JPH038593B2 - - Google Patents

Info

Publication number
JPH038593B2
JPH038593B2 JP59137808A JP13780884A JPH038593B2 JP H038593 B2 JPH038593 B2 JP H038593B2 JP 59137808 A JP59137808 A JP 59137808A JP 13780884 A JP13780884 A JP 13780884A JP H038593 B2 JPH038593 B2 JP H038593B2
Authority
JP
Japan
Prior art keywords
lock
optical path
frequency
reflecting mirror
annular optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59137808A
Other languages
Japanese (ja)
Other versions
JPS6116587A (en
Inventor
Izumi Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP59137808A priority Critical patent/JPS6116587A/en
Publication of JPS6116587A publication Critical patent/JPS6116587A/en
Publication of JPH038593B2 publication Critical patent/JPH038593B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Gyroscopes (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は複数の反射鏡で形成される環状光路
に単色光を右廻り進行波と左廻り進行波として互
に逆の向きに進行させ、これら二つの進行波の周
波数差を検出して環状光路のもつ角速度を計測す
る光角速度計に関する。
Detailed Description of the Invention "Industrial Application Field" This invention causes monochromatic light to travel in opposite directions as a clockwise traveling wave and a counterclockwise traveling wave in an annular optical path formed by a plurality of reflecting mirrors. The present invention relates to an optical angular velocity meter that measures the angular velocity of an annular optical path by detecting the frequency difference between these two traveling waves.

「従来の技術」 従来のこの種の光角速度計においては、低角速
度の領域では右廻り進行波と左廻り進行波とが反
射鏡の微小な散乱源により散乱され、互に混入し
合い、両進行波とも同一の周波数となり、角速度
の計測が不可能となる。この現象はロツクイン現
象と云われている。従来よりこのロツクイン現象
を示す最高周波数(ロツクイン周波数と呼ぶ)を
低減するために種々の工夫がなされている。光角
速度計におけるロツクイン周波数を低減するには
(1)BODY−DITHER法に示されているようにバ
イアスを加えるやり方、(2)特開昭57−20818号公
報に示すように散乱波を位相変調を受けた搬送波
と側波と考え、前者をベツセル関数の根となる変
調指数になるように、また後者をロツクイン現象
を示す周波数より十分離れた周波数帯へ移行する
ように、環状光路を形成している反射鏡を振動さ
せる方法、また別の方法として特開昭53−18397
号公報に示すように反射鏡の散乱波の位相関係を
調整して合計として散乱波を小さくする方法など
がある。この発明は3の方法を用いるものであ
る。
"Prior Art" In this type of conventional optical gyrometry, in the region of low angular velocity, the clockwise traveling wave and the counterclockwise traveling wave are scattered by the minute scattering source of the reflecting mirror, and mix with each other. The frequency of both traveling waves is the same, making it impossible to measure angular velocity. This phenomenon is called the lock-in phenomenon. Conventionally, various efforts have been made to reduce the highest frequency (referred to as lock-in frequency) at which this lock-in phenomenon occurs. How to reduce lock-in frequency in optical gyrometry
(1) Adding a bias as shown in the BODY-DITHER method; (2) As shown in Japanese Patent Application Laid-Open No. 57-20818, the scattered waves are considered to be phase-modulated carrier waves and side waves; Another method is to vibrate the reflecting mirror forming the annular optical path so that the modulation index becomes the root of the Betzel function, and the latter shifts to a frequency band sufficiently distant from the frequency exhibiting the lock-in phenomenon. As a method of JP-A-18397
As shown in the above publication, there is a method of adjusting the phase relationship of scattered waves of a reflecting mirror to reduce the total amount of scattered waves. This invention uses three methods.

環状光路を形成する反射鏡は注意深く製作して
もその鏡面には微小な散乱源が残り、これによる
散乱波が進行波に混入しロツクイン現象の原因と
なつている。或る散乱源に入射する進行波とその
散乱波との間には散乱強度、位相に一定の関係が
あり、散乱源に入射する進行波と散乱波の関係を
ベクトルで表現することができる。従つて一枚の
反射鏡の鏡面上の各散乱源による各散乱波ベクト
ルは合成して1つの代表散乱波ベクトルEr→とし
て扱うことができる。Eはその鏡面に入射する進
行波、r→はその鏡面の後方散乱率である。3枚の
反射鏡で構成される環状光路については、各反射
鏡による代表散乱波ベクトルをそれぞれE1r→1
E1r→2、E1r→3とすると、例えば右廻り進行波の散
乱波はこの3つの代表散乱波ベクトルをベクトル
合成したものとなる。
Even if the reflecting mirror that forms the annular optical path is carefully manufactured, minute scattering sources remain on its mirror surface, and the scattered waves from these sources mix into the traveling wave, causing the lock-in phenomenon. There is a certain relationship in scattering intensity and phase between a traveling wave incident on a certain scattering source and its scattered wave, and the relationship between the traveling wave incident on a scattering source and the scattered wave can be expressed by a vector. Therefore, the scattered wave vectors from the respective scattering sources on the mirror surface of one reflecting mirror can be combined and treated as one representative scattered wave vector Er→. E is the traveling wave incident on the mirror surface, and r→ is the backscattering rate of the mirror surface. For an annular optical path consisting of three reflecting mirrors, the representative scattered wave vector by each reflecting mirror is E 1 r→ 1 ,
When E 1 r→ 2 and E 1 r→ 3 , for example, the scattered wave of the clockwise traveling wave is a vector combination of these three representative scattered wave vectors.

前記(3)の方法はこの観点に立つてロツクイン周
波数を低減するものであり、環状光路を形成する
3枚の鏡のうち、2枚の反射鏡を鏡の法線方向に
プツシユプルに動かして反射鏡の各代表散乱波間
の位相関係を変えて、合計としての散乱波の大き
さが最小となるようにするものである。即ち第1
図に示すように3つの反射鏡1,2,3を正三角
形の頂点に配し、これら反射鏡1,2,3により
三角形の環状光路4が構成される。反射鏡1を
1′として示すようにその法線方向において環状
光路4に対して外側に移動させるとき、反射鏡2
を2′として示すようにその法線方向において環
状光路4の内側に等しい量だけ移動させて、反射
鏡1,2,3の散乱波の大きさが最小になるよう
にする。第1図中点線4′は反射鏡1,2の移動
にもとづく環状光路4の変化を示す。この場合、
固定鏡3とプツシユプルに動かされる2つの反射
鏡1,2との間の距離が変化して、例えば反射鏡
1,3の各散乱源が進行波にそれぞれ影響を与え
る位相の差が変化し、即ち反射鏡1,3の各代表
散乱波の位相関係が変化する。しかし第1図から
わかるように反射鏡1がh1移動するとき、反射鏡
2に対し△x1移動し、このとき反射鏡2がh2=h1
移動するため反射鏡1に対しては△x2=△x1だけ
移動し、プツシユプルに動かされる2枚の反射鏡
の間の光学的距離は変化せず、従つて反射鏡1,
2の散乱波の位相関係を調整することはできな
い。この方法では真にロツクイン領域を最小とす
ることはできない。
The method (3) above is to reduce the lock-in frequency from this point of view, and among the three mirrors forming the annular optical path, two reflecting mirrors are pushed in the normal direction of the mirrors to reduce the reflection. The phase relationship between each representative scattered wave of the mirror is changed so that the total size of the scattered waves is minimized. That is, the first
As shown in the figure, three reflecting mirrors 1, 2, and 3 are arranged at the vertices of an equilateral triangle, and these reflecting mirrors 1, 2, and 3 constitute a triangular annular optical path 4. When the reflector 1 is moved outward with respect to the annular optical path 4 in its normal direction as shown as 1', the reflector 2
is moved by an equal amount inside the annular optical path 4 in its normal direction, as shown by 2', so that the magnitude of the scattered waves of the reflecting mirrors 1, 2, and 3 is minimized. A dotted line 4' in FIG. 1 shows a change in the annular optical path 4 based on the movement of the reflecting mirrors 1 and 2. in this case,
The distance between the fixed mirror 3 and the two reflective mirrors 1 and 2 that are moved by the push pull changes, and for example, the difference in phase between which each of the scattering sources of the reflective mirrors 1 and 3 affects the traveling wave changes, That is, the phase relationship between the representative scattered waves of the reflecting mirrors 1 and 3 changes. However, as can be seen from Fig. 1, when reflector 1 moves by h 1 , it moves by △x 1 relative to reflector 2, and at this time, reflector 2 moves by h 2 = h 1
Because of the movement, the reflector 1 moves by △x 2 = △x 1 , and the optical distance between the two push-pull mirrors does not change, so the reflector 1,
The phase relationship between the two scattered waves cannot be adjusted. This method cannot truly minimize the lock-in area.

「発明の目的」 この発明はこの点を改善するもので、環状光路
を構成する反射鏡による各代表散乱波の位相関係
をすべて変えることができるように構成し、真の
最小ロツクイン周波数を得ることができる光角速
度計を提供することを目的としている。
"Purpose of the Invention" The present invention is intended to improve this point, and to obtain a true minimum lock-in frequency by configuring the annular optical path so that the phase relationship of each representative scattered wave by the reflecting mirror can be changed. The purpose is to provide an optical angular velocity meter that can perform

「発明の構成」 この発明では環状光路を構成するn枚(nは3
以上の整数)の反射鏡のうち少くとも(n−1)
枚の反射鏡を、その環状光路の接線方向に移動で
きるようにされる。
“Structure of the Invention” In this invention, n pieces (n is 3
At least (n-1) of the reflecting mirrors (an integer greater than or equal to)
The mirrors are movable in the tangential direction of the annular optical path.

またロツクイン周波数の大小に応じた信号を環
状光路の光のビームから発生する手段と、上記反
射鏡の1枚を接線方向に移動させ、その時のロツ
クイン周波数の大小を表わす信号に応答してロツ
クイン周波数が最小になるようにその反射鏡の移
動量を制御する手段とが設けられる。このように
構成されているから、例えば3枚の反射鏡で環状
光路が構成されている場合に、その第1の反射鏡
を接線方向に移動させ、ロツクイン周波数が最小
になるようにその移動量を制御し、次に第2の反
射鏡を接線方向に移動させ、ロツクイン周波数が
最小になるようにその移動量を制御し、以下この
第1の反射鏡に対する制御と、第2の反射鏡に対
する制御とを交互に繰返して実用上の最小ロツク
イン周波数を得ることができる。
Further, a means for generating a signal corresponding to the magnitude of the lock-in frequency from the light beam of the annular optical path, and a means for moving one of the above-mentioned reflecting mirrors in the tangential direction, and generating a signal corresponding to the magnitude of the lock-in frequency at that time, generate a signal corresponding to the magnitude of the lock-in frequency. Means for controlling the amount of movement of the reflecting mirror is provided so that the distance is minimized. With this configuration, for example, when a circular optical path is configured with three reflecting mirrors, the first reflecting mirror is moved in the tangential direction, and the amount of movement is adjusted so that the lock-in frequency is minimized. Next, the second reflecting mirror is moved in the tangential direction, and the amount of movement is controlled so that the lock-in frequency is minimized. The practical minimum lock-in frequency can be obtained by repeating the control alternately.

以上を第2図を用いて説明する。第2図中のベ
クトル1→、2→、3→はそれぞれ第1図中の反射鏡
1,2,3の各代表散乱波E1r→1、E1r→2、E1r→3
と対応している。
The above will be explained using FIG. 2. Vectors 1→, 2→, and 3→ in FIG. 2 are representative scattered waves E 1 r→ 1 , E 1 r→ 2 , and E 1 r→ 3 of reflecting mirrors 1, 2 , and 3 in FIG. 1, respectively.
It corresponds to

いま代表数波1→、2→、3→が第2図Aに示す状態
にあり、この状態で反射鏡1を接線方向に移動さ
せてロツクイン周波数が最小になるようにする
と、代表数波1→はベクトル1′→で示す状態になり、
この状態で3つの代表散乱波の合成ベクトルα→は
最小となつている。なお従来の2枚の反射鏡を同
量プツシユプルに移動させる(光路長を一定に保
つ必要から)行為は基本的にはこれと等価で図中
のベクトル2→、3→の位相関係を変える事は出来な
い(反射鏡1,2をプツシユプルに動かした場合
はベクトル3→が回転する事になるが本質的には等
価である)。
Now, the representative number waves 1→, 2→, and 3→ are in the state shown in Fig. 2A, and in this state, if the reflector 1 is moved in the tangential direction so that the lock-in frequency is minimized, the representative number waves 1 → becomes the state shown by vector 1′→,
In this state, the composite vector α→ of the three representative scattered waves is the minimum. Note that the conventional act of moving two reflecting mirrors by the same amount (because it is necessary to keep the optical path length constant) is basically equivalent to this, and changes the phase relationship of vectors 2→ and 3→ in the figure. It is not possible (if the reflecting mirrors 1 and 2 are moved in a push-pull manner, the vector 3→ will rotate, but they are essentially equivalent).

次に反射鏡2を接線方向に移動させてベクトル
2→を回転させてロツクイン周波数が最小になるよ
うにすると、つまり最小合成ベクトルを得るとベ
クトル2→は第2図Bに示す2′→の位置となり、この
時の合成ベクトルβ→は合成ベクトルα→より大きさ
が小さい。同様にして反射鏡1を再び接線方向に
移動させてベクトル1′→を回転させて、さらに最小
合成ベクトルを得ると、この合成ベクトルγ→は第
2図Cに示すように合成ベクトルβ→よりもさらに
小さいものになる。この様な操作をくり返し実用
上の最小合成散乱波振幅を得ることが出来るので
ある。
Next, if we move the reflector 2 in the tangential direction and rotate the vector 2→ so that the lock-in frequency is minimized, that is, when we obtain the minimum combined vector, the vector 2→ will become the 2'→ shown in Figure 2B. position, and the composite vector β→ at this time is smaller in magnitude than the composite vector α→. In the same way, if the reflector 1 is moved tangentially again and the vector 1'→ is rotated to obtain the minimum resultant vector, then this resultant vector γ→ becomes smaller than the resultant vector β→ as shown in Figure 2C. becomes even smaller. By repeating such operations, it is possible to obtain the practical minimum combined scattered wave amplitude.

なお第3図に示すように反射鏡の反射面を環状
光路の接線方向(図中矢印5)に移動させる事に
より、代表散乱源6と、平面波の進行波との位相
関係を変化させる事が出来る事は容易に理解出来
る。また環状光路4が正三角形の場合、進行波の
波長λの2倍の距離だけ反射鏡を移動させる事に
より、ベクトル図で代表散乱波ベクトルを1回転
させる事が出来、この量は位相調整に十分な量で
ある。つまりロツクイン周波数を最小にするよう
に反射鏡を接線方向に移動させるが、その移動量
は2λ以下の僅かな量でよい。
As shown in Fig. 3, by moving the reflecting surface of the reflecting mirror in the tangential direction of the annular optical path (arrow 5 in the figure), the phase relationship between the representative scattering source 6 and the traveling plane wave can be changed. It is easy to understand what can be done. In addition, when the annular optical path 4 is an equilateral triangle, by moving the reflecting mirror by a distance twice the wavelength λ of the traveling wave, the representative scattered wave vector can be rotated by one rotation in the vector diagram, and this amount is determined by the phase adjustment. It's a sufficient amount. In other words, the reflecting mirror is moved in the tangential direction so as to minimize the lock-in frequency, but the amount of movement may be as small as 2λ or less.

「実施例」 第4図はこの発明による光角速度計の実施例に
おける環状光路部分を示す。この例は3枚の反射
鏡で環状光路を構成した場合である。
Embodiment FIG. 4 shows an annular optical path portion in an embodiment of the optical angular velocity meter according to the present invention. This example is a case where an annular optical path is configured with three reflecting mirrors.

結晶化ガラスブロツク11内にほぼ正三角形の
各辺を構成する通路12,13,14が形成さ
れ、これら通路12,13,14により一つの連
続した放電空間が構成される。通路12,13,
14の各交差点位置に反射鏡15,16,17が
配される。通路13,14の各中間位置に陽極1
8,19が設けられ、通路12の中間部に陰極2
1が設けられる。前記放電空間にはヘリウム、ネ
オンなどのレーザ媒質が封入され、陽極18,1
9と陰極21との間にレーザ放電が行われて、レ
ーザビームが反射鏡15,16,17,15と順
次反射されて環状光路22を進む右廻り進行波と
反射鏡15,17,16,15と順次反射され、
環状光路22を進む左廻り進行波が生じる。この
環状光路22の中心を垂直に通る軸23のまわり
の角速度が入力されると、前記互に逆の向きに回
転進行する2つの進行波の周波数に差が生じる。
例えば1つの反射鏡の一部から2つの前記進行波
の一部を取出し、これら取出された進行波をプリ
ズム又は反射鏡により互に干渉させ、その干渉縞
の移動速度及びその向きによつて入力角速度の大
きさ及びその方向が測定される。
Passages 12, 13, and 14 are formed in the crystallized glass block 11, forming each side of a substantially equilateral triangle, and these passages 12, 13, and 14 constitute one continuous discharge space. Passage 12, 13,
Reflecting mirrors 15, 16, and 17 are arranged at each intersection position of 14. An anode 1 is provided at an intermediate position between the passages 13 and 14.
8 and 19 are provided, and a cathode 2 is provided in the middle of the passage 12.
1 is provided. A laser medium such as helium or neon is sealed in the discharge space, and the anodes 18, 1
9 and the cathode 21, the laser beam is sequentially reflected by the reflecting mirrors 15, 16, 17, 15, and a clockwise traveling wave traveling along the annular optical path 22 and the reflecting mirrors 15, 17, 16, 15 and are sequentially reflected,
A counterclockwise traveling wave traveling along the annular optical path 22 is generated. When an angular velocity around an axis 23 passing perpendicularly through the center of this annular optical path 22 is input, a difference occurs in the frequencies of the two traveling waves rotating in opposite directions.
For example, parts of the two traveling waves are taken out from a part of one reflecting mirror, these taken out traveling waves are caused to interfere with each other using a prism or a reflecting mirror, and the interference fringes are inputted based on the moving speed and direction of the interference fringes. The magnitude of the angular velocity and its direction are measured.

この実施例では、2つの反射鏡15,16は平
面鏡、他の1つの反射鏡17は環状光路長と比較
して十分長い曲率半径の凹面鏡とした場合であ
る。従来における場合と同様にレーザの発振波長
λを一定に制御するために、1つの反射鏡15は
圧電形駆動器24の可動部に取付けられる。圧電
形駆動器24は制御回路により駆動制御されて、
反射鏡15はその法線方向、つまり入力軸23に
対し半径方向に往復移動させられることができ
る。この往復移動によりレーザ媒値のドツプラセ
ンタに発振波長が来るように制御される。
In this embodiment, the two reflecting mirrors 15 and 16 are plane mirrors, and the other reflecting mirror 17 is a concave mirror with a radius of curvature sufficiently long compared to the annular optical path length. One reflecting mirror 15 is attached to the movable part of the piezoelectric driver 24 in order to control the laser oscillation wavelength λ to be constant as in the conventional case. The piezoelectric driver 24 is driven and controlled by a control circuit,
The reflector 15 can be reciprocated in its normal direction, that is, in the radial direction with respect to the input shaft 23. By this reciprocating movement, the oscillation wavelength is controlled so as to be at the dots-place center of the laser medium value.

平面の反射鏡15,16はともに環状光路22
の接線方向に移動させることができるようにされ
る。このため例えば水晶のYカツト板などの厚み
すべり現象を利用した圧電体駆動部25,26上
に反射鏡15,16がそれぞれ設けられていて、
環状光路22に対し接線方向に移動可能とされて
いる。これら3つの駆動部24,25,26はそ
れぞれリード線27,28,29を通して図には
示してない制御回路に接続されている。
Both plane reflecting mirrors 15 and 16 form an annular optical path 22.
can be moved in the tangential direction. For this purpose, reflecting mirrors 15 and 16 are provided on piezoelectric actuators 25 and 26, respectively, which utilize the thickness sliding phenomenon of, for example, Y-cut crystal plates.
It is movable in the tangential direction with respect to the annular optical path 22. These three drive units 24, 25, and 26 are connected to a control circuit (not shown) through lead wires 27, 28, and 29, respectively.

第5図はこの発明の光角速度計における上記各
駆動部を制御して散乱波を最小にするための制御
系の例を示す。
FIG. 5 shows an example of a control system for controlling each of the above-mentioned driving sections in the optical angular velocity meter of the present invention to minimize scattered waves.

反射鏡15を法線方向に動かす駆動部24は光
路長制御器30の出力側に接続され、反射鏡1
5,16をそれぞれ接線方向に動かす駆動部2
5,26はそれぞれサーボ増幅器31,32の出
力側に接続され、光路長制御器30と各サーボ増
幅器31,32とにはそれぞれ発振器33,3
4,35から互に異なる周波数の小振幅の信号が
供給される。
A driving unit 24 that moves the reflecting mirror 15 in the normal direction is connected to the output side of the optical path length controller 30, and the driving unit 24 moves the reflecting mirror 15 in the normal direction.
Drive unit 2 that moves 5 and 16 in the tangential direction, respectively.
5 and 26 are connected to the output sides of servo amplifiers 31 and 32, respectively, and oscillators 33 and 3 are connected to the optical path length controller 30 and each servo amplifier 31 and 32, respectively.
4 and 35 supply small amplitude signals of mutually different frequencies.

一方反射鏡17からは右廻り進行波又は左廻り
進行波のいずれか一方が取り出され受光素子36
に入射され、電気信号に変換される。この電気信
号は増幅器37で増幅され、第1、第2、第3復
調器38,39,40に分配される。各復調器3
8,39,40はそれぞれ前記発振器33,3
4,35の各出力が供給されてその入力信号を同
期検波し、第1復調器38の復調信号は光路長制
御器30へ、第2、第3復調器39,40の復調
信号はロツクイン指示制御出力器41へそれぞれ
入力される。ロツクイン指示制御出力器41から
は反射鏡の接線方向駆動部のサーボ増幅器31,
32へ制御信号を入力する。
On the other hand, either a clockwise traveling wave or a counterclockwise traveling wave is taken out from the reflecting mirror 17 and sent to the light receiving element 36.
and is converted into an electrical signal. This electrical signal is amplified by an amplifier 37 and distributed to first, second, and third demodulators 38, 39, and 40. Each demodulator 3
8, 39, 40 are the oscillators 33, 3, respectively.
4 and 35 are supplied and their input signals are synchronously detected, the demodulated signal of the first demodulator 38 is sent to the optical path length controller 30, and the demodulated signals of the second and third demodulators 39, 40 are sent to the lock-in instruction. Each is input to the control output device 41. From the lock-in instruction control output device 41, the servo amplifier 31 of the tangential drive section of the reflecting mirror,
A control signal is input to 32.

この制御系において、光路長制御器30は直流
制御信号に発振器33からの信号を重畳してた信
号で圧電形駆動器24を駆動し、第1反射鏡15
をその法線方向に移動させて環状光路22の光路
長が変化させられる。この時復調器38の復調出
力からレーザ発振状態を検出し、その検出より制
御器30を制御して制御器30から出力される直
流制御信号の大きさ及び極性を制御して最適発振
状態になるように光路長を制御する。
In this control system, the optical path length controller 30 drives the piezoelectric driver 24 with a signal obtained by superimposing the signal from the oscillator 33 on the DC control signal, and
The optical path length of the annular optical path 22 is changed by moving the annular optical path 22 in its normal direction. At this time, the laser oscillation state is detected from the demodulated output of the demodulator 38, and based on the detection, the controller 30 is controlled to control the magnitude and polarity of the DC control signal output from the controller 30, thereby achieving the optimum oscillation state. The optical path length is controlled as follows.

一方、図には示されていないがリングレーザ部
は外部装置により揺動されていて、その中心軸の
まわりの角速度はこの揺動につれロツクイン帯域
を通過することを繰返している。このようにロツ
クイン帯域を通過する時にとり出されたレーザ光
の強度が変化する。この変化はウインキング現象
と呼ばれている。ウインキング現象の大きさは特
開昭53−18397号公報に示されているようにロツ
クイン周波数の高さに対応している。
On the other hand, although not shown in the figure, the ring laser section is oscillated by an external device, and the angular velocity around its central axis repeatedly passes through the lock-in band as it oscillates. In this way, the intensity of the extracted laser light changes when passing through the lock-in band. This change is called the winking phenomenon. The magnitude of the winking phenomenon corresponds to the height of the lock-in frequency, as shown in Japanese Patent Laid-Open No. 18397/1983.

ロツクイン指示制御出力器41から直流制御信
号をサーボ増幅器31に供給し、この直流制御信
号に発振器34の微弱な交流信号を重畳して駆動
部25へ供給され、反射鏡15が接線方向にその
直流制御信号の大きさ及び極性に応じて移動す
る。この時の復調器39の復調出力はその時のレ
ーザ光の強度に対応し、つまりロツクイン周波数
の大小に対応している。この復調出力に応じてロ
ツクイン指示制御出力器41はサーボ増幅器31
に対する直流制御信号を、復調器39の復調出力
(ロツクイン周波数)が小さくなるように制御す
る。この帰還制御によりロツクイン周波数が最小
となつた所で反射鏡15の移動が停止される。
A DC control signal is supplied from the lock-in instruction control output device 41 to the servo amplifier 31, a weak AC signal from the oscillator 34 is superimposed on this DC control signal, and the signal is supplied to the drive unit 25. It moves according to the magnitude and polarity of the control signal. The demodulated output of the demodulator 39 at this time corresponds to the intensity of the laser beam at that time, that is, it corresponds to the magnitude of the lock-in frequency. In response to this demodulated output, the lock-in instruction control output device 41 outputs the servo amplifier 31.
The DC control signal for the demodulator 39 is controlled so that the demodulated output (lock-in frequency) of the demodulator 39 becomes small. Through this feedback control, the movement of the reflecting mirror 15 is stopped when the lock-in frequency becomes the minimum.

次にロツクイン指示制御出力器41からの直流
制御信号をサーボ増幅器32に供給し、かつこの
直流制御信号に発振器35の微弱な交流信号を重
畳して駆動部26へ供給する。よつて反射鏡16
が接線方向へ移動する。この時の復調器40の復
調出力はその時のレーザ光の強度と対応し、従つ
てロツクイン周波数の大小と対応している。この
復調出力に応じてロツクイン指示制御出力器41
はサーボ増幅器32に対する直流制御信号を、復
調器40の復調出力(ロツクイン周波数)が小さ
くなるように制御する。この結果ロツクイン周波
数が最小となつた所で反射鏡16の移動が停止す
る。以下駆動部25,26に対する前述した駆動
制御を交互に繰返し、実用上の最小ロツクイン周
波数を得るまで行う。
Next, the DC control signal from the lock-in instruction control output device 41 is supplied to the servo amplifier 32, and the DC control signal is superimposed with a weak AC signal from the oscillator 35 and supplied to the drive section 26. Reflector 16
moves in the tangential direction. The demodulated output of the demodulator 40 at this time corresponds to the intensity of the laser beam at that time, and therefore corresponds to the magnitude of the lock-in frequency. Lock-in instruction control output device 41 according to this demodulated output
controls the DC control signal to the servo amplifier 32 so that the demodulated output (lock-in frequency) of the demodulator 40 becomes small. As a result, the movement of the reflecting mirror 16 is stopped at the point where the lock-in frequency becomes the minimum. Thereafter, the above-described drive control for the drive units 25 and 26 is repeated alternately until a practical minimum lock-in frequency is obtained.

なお反射鏡15,16,17の後方散乱率が等
しい(|r1|=|r2|=|r3|)場合には、反射
鏡15を接線方向に移動させてロツクイン周波数
が最小となるようにした後、反射鏡15と16と
を同時に移動させ、かつ反射鏡15の移動量に対
し、反射鏡16の移動量を2倍にし行つてロツク
イン周波数が最小となるようにしてもよい。また
反射鏡の各後方散乱量が解つている場合は反射鏡
をどのように接線方向に移動させればよいかプロ
グラムにより実行させることができる。
Note that when the backscattering rates of the reflectors 15, 16, and 17 are equal (|r 1 |=|r 2 |=|r 3 |), the lock-in frequency is minimized by moving the reflector 15 in the tangential direction. After this, the lock-in frequency may be minimized by simultaneously moving the reflecting mirrors 15 and 16 and by doubling the moving amount of the reflecting mirror 16 with respect to the moving amount of the reflecting mirror 15. Furthermore, when the amount of backscattering of each reflecting mirror is known, it is possible to execute a program to determine how to move the reflecting mirror in the tangential direction.

「発明の効果」 以上説明してきたように困難な反射鏡の鏡面品
位の向上に努める必要はなく、現状の品位の反射
鏡を用い、特に複雑な構成を用いることなく簡単
な構成でロツクイン周波数を著しく低下させるこ
とが可能となる。これにともない、ロツクイン周
波数と比例するランダムドリフト誤差が低下し、
又同じくロツクイン周波数の大きさに関係するス
ケールフアクタのリニアリテイの向上にも役立
ち、光角速度計の性能の改善に大きな効果があ
る。
"Effects of the Invention" As explained above, there is no need to make efforts to improve the mirror surface quality of the reflecting mirror, which is difficult to do, and the lock-in frequency can be achieved using a simple structure without using a particularly complicated structure by using a reflecting mirror of the current quality. It is possible to significantly reduce the Along with this, the random drift error proportional to the lock-in frequency decreases,
It also helps to improve the linearity of the scale factor, which is also related to the magnitude of the lock-in frequency, and has a great effect on improving the performance of the optical gyrometer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3枚の反射鏡により形成される環状光
路を示す図、第2図は各反射鏡の代表散乱波の位
相関係を示す図、第3図は斜から入射する進行波
に対し、反射鏡を接線方向に動かした場合の散乱
源の位相位置の変化を示す図、第4図はこの発明
の実施例における環状光路部を示す図、第5図は
この発明の実施例における制御系の例を示すブロ
ツク図である。 11:結晶化ガラス、12,13,14:進行
波の通路、15,16:平面反射鏡、17:凹面
反射鏡、18,19:陽極、21:陰極、22:
環状光路、23:環状光路の回転中心、24:法
線方向駆動部、25,26:接線方向駆動部、2
7,28,29:駆動部からのリード線、30:
光路長制御器、31,32:サーボ増幅器、3
3,34,35:発振器、36:光検出器、3
7:増幅器、38,39,40:復調器、41:
ロツクイン制御指示出力器。
Fig. 1 is a diagram showing the annular optical path formed by three reflecting mirrors, Fig. 2 is a diagram showing the phase relationship of representative scattered waves of each reflecting mirror, and Fig. 3 is a diagram showing the phase relationship of representative scattered waves of each reflecting mirror. A diagram showing the change in the phase position of the scattering source when the reflecting mirror is moved in the tangential direction, FIG. 4 is a diagram showing the annular optical path section in the embodiment of this invention, and FIG. 5 is a diagram showing the control system in the embodiment of this invention. FIG. 11: Crystallized glass, 12, 13, 14: Traveling wave path, 15, 16: Planar reflecting mirror, 17: Concave reflecting mirror, 18, 19: Anode, 21: Cathode, 22:
Annular optical path, 23: rotation center of annular optical path, 24: normal direction drive section, 25, 26: tangential direction drive section, 2
7, 28, 29: Lead wire from the drive unit, 30:
Optical path length controller, 31, 32: Servo amplifier, 3
3, 34, 35: Oscillator, 36: Photodetector, 3
7: Amplifier, 38, 39, 40: Demodulator, 41:
Lock-in control instruction output device.

Claims (1)

【特許請求の範囲】[Claims] 1 n枚(nは3以上の整数)の反射鏡により環
状光路を形成し、その環状光路を互に逆の向きに
ほぼ単色光の2つの光ビームを回転進行させ、こ
れら2つの光ビーム間の周波数差を検出して、上
記環状光路の軸心を中心とする角速度を決定する
光角速度計において、これら光ビームのロツクイ
ン周波数の大小に応じた信号を発生する手段と、
上記反射鏡中の少くとも(n−1)枚を上記環状
光路の接線方向に各別に移動させる手段と、上記
反射鏡中の1枚を上記接線方向に移動させ、その
時の上記ロツクイン周波数の大小を表わす信号に
応答してロツクイン周波数が最小にする様にその
反射鏡の移動量を制御する手段とを有する光角速
度計。
1 An annular optical path is formed by n reflecting mirrors (n is an integer of 3 or more), and two almost monochromatic light beams are rotated through the annular optical path in opposite directions, and there is a gap between these two optical beams. In an optical angular velocity meter that detects the frequency difference between the two optical beams and determines the angular velocity about the axis of the annular optical path, means for generating a signal corresponding to the magnitude of the lock-in frequency of the optical beam;
means for individually moving at least (n-1) of the reflecting mirrors in the tangential direction of the annular optical path; and moving one of the reflecting mirrors in the tangential direction, and adjusting the magnitude of the lock-in frequency at that time. means for controlling the amount of movement of the reflector so as to minimize the lock-in frequency in response to a signal representing the optical angular velocity.
JP59137808A 1984-07-02 1984-07-02 Optical angular velocity meter Granted JPS6116587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59137808A JPS6116587A (en) 1984-07-02 1984-07-02 Optical angular velocity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59137808A JPS6116587A (en) 1984-07-02 1984-07-02 Optical angular velocity meter

Publications (2)

Publication Number Publication Date
JPS6116587A JPS6116587A (en) 1986-01-24
JPH038593B2 true JPH038593B2 (en) 1991-02-06

Family

ID=15207329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59137808A Granted JPS6116587A (en) 1984-07-02 1984-07-02 Optical angular velocity meter

Country Status (1)

Country Link
JP (1) JPS6116587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448927B1 (en) * 2013-12-19 2014-10-13 박병기 Hexagonal water manufacturing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533014A (en) * 1968-06-04 1970-10-06 Massachusetts Inst Technology Gas ring laser using oscillating radiation scattering sources within the laser cavity
JPS5318397A (en) * 1976-08-02 1978-02-20 Honeywell Inc Apparatus for controling angle rate sensor using laser
JPS543492A (en) * 1977-06-09 1979-01-11 Nec Corp Laser gyro
JPS5674978A (en) * 1979-11-05 1981-06-20 Litton Systems Inc Ring laser
JPS5738194A (en) * 1980-08-20 1982-03-02 Oji Paper Co Ltd Master plate for lithography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533014A (en) * 1968-06-04 1970-10-06 Massachusetts Inst Technology Gas ring laser using oscillating radiation scattering sources within the laser cavity
JPS5318397A (en) * 1976-08-02 1978-02-20 Honeywell Inc Apparatus for controling angle rate sensor using laser
JPS543492A (en) * 1977-06-09 1979-01-11 Nec Corp Laser gyro
JPS5674978A (en) * 1979-11-05 1981-06-20 Litton Systems Inc Ring laser
JPS5738194A (en) * 1980-08-20 1982-03-02 Oji Paper Co Ltd Master plate for lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448927B1 (en) * 2013-12-19 2014-10-13 박병기 Hexagonal water manufacturing apparatus

Also Published As

Publication number Publication date
JPS6116587A (en) 1986-01-24

Similar Documents

Publication Publication Date Title
US4152071A (en) Control apparatus
JPS61222288A (en) Angular velocity sensor
JPH0332076A (en) Dither driving system for ring laser gyroscope
US4410276A (en) Ring laser gyroscope with doppler mirrors
US4473297A (en) Ring laser gyroscope utilizing phase detector for minimizing beam lock-in
US4281930A (en) Laser gyro with phased dithered mirrors
CA1168337A (en) Ring laser gyroscope with doppler mirrors and offset actuators
JPH038382A (en) Ring resonator gyro
CA1085031A (en) Laser gyro with phased dithered mirrors
US4352562A (en) Passive ring laser rate of turn device with acousto-optic modulation
JPS5933994B2 (en) Methods for reducing backscatter in ring lasers and vibrating ring lasers
US3533014A (en) Gas ring laser using oscillating radiation scattering sources within the laser cavity
US4686683A (en) Laser angular rate sensor with dithered mirrors
JPH056358B2 (en)
US4582429A (en) Readout for a ring laser
GB2143367A (en) Laser gyro with dithered mirrors
JP2001066142A (en) Resonance-type optical gyro
CA1123084A (en) Ring-type laser rate gyro
JPH038593B2 (en)
US4592656A (en) Ring laser angular rate sensor with modulated scattered waves
US6441907B1 (en) High accuracy ring laser interferometer using an external cavity ring laser
JPS6061614A (en) Device for measuring difference of natural resonance frequency of optical resonator
EP0171428A1 (en) Ring laser gyro tilt mirror dither
CA1252551A (en) Laser angular rate sensor with dithered mirrors
JPH038592B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees