the roll shape shown in FIG. 1 or the laminated block shape shown in FIG. 2, but may also be in the shape of a lot number.

そしてこの耐熱構造体は、波板材1の各空間が平板材2
によってそれぞれ独立空間に区画され、もって波板材1
と平板材2とがセル壁を構威し、中空柱状のセル4の平
面的集合体たるハニカム構造をなす。このようなハニカ
ム構造の耐熱構造体は一般に、熱間強度が強く軽量性と
ともに高い剛性・強度を有し、又流体の整流効果にも優
れ、更に底形も容易でコスト面にも優れてなる等々の特
性が知られている。そこで係る耐熱構造体は、例えば、
自動車エンジンの排気ガス浄化用の触媒コンバータに用
いられ、担持母体としてその波板材1および平板材20
表面に、プラチナ、パラジウム等の触媒が付着せめしら
れる。
In this heat-resistant structure, each space of the corrugated sheet material 1 is connected to the flat sheet material 2.
The corrugated sheet material 1 is divided into independent spaces by
and the flat plate material 2 constitute cell walls, forming a honeycomb structure which is a planar assembly of hollow columnar cells 4. Generally, such a honeycomb-structured heat-resistant structure has strong hot strength, light weight, high rigidity and strength, excellent fluid rectification effect, easy bottom shape, and excellent cost. These characteristics are known. Therefore, the heat-resistant structure concerned, for example,
The corrugated sheet material 1 and the flat sheet material 20 are used as supporting bodies for catalytic converters for purifying exhaust gas of automobile engines.
A catalyst such as platinum or palladium is attached to the surface.

以上が構成等の説明である。The above is the explanation of the configuration, etc.

以下作動等について説明する。The operation etc. will be explained below.

この耐熱構造体にあっては、波板材1と平板材2との接
合に、鉄基ろう材3を用いてなる。そして係る耐熱構造
体が、例えば触媒の担持母体その他として、高温環境下
で使用される。そこで次の第1.第2.第3.第4.第
5.第6.第7.第8のごとくなる。
In this heat-resistant structure, an iron-based brazing material 3 is used to join the corrugated sheet material 1 and the flat sheet material 2. Such a heat-resistant structure is used in a high-temperature environment, for example, as a support for a catalyst or the like. So here's the first one. Second. Third. 4th. Fifth. 6th. 7th. It will be like the 8th one.

第1に、鉄基ろう材3は、従来この種耐熱構造体におい
て用いられていたアモルファスニッケル基ろう材等のニ
ッケル基ろう材に比し、安価である。
First, the iron-based brazing filler metal 3 is cheaper than nickel-based brazing filler metals such as amorphous nickel-base brazing filler metals conventionally used in this type of heat-resistant structure.

第2に、鉄基ろう材3と、ステンレス鋼製の母材たる波
板材1.平板材2とは、共に鉄基の点で組成が共通で似
かよっている。そこでろう付は接合により、鉄基ろう材
3がステンレス鋼製の波板材1.平板材2側に拡散して
も、係る波板材1゜平板材2の界面が異種組成化するよ
うなことはない。つまり従来この種耐熱構造体において
ニッケル基ろう材が用いられた場合のごとく、その拡散
により波板材1.平板材2の接合面たる界面が変化して
、異種組成化するようなことはない。
Second, an iron-based brazing filler metal 3 and a corrugated sheet material 1 made of stainless steel as a base material. The composition is similar to the flat plate material 2 in that they both have an iron base. Therefore, brazing is performed by joining the iron-based brazing material 3 to the stainless steel corrugated plate material 1. Even if it diffuses to the flat plate material 2 side, the interface between the corrugated sheet material 1° and the flat plate material 2 will not have a different composition. In other words, as in the case where a nickel-based brazing filler metal is conventionally used in this type of heat-resistant structure, the corrugated sheet material 1. There is no possibility that the interface, which is the joint surface of the flat plate material 2, changes and becomes a different composition.

第3に、このように鉄基ろう材3とステンレスM!!!
!例えばフェライト系ステンレス鋼製の母材たる波板材
1.平板材2とは、組成が似かよっている。そこで両者
の熱膨張率の差も小さく、従来この種耐熱構造体におい
てニッケル基ろう材が用いられた場合のごとく、熱膨張
率の差が大の場合に生じる両者間の亀裂の発生も回避さ
れる。
Thirdly, in this way, iron-based brazing filler metal 3 and stainless steel M! ! !
! For example, a corrugated sheet material that is a base material made of ferritic stainless steel 1. The composition is similar to that of the flat plate material 2. Therefore, the difference in coefficient of thermal expansion between the two is small, and cracks between the two can be avoided, which would otherwise occur when the difference in coefficient of thermal expansion was large, as was the case when nickel-based brazing filler metal was used in this type of heat-resistant structure. Ru.

第4に、鉄基ろう材3は、従来この種耐熱構造体におい
て用いられていたニッケル基ろう材とは異なり、ステン
レス鋼製の母材たる波板材1.平板材2を侵食するよう
なことはない。
Fourthly, the iron-based brazing filler metal 3 is different from the nickel-based brazing filler metal conventionally used in this type of heat-resistant structure, and the corrugated plate material 1 which is the base material made of stainless steel. It does not erode the flat plate material 2.

第5に、鉄基ろう材3は、ろう付は接合時つまり加熱時
にステンレス鋼製の母材たる波板材1゜平板材2に対し
、時間をかけ十分に拡散せしめることにより、その再融
点温度を波板材1.平板材2と同程度まで引き上げるこ
とができる。つまり従来この種耐熱構造体においてニッ
ケル基ろう材が用いられた場合のごとく、その低い再融
点温度に耐熱構造体の耐熱温度が依存し設定されてしま
うようなことはない。
Fifth, the iron-based brazing material 3 can be heated to its remelting point temperature by sufficiently diffusing the corrugated sheet material 2, which is the base material made of stainless steel, over time during brazing, that is, heating. Corrugated sheet material 1. It can be pulled up to the same level as the flat plate material 2. In other words, unlike when a nickel-based brazing filler metal is conventionally used in this type of heat-resistant structure, the heat-resistant temperature of the heat-resistant structure is not set depending on its low remelting point temperature.

第6に、鉄基ろう材3にあっては、従来この種耐熱構造
体において用いられたニッケル基ろう材とは異なり、ろ
う付は接合後その表面に安定した酸化被膜が生じる。
Sixthly, in the case of the iron-based brazing material 3, unlike the nickel-based brazing material conventionally used in this type of heat-resistant structure, a stable oxide film is formed on the surface of the brazing material after joining.

第7に、鉄基ろう材3は母材たる波板材lと平板材2間
に、例えば従来よりの一般例と同様に全面的に配される
等、そのセツティングも容易である。つまり前述した従
来例の改善策のごとく、ニッケル基ろう材の使用量を制
限したり、これを部分的に配するようにしたりする規制
がなく、この鉄基ろう材3は、例えば全面的に配される
等セツティングが容易である。
Seventhly, the setting of the iron-based brazing filler metal 3 is easy, as it is disposed entirely between the corrugated plate material 1 and the flat plate material 2, which are the base materials, for example, as in the conventional general example. In other words, there is no regulation to limit the amount of nickel-based brazing filler metal used or to place it only partially, as in the conventional improvement measures mentioned above. Easy to set up.

第8に、この耐熱構造体を、例えば、自動車エンジンの
排気ガス清浄化用の触媒コンバータに用い、担持母体と
してその波板材1および平板材2の表面に触媒が付着せ
しめられた場合にあっては、次のごとくなる。すなわち
この場合鉄基ろう材3は、従来この種耐熱構造体におい
て用いられたニッケル基ろう材とは異なり、母材たる波
板材lおよび平板材2と触媒間に下地処理用に介装され
るアルミナのウォッシュコートの付着に、支障を及ぼす
ようなことはない。また特に、この鉄基ろう材3中に触
媒が溶は込み固溶するようなことがなく、表面の触媒濃
度が低下することもない。
Eighth, when this heat-resistant structure is used, for example, in a catalytic converter for purifying the exhaust gas of an automobile engine, and a catalyst is attached to the surfaces of the corrugated sheet material 1 and the flat sheet material 2 as supporting bodies. becomes as follows. That is, in this case, unlike the nickel-based brazing material conventionally used in this type of heat-resistant structure, the iron-based brazing material 3 is interposed between the corrugated sheet material 1 and the flat material 2, which are the base materials, and the catalyst for surface treatment. There is no problem with the adhesion of the alumina washcoat. Further, in particular, the catalyst does not penetrate into the iron-based brazing material 3 to form a solid solution, and the catalyst concentration on the surface does not decrease.

このように、この耐熱構造体は触媒の担持母体として使
用された場合、触媒浄化性能が向上し排気ガス清浄化効
率に優れてなる。
As described above, when this heat-resistant structure is used as a support for a catalyst, the catalyst purification performance is improved and the exhaust gas purification efficiency is excellent.

以上が作動等の説明である。The above is the explanation of the operation, etc.

「発明の効果」 本発明に係る耐熱構造体は、以上説明したごとく、鉄基
ろう材を用いてなることにより、次の効果を発揮する。
"Effects of the Invention" As explained above, the heat-resistant structure according to the present invention exhibits the following effects by using an iron-based brazing material.

第1に、鉄基ろう材は比較的安価であり、この耐熱構造
体はコスト面に優れてなる。
First, the iron-based brazing filler metal is relatively inexpensive, making this heat-resistant structure cost-effective.

第2に、鉄基ろう材がろう付は接合によりステンレス鋼
製の母材たる波板材、平板材側に拡散しても、両者の組
成が似かよっているので、母材の界面が異種組成化する
ようなことはない。もってこの面から、耐熱構造体の高
温環境下での使用に悪影響が発生するようなことはない
Second, even if the iron-based brazing filler metal diffuses into the corrugated plate material and flat plate material, which are the stainless steel base materials, due to brazing, the compositions of the two are similar, so the interface between the base materials will have a different composition. There's nothing to do. From this point of view, there is no adverse effect on the use of the heat-resistant structure in a high-temperature environment.

第3に、鉄基ろう材とステンレス鋼製の母材とは組成が
似かよっているので、両者の熱膨張率の差も小さい。も
ってこの耐熱構造体は繰り返し使用しても、鉄基ろう材
と母材間に亀裂が生しるようなことはない。
Thirdly, since the iron-based brazing material and the stainless steel base metal have similar compositions, the difference in their thermal expansion coefficients is small. Therefore, even if this heat-resistant structure is used repeatedly, cracks will not form between the iron-based brazing material and the base material.

第4に、鉄基ろう材は、ステンレス鋼製の母材を侵食す
るようなことはない。もってこの耐熱構造体では、母材
の肉厚が特に薄い場合でも、母材に侵食による穴があく
ようなことはない。
Fourth, iron-based brazing filler metals do not corrode stainless steel base metals. Therefore, in this heat-resistant structure, even if the base material is particularly thin, holes will not be formed in the base material due to erosion.

第5に、鉄基ろう材は、ろう付は接合時にステンレス鋼
製の母材に十分に拡散せしめることにより、その再融点
温度を母材と同程度まで引き上げることができる。そこ
でこの耐熱構造体の耐熱温度が、ろう材により特に低く
設定されてしまうようなことはない。
Fifth, by sufficiently diffusing the iron-based brazing material into the stainless steel base material during brazing and joining, the remelting point temperature of the iron-based brazing material can be raised to the same level as that of the base material. Therefore, the temperature limit of this heat-resistant structure is not set particularly low by the brazing material.

第6、鉄基ろう材にあっては、ろう付は接合後その表面
に安定した酸化被膜が生じる。もってこの耐熱構造体は
、事後の酸化の進行が阻止される。
Sixth, in the case of iron-based brazing materials, a stable oxide film is formed on the surface of the brazing material after joining. As a result, this heat-resistant structure is prevented from progressing to oxidation after the fact.

これら上述した第2.第3.第4.第5.第6の各点に
より、この耐熱構造体は、高温環境下での使用に適し特
に高温での耐久性に優れている。
These above-mentioned second. Third. 4th. Fifth. Due to the sixth point, this heat-resistant structure is suitable for use in high-temperature environments and has particularly excellent durability at high temperatures.

更に第7として、鉄基ろう材のセツティングも容易であ
り、この耐熱構造体は容易に製造される。
Furthermore, seventhly, the setting of the iron-based brazing material is easy, and this heat-resistant structure is easily manufactured.

このようにこの種従来例に存した問題点が一掃される等
、本発明の発揮する効果は顕著にして大なるものがある
In this way, the problems that existed in this type of conventional example are completely eliminated, and the effects of the present invention are remarkable and great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る耐熱構造体の実施例を示す、斜
視図である。第2図は、その他の実施例を示す、斜視図
である。 1・・・ 2・・・ 3・・・ 4・・・ 波板材 平板材 鉄基ろう材 セル 第 図 第 図
FIG. 1 is a perspective view showing an embodiment of a heat-resistant structure according to the present invention. FIG. 2 is a perspective view showing another embodiment. 1... 2... 3... 4... Corrugated plate material Flat plate material Iron-based filler metal Cell diagram Diagram

Claims (1)

【特許請求の範囲】 波形の凹凸が連続的に折曲形成されたステンレス鋼製の
波板材と、平坦なステンレス鋼製の平板材とが、鉄基ろ
う材を介し交互に接合されたハニカム構造をなすこと、 を特徴とする耐熱構造体。
[Scope of Claims] A honeycomb structure in which corrugated stainless steel plates in which corrugated irregularities are continuously bent and flat stainless steel plates are alternately joined via an iron-based brazing material. A heat-resistant structure characterized by:
JP1224273A 1989-08-04 1989-08-29 Heat resistant structural body Pending JPH0386370A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1224273A JPH0386370A (en) 1989-08-29 1989-08-29 Heat resistant structural body
DE69015605T DE69015605T2 (en) 1989-08-04 1990-07-30 HEAT RESISTANT STRUCTURE AND METHOD FOR PRODUCTION.
US07/667,383 US5316997A (en) 1989-08-04 1990-07-30 Heat resisting structure
EP90910891A EP0437626B1 (en) 1989-08-04 1990-07-30 Heat resistant structure and method of manufacture thereof
PCT/JP1990/000969 WO1991001876A1 (en) 1989-08-04 1990-07-30 Heat resistant structure and method of manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224273A JPH0386370A (en) 1989-08-29 1989-08-29 Heat resistant structural body

Publications (1)

Publication Number Publication Date
JPH0386370A true JPH0386370A (en) 1991-04-11

Family

ID=16811190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224273A Pending JPH0386370A (en) 1989-08-04 1989-08-29 Heat resistant structural body

Country Status (1)

Country Link
JP (1) JPH0386370A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316858A (en) * 1986-07-08 1988-01-23 Usui Internatl Ind Co Ltd Manufacture of honeycomb structural body made of metal
JPS6448666A (en) * 1987-08-17 1989-02-23 Showa Aircraft Ind Production of honeycomb structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316858A (en) * 1986-07-08 1988-01-23 Usui Internatl Ind Co Ltd Manufacture of honeycomb structural body made of metal
JPS6448666A (en) * 1987-08-17 1989-02-23 Showa Aircraft Ind Production of honeycomb structure

Similar Documents

Publication Publication Date Title
EP0437626B1 (en) Heat resistant structure and method of manufacture thereof
KR100426384B1 (en) Layered sheet metal with rolled-on solder and process for manufacturing a honeycombed body therefrom
US5667875A (en) Exhaust gas cleaning metallic substrate
JP2553733B2 (en) Heat resistant structure
JP2509478B2 (en) Honeycomb structure and manufacturing method thereof
US20080113209A1 (en) Metal reactor cell and manufacturing method thereof
JPH0386370A (en) Heat resistant structural body
US4767740A (en) Metallic support for exhaust gas catalysts of Otto-engines and method for making the support
JPH01218636A (en) Catalyst and its manufacturing method
IE57322B1 (en) Carrier matrix for absorption of catalytically active compounds and process for preparing matrix
JP2627668B2 (en) Heat-resistant structure and manufacturing method thereof
JPH0323309A (en) Dull finish metallic foil, its manufacture and exhaust gas catalyst support of automobile
JPH0214747A (en) Production of metallic honeycomb carrier
JP2915429B2 (en) Exhaust gas purification device
JP3208027B2 (en) Metal carrier for catalytic device
JP3037365B2 (en) Exhaust gas purification device
JPH02180644A (en) Catalyst and its preparation
JPH02261518A (en) Waste gas cleaning device
JP3269651B2 (en) Exhaust gas purification device
JP2852805B2 (en) Method for manufacturing heat-resistant structure, and heat-resistant structure
JP3274233B2 (en) Honeycomb body
JP2762144B2 (en) Method for manufacturing heat-resistant structure and heat-resistant structure
JP3347485B2 (en) Durable diffusion bonded metal carrier
JPH02265651A (en) Carrier matrix for exhaust gas purifier
JP3065641B2 (en) Heat-resistant structure and manufacturing method thereof