JPH0385498A - Neutron shielding material - Google Patents

Neutron shielding material

Info

Publication number
JPH0385498A
JPH0385498A JP22406989A JP22406989A JPH0385498A JP H0385498 A JPH0385498 A JP H0385498A JP 22406989 A JP22406989 A JP 22406989A JP 22406989 A JP22406989 A JP 22406989A JP H0385498 A JPH0385498 A JP H0385498A
Authority
JP
Japan
Prior art keywords
weight
neutron shielding
parts
density
shielding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22406989A
Other languages
Japanese (ja)
Inventor
Haruhisa Katase
片瀬 晴久
Takashi Furukawa
古川 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP22406989A priority Critical patent/JPH0385498A/en
Publication of JPH0385498A publication Critical patent/JPH0385498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To enable filling and plastering a neutron shielding material to a complicatedly shaped object to be shielded, by obtaining a plastic shielding material of high neutron shielding ability, which is a kneaded body with 100 parts weight of a polyisobutylene and 1 to 50 parts by weight of an inorganic boronic compound. CONSTITUTION:100 parts by weight of a polyisobutylene of which an gaverage molecular weight as a clay is around 24,000 to 80,000, for instance, and of which density is more than 0.920g/ml, and 1 to 50 parts by weight of an inorganic boronic compound powder are heated up to around 70 to 150 deg.C and kneaded together. In this occasion, the kneading work is preferably performed in a depressurized atmosphere of lower than 200mgHg, for uniform density and constitution are hard to be kept by kneading work under an ambient pressure. A neutron shielding material obtained by this way, has high neutron shielding ability and plasticity under room temperature, easily fluidizes when heated, can be easily filled or plastered to a complicatedly shaped object to be shielded, and has very good processability. Moreover, the material does not easily flow out of its receptacle even when the receptable opens, is comparatively safe against a fire and can be very freely mixed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は中性子遮蔽材に関する。詳しくは、中性子の遮
蔽性に優れ、しかも常温で可塑性を持ち、加熱により容
易に流動化し、複雑な形状を有する被遮蔽物に対する施
工の容易な中性子遮蔽材に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a neutron shielding material. Specifically, the present invention relates to a neutron shielding material that has excellent neutron shielding properties, is plastic at room temperature, easily fluidizes when heated, and can be easily applied to shielded objects having complex shapes.

(従来の技術) 原子力施設や放射性物質の取扱に於いては、人体保護や
測定の妨害になる放射線を減少させるなどのために、放
射線の遮蔽が重要な課題となっている。特に遮蔽が問題
となる放射線は、透過力の大きいγ線と中性子である。
(Prior Art) Radiation shielding is an important issue in nuclear facilities and in the handling of radioactive materials in order to protect the human body and reduce radiation that may interfere with measurements. The radiation that poses a particular problem of shielding are gamma rays and neutrons, which have large penetrating power.

前者に対しては鉛などの原子番号の大きい元素が有効で
ある等、両者では遮蔽対策が異なり、本発明は後者の遮
蔽を目的としている。
For the former, elements with large atomic numbers such as lead are effective, and the shielding measures are different between the two, and the present invention is aimed at shielding the latter.

高速中性子に対しては、水素原子の遮蔽効果が大きいた
め、遮蔽材料として、水や水素を比較的多く含む炭化水
素化合物が知られている。また、低速または熱中性子に
対して、ホウ素原子が優れていることも公知であり、こ
のため従来から、中性子遮蔽材として水素原子密度の高
いポリエチレンや、その他のプラスチックがホウ素また
はホウ素化合物と混合または併用で使用されている。
Since hydrogen atoms have a large shielding effect against fast neutrons, hydrocarbon compounds containing relatively large amounts of water and hydrogen are known as shielding materials. It is also known that boron atoms are excellent against slow or thermal neutrons, and for this reason, polyethylene with a high hydrogen atom density and other plastics have traditionally been used as neutron shielding materials by mixing or mixing boron or boron compounds. Used in combination.

例えば、特開昭58−133349号公報は、ポリエチ
レンに無機ホウ素化合物、および放射線感知性能を与え
るために硫化亜鉛蛍光体を配合した組成物を開示してい
る。この組成物は、高密度ポリエチレンに無機ホウ素化
合物を配合しており、中性子遮断性には優れているが、
ポリエチレン自体が常温で固体であり、溶融時の粘度も
極めて高いため、板状またはブロック状で使用すること
はできても、複雑な形状をした場所に充填使用すること
がが困難である欠点を持つ。特開昭56−131849
号公報は塩素化ポリエチレンと無機ホウ素化合物を配合
することを開示しているがこれも同様の欠点を持つ。特
開昭58−28298号公報は流動パラフィンとホウ素
および/または無機ホウ素化合物を配合することを開示
している。これは本発明が対象とする複雑な形状の被遮
蔽物に対しても容易に施工できる特徴を持っている。し
かし、流動パラフィンは炭素数が10〜50と比較的低
分子のパラフィンであるため加熱時には引火の危険性が
ある。しかも流動パラフィンの密度は一般に0.86〜
0.88g/mjとポリエチレン(密度0.92g/m
l)に比べて低く、水素原子密度が第1表に示すごとく
ポリエチレンと比べて小さく、その分高速中性子に対す
る遮蔽性が劣り不利である。さらに、流動パラフィンの
粘度が常温で10〜100センチポアズ(c、p、)と
低いため、高価なホウ素および/または無機ホウ素化合
物を大量に(流動パラフィン100部に対して120部
以上)配合しないと貼付時に一定形状を保つことが難し
い等の欠点がある。特公昭59−42280号公報(特
開昭53−105700号公報)はポリエチレン、低分
子量ポリエチレン、ポリブテン、および流動パラフィン
とホウ素等の放射線遮蔽物質を配合した可塑性の遮蔽材
を開示している。ここで用いるポリブテンは分子量50
0〜2,500であり、この範囲のポリブテンの密度は
一般に0.86〜0.90g/mjとポリエチレンより
小さく、第1表に見られるように、水素原子密度がポリ
エチレンに比べ小さくなり、流動パラフィン同様、高速
中性子遮蔽性の点で不利である。のみならずこの遮蔽材
は低分子量の流動パラフィンも含むため、火災に対する
危険性もあり、しかも粘度が大幅に異なる多数の成分を
配合することになり、配合に特別な技術を要し、費用も
かかる。最後に、よく知られている水は水素密度が高く
、火災に対する危険性もなく、優れた中性子遮蔽材では
あるが流動性が大きすぎるため容器に孔が開いた場合流
出してしまう危険性がある。
For example, JP-A-58-133349 discloses a composition in which polyethylene is blended with an inorganic boron compound and a zinc sulfide phosphor to provide radiation sensing performance. This composition contains an inorganic boron compound in high-density polyethylene, and has excellent neutron blocking properties.
Polyethylene itself is solid at room temperature and has an extremely high viscosity when melted, so although it can be used in plate or block form, it has the disadvantage that it is difficult to fill it into places with complex shapes. have Japanese Patent Publication No. 56-131849
The publication discloses blending chlorinated polyethylene with an inorganic boron compound, but this also has similar drawbacks. JP-A-58-28298 discloses blending liquid paraffin with boron and/or an inorganic boron compound. This has the feature that it can be easily applied even to objects with complicated shapes, which is the object of the present invention. However, since liquid paraffin is a relatively low-molecular paraffin with a carbon number of 10 to 50, there is a risk of ignition when heated. Moreover, the density of liquid paraffin is generally 0.86~
0.88g/mj and polyethylene (density 0.92g/m
As shown in Table 1, the hydrogen atom density is lower than that of polyethylene, and its shielding properties against fast neutrons are accordingly inferior. Furthermore, since the viscosity of liquid paraffin is as low as 10 to 100 centipoise (c, p,) at room temperature, it is necessary to incorporate large amounts of expensive boron and/or inorganic boron compounds (120 parts or more per 100 parts of liquid paraffin). It has drawbacks such as difficulty in maintaining a constant shape when pasted. Japanese Patent Publication No. 59-42280 (Japanese Patent Publication No. 53-105700) discloses a plastic shielding material containing polyethylene, low molecular weight polyethylene, polybutene, liquid paraffin, and a radiation shielding substance such as boron. The polybutene used here has a molecular weight of 50
0 to 2,500, and the density of polybutene in this range is generally 0.86 to 0.90 g/mj, which is lower than polyethylene.As seen in Table 1, the hydrogen atom density is lower than that of polyethylene, making it difficult to flow. Like paraffin, it is disadvantageous in terms of fast neutron shielding properties. Not only that, this shielding material also contains low molecular weight liquid paraffin, which poses a fire risk.Furthermore, it requires special technology and is expensive as it requires a large number of components with significantly different viscosities. It takes. Finally, the well-known water has a high hydrogen density, poses no fire hazard, and is an excellent neutron shield, but it is too fluid and can leak if the container is punctured. be.

これまで説明したように、ポリエチレンは水素原子密度
が高く優れた中性子遮断性を有するが、固体であるため
、これとホウ素化合物を配合した遮蔽材は複雑な形状を
した被蔽遮蔽物への施工、特に現場施工が困難である。
As explained above, polyethylene has a high hydrogen atom density and has excellent neutron blocking properties, but since it is a solid, shielding materials containing polyethylene and boron compounds cannot be used in the construction of shielding objects with complex shapes. , especially difficult to construct on-site.

また、ポリブテンわよび流動パラフィンは水素原子密度
が小さく、遮蔽性の面で不利であると共に比較的低分子
量の炭化水素を含むために火災に対する危険性も高く、
しかも流動性が高いため可塑性を維持するための配合割
合に制限を受ける。また、水は流動性が高すぎ漏洩の危
険がある。
In addition, polybutene and liquid paraffin have a low hydrogen atom density, which is disadvantageous in terms of shielding properties, and because they contain relatively low molecular weight hydrocarbons, there is a high risk of fire.
Moreover, since it has high fluidity, there are restrictions on the blending ratio to maintain plasticity. In addition, water has a high fluidity and there is a risk of leakage.

(発明が解決しようとする課題) 以上の状況に鑑み、本発明は中性子遮蔽性に優れ、常温
で可塑性を有し、加熱により容易に流動化し、複雑な形
状をした被遮蔽物にも容易に充填または貼付可能な優れ
た施工性を有し、しかも容器の開孔時にも容易に流出す
ることなく、火災に対しても比較的安全であり、その上
配合が極めて容易な中性子遮蔽材を提供することを目的
とする。
(Problems to be Solved by the Invention) In view of the above circumstances, the present invention has excellent neutron shielding properties, has plasticity at room temperature, is easily fluidized by heating, and can be easily applied to shielded objects with complex shapes. Provides a neutron shielding material that has excellent workability that can be filled or pasted, does not easily leak out even when a container is opened, is relatively safe against fire, and is extremely easy to formulate. The purpose is to

(課題を解決するための手段) 本発明者らは上記課題を解決すべく鋭意研究した結果、
粘度平均分子量が20.000〜go、oooの範囲に
あり、かつ密度が0.920g/mj以上であるポリイ
ソブチレン100重量部と粉末状の無機ホウ素化合物1
〜60重量部とを配合した組成物が中性子遮蔽性に優れ
、常温にて可塑性を持ち、加熱により容易に流動化し、
複雑な形状をした被遮蔽物にも容易に充填あるいは貼付
可能な施工性を有し、しかも容器の開孔時にも容易に流
出することのない粘性を持ち、火災に対しても比較安全
であることを見いだし、組成物の容易な配合方法を確立
して本発明を完成するに至った。
(Means for solving the problem) As a result of the inventors' intensive research to solve the above problem,
100 parts by weight of polyisobutylene having a viscosity average molecular weight in the range of 20.000 to go, ooo and a density of 0.920 g/mj or more and powdered inorganic boron compound 1
A composition containing ~60 parts by weight has excellent neutron shielding properties, has plasticity at room temperature, and is easily fluidized by heating.
It has workability that allows it to be easily filled or attached to shielded objects with complex shapes, and has a viscosity that prevents it from easily flowing out even when the container is opened, making it relatively safe against fire. They discovered this, established an easy method for blending the composition, and completed the present invention.

ここで言うポリイソブチレンはインブチレンのカチオン
型触媒による重合物を指し、粘度平均分子量はフローリ
ー法によって測定された値を指す。粘度平均分子量は2
0,000〜so、o。
The polyisobutylene referred to herein refers to a polymerized product of inbutylene using a cationic catalyst, and the viscosity average molecular weight refers to a value measured by the Flory method. The viscosity average molecular weight is 2
0,000~so,o.

O1好まt、<!tao、ooo−80,000の範囲
にあるものが好ましい。20,000よりも低いものは
流動性が高く、充填あるいは貼付後の形態保持性に劣り
、go、oooより高いものは無機ホウ素化合物を配合
したとき柔軟性に劣り、複雑な形状の被遮蔽物に対する
施工が困難になる。
O1 likes t, <! Those in the range of tao, ooo-80,000 are preferred. If it is lower than 20,000, it has high fluidity and poor shape retention after filling or pasting, and if it is higher than go or ooo, it has poor flexibility when an inorganic boron compound is blended, and it is difficult to cover complex-shaped objects. construction becomes difficult.

また、密度が0.920g/mJより小さいとポリエチ
レンに比べて中性子遮蔽性が劣る。
Further, if the density is less than 0.920 g/mJ, the neutron shielding property is inferior to that of polyethylene.

本発明に用いる粘度平均分子量が20,000〜go、
oooで、かつ密度が0.920g/m1以上のポリイ
ソブチレンは塩化アルミニウム等のルイス酸を触媒とし
、触媒に対し不活性の炭化水素溶媒中、液相で0℃以下
の温度条件下で約1時間重合して得られる。あるいはま
た容易に入手できるものとして、例えば「テトラックス
5T」あるいは「テトラックス6T」 (商品名)(日
本石油化学−社製、粘度平均分子量それぞれ50.00
0.およびso、ooo1密度は何れも0.923g/
mj)等が使用できる。
The viscosity average molecular weight used in the present invention is 20,000 to go,
Polyisobutylene with a density of 0.920 g/m1 or more is catalyzed by a Lewis acid such as aluminum chloride, and in a liquid phase at a temperature of 0° C. or less in a hydrocarbon solvent inert to the catalyst, about 1 Obtained by time polymerization. Alternatively, easily available products such as "Tetrax 5T" or "Tetrax 6T" (trade name) (manufactured by Nippon Petrochemical Co., Ltd., each with a viscosity average molecular weight of 50.00
0. and so, ooo1 density is 0.923g/
mj) etc. can be used.

無機ホウ素化合物はホウ素含有量の高い無機化合物であ
ればよく、例えば無水ホウ酸(二酸化ホウ素)、炭化ホ
ウ素、窒化ホウ素、正ホウ酸、メタホウ酸、四ホウ酸、
あるいはホウ素含有鉱石等が使える。無機ホウ素化合物
はいずれも粉末で配合する。粉末の粒度は特に限定され
ないが、組成物に均質に含有させるためには、その粒度
が小さいほど好ましく、例えば、粒径3〜200ミクロ
ンのものが好ましい。これらの配合量は、ポリイソブチ
レン100重量部に対して1〜50重量部、好ましくは
10〜30重量部である。配合が1重量部より少ないと
低速および熱中性子に対する遮蔽性に劣り、50重量部
を越えると柔軟性に劣り、加熱時の流動性に欠け、複雑
な形状の被遮蔽物に対する施工が容易でなくなる。
The inorganic boron compound may be any inorganic compound with a high boron content, such as boric anhydride (boron dioxide), boron carbide, boron nitride, orthoboric acid, metaboric acid, tetraboric acid,
Alternatively, boron-containing ores can be used. All inorganic boron compounds are blended in powder form. The particle size of the powder is not particularly limited, but in order to homogeneously contain it in the composition, the smaller the particle size, the more preferable it is, for example, a particle size of 3 to 200 microns is preferable. The blending amount of these components is 1 to 50 parts by weight, preferably 10 to 30 parts by weight, based on 100 parts by weight of polyisobutylene. If the amount is less than 1 part by weight, the shielding properties against low-velocity and thermal neutrons will be poor, and if it exceeds 50 parts by weight, the flexibility will be poor and the fluidity during heating will be poor, making it difficult to apply shielding to complex-shaped objects. .

中性子遮蔽性は一般に水素原子、あるいはホウ素原子の
密度に比例し、その化合物の構造には影響されない特徴
がある。水素原子は高速および中速の中性子に対する遮
蔽性に優れ、後者のホウ素原子は水素により減速された
低速および熱中性子を吸収する役割をなすため、混合使
用が必要であるが、混合物の中性子遮蔽性を高めるため
には各構成成分中のそれぞれの原子密度を極力高くする
ことが好ましい。本発明の構成成分である粘度平均分子
量が20.000〜so、oooで、かつ、密度が0.
920g/ml以上のポリイソブチレンは第1表に示し
たごとく、その水素原子密度が7,9X1022個/c
m3と高く、通常のポリエチレンの7.9X1022個
/cm’、高密度ポリエチレンの8.2X10”個/c
m3とほぼ同等の水素原子密度を有しており、このため
、中性子遮蔽性もポリエチレン同様に優れている。しか
も、ポリエチレンが固体であるのに対して常温で半固体
状であり、加熱により流動化できる特徴を有する。
Neutron shielding properties are generally proportional to the density of hydrogen atoms or boron atoms, and are not affected by the structure of the compound. Hydrogen atoms have excellent shielding properties against fast and medium-speed neutrons, and the latter boron atoms play the role of absorbing slow and thermal neutrons slowed by hydrogen, so it is necessary to use them in combination, but the neutron shielding properties of the mixture are In order to increase this, it is preferable to increase the atomic density of each constituent component as much as possible. The constituent components of the present invention have a viscosity average molecular weight of 20.000 to so, ooo, and a density of 0.
As shown in Table 1, polyisobutylene of 920 g/ml or more has a hydrogen atom density of 7.9 x 1022 pieces/c.
As high as m3, 7.9 x 1022 pieces/cm' for regular polyethylene and 8.2 x 10'' pieces/cm for high density polyethylene.
It has a hydrogen atom density almost equal to m3, and therefore has excellent neutron shielding properties as well as polyethylene. Furthermore, while polyethylene is solid, it is semi-solid at room temperature and has the characteristic of being fluidized by heating.

一方で、同じく流動性を持つ流動パラフィンおよびポリ
ブテンの水素原子密度は、それぞれ7.4〜7.8X1
0”個/cm3%7.4〜7.7X1022個/cm’
と低く、中性子遮蔽性が不利である。しかもこれらは流
動性が大きすぎるため、形状を保持するために遮蔽の目
的に必要とする以上に、大量のホウ素および/または無
機ホウ素化合物を混入する必要がある。
On the other hand, the hydrogen atom density of liquid paraffin and polybutene, which also have fluidity, is 7.4 to 7.8X1, respectively.
0" pieces/cm3% 7.4~7.7X1022 pieces/cm'
neutron shielding properties are disadvantageous. Moreover, since these have too high fluidity, it is necessary to mix a large amount of boron and/or an inorganic boron compound in order to maintain the shape, in excess of that required for the purpose of shielding.

(以下余白) このように、本発明による中性子遮蔽材は、水素原子密
度において公知のポリエチレンを配合した中性子遮蔽材
と同等であり、一方で、常温で可塑性を有し、形態保持
に必要な適度な固さと柔軟性を備え、加熱することによ
り容易に流動化し複雑な形状の被遮蔽物にも容易に充填
あるいは貼付可能である。
(Left below) As described above, the neutron shielding material according to the present invention has a hydrogen atom density equivalent to that of a known neutron shielding material containing polyethylene, and on the other hand, it has plasticity at room temperature and has a certain degree of flexibility necessary to maintain its shape. It has high hardness and flexibility, easily becomes fluidized by heating, and can be easily filled or attached to objects with complex shapes.

本発明の特徴の一つである複雑な形状の被遮蔽物に対す
る施工性能は、今まで説明した柔軟性の調節だけで解決
する問題ではない。例えば、パラフィンワックスは常温
で固体であり、施工時加熱により容易に溶融して流動性
を持つようになり、どの様な複雑な形状の場所にも充填
でき、冷却後は容易に元の形状を保つ等施工性の面で本
発明の目的に叶うかにみえる。しかしパラフィンワック
スは冷却固化する際に不均等に収縮するため、例えば円
筒型の缶に流し込んだ場合、周辺から固化する結果真ん
中に空洞が生じ、中性子遮蔽性にむらを生じ易く、本発
明が対象とする中性子遮蔽材の構成成分としては不適当
である。
The construction performance for complex-shaped objects, which is one of the features of the present invention, is not a problem that can be solved only by adjusting the flexibility as described above. For example, paraffin wax is solid at room temperature, but when heated during construction, it easily melts and becomes fluid, so it can be filled into any complex shape and can easily return to its original shape after cooling. It appears that the purpose of the present invention can be achieved in terms of workability such as maintenance. However, paraffin wax contracts unevenly when it cools and solidifies, so if it is poured into a cylindrical can, for example, it solidifies from the periphery, creating a cavity in the middle, which tends to cause uneven neutron shielding properties, which is the object of the present invention. It is unsuitable as a component of neutron shielding materials.

また、本発明で配合する粘度平均分子量20.000〜
go、oooで、かつ密度が0.920g/cm’以上
のポリイソブチレン引火点が240〜250℃(J I
 S−に−225COO法)と高く、はるかに低分子量
であ流動パラフィン(分子量140〜700)やボブテ
ン(分子量500〜2.5001引火点1130〜23
0℃)を配合した公知中の性子遮材と較べると火災の危
険性に対してより安全でる。
In addition, the viscosity average molecular weight blended in the present invention is from 20.000 to
polyisobutylene with a flash point of 240 to 250°C (J I
S- to -225COO method) and has a much lower molecular weight than liquid paraffin (molecular weight 140-700) and bobten (molecular weight 500-2.5001 flash point 1130-23
It is safer from the risk of fire compared to the known tron shielding materials that contain 0°C).

次に、本発明の中性子遮蔽材の製造方法にって説明する
。すなわち、粘度平均分子量が24.000〜so、o
ooで、かつ密度が0.920g/mj以上のポリイソ
ブチレン100重量部と粉末状の無機ホウ素化合物1〜
50重量部とを配合するには両者をブラベンダ等の混練
り機で70−150℃に加熱して均一なるまで混練りを
行なう。この際、混練りを200mmHg以下の減圧下
で行なうことが好しい。常圧下で行なうと空気が混入し
、均一な度、組成を保てなくなる。
Next, a method for manufacturing the neutron shielding material of the present invention will be explained. That is, the viscosity average molecular weight is 24.000 to so, o
oo, and 100 parts by weight of polyisobutylene having a density of 0.920 g/mj or more and powdered inorganic boron compound 1-
To mix 50 parts by weight, both are heated to 70-150 DEG C. in a kneader such as a Brabender and kneaded until uniform. At this time, it is preferable to perform the kneading under reduced pressure of 200 mmHg or less. If it is carried out under normal pressure, air will be mixed in, making it impossible to maintain a uniform composition.

以上のように本発明の中性子遮蔽材は中性子遮蔽性に優
れ、常温にて可塑性をもち、加熱により容易に流動化し
、複雑な形状をした被遮蔽物Cも容易に充填または貼り
付は可能な優れた施工性を有し、しかも容器の開孔時に
も容易に流出する事なく、火災に対しても比較的安全で
あり、そのうえ配合が極めて容易である。
As described above, the neutron shielding material of the present invention has excellent neutron shielding properties, has plasticity at room temperature, easily becomes fluidized by heating, and can be easily filled or attached to shielded objects C with complicated shapes. It has excellent workability, does not easily leak out even when a container is opened, is relatively safe against fire, and is extremely easy to mix.

次に、本発明を実施例によりさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

[実施例] 支五且り 粘度平均分子量50,000のポリイソブチレン(「テ
トラックス5T」、密度0.923g/Cm3、日本石
油化学■社製)100g、無水はう酸(和光純薬社製、
粒径100tクロン)27gをニーダ−(弁上製作所製
プラネタリーミキサー)に投入し、120℃に加熱した
後100mmHgに減圧し、1時間混練りして中性子遮
蔽材を得た。このものの密度は1.03g/cm3であ
り、水素原子密度および中性子遮蔽性の目安である中性
子除去断面積ΣRを求めると第2表の通りであった。
[Example] 100 g of polyisobutylene with a viscosity average molecular weight of 50,000 ("Tetrax 5T", density 0.923 g/Cm3, manufactured by Nippon Petroleum Chemical Co., Ltd.), anhydrous ferlic acid (manufactured by Wako Pure Chemical Industries, Ltd.) ,
27 g of the mixture (particle size: 100 tons) was put into a kneader (planetary mixer manufactured by Bengami Seisakusho), heated to 120°C, then reduced to 100 mmHg, and kneaded for 1 hour to obtain a neutron shielding material. The density of this material was 1.03 g/cm3, and the neutron removal cross section ΣR, which is a measure of hydrogen atom density and neutron shielding property, was determined as shown in Table 2.

中性子の減衰量はこの値に基き次式で計算することがで
きる。
The amount of neutron attenuation can be calculated based on this value using the following formula.

I=Ioe−ΣRX ここで、■は強度I0で入射した高速中性子が厚さXの
遮蔽材を透過した後の強度を示す。
I=Ioe-ΣRX Here, ■ indicates the intensity after a fast neutron incident with intensity I0 passes through a shielding material of thickness X.

また、このものの複雑な形状の被遮蔽物に対する施工の
容易性として、次に示す評価方法に従い、100℃にお
ける粘度(′Pf1温流動注流動性温における軟度、形
態保持性を測定し第3表に示す。 これらの表から明か
などとく、得られた中性子遮蔽材は中性子除去断面積が
大きく、シかも本発明が目的とする実用上の物性、すな
わち、加熱流動性、常温における軟度、形態保持性も適
度である。
In addition, in order to evaluate the ease of construction of this product on objects with complex shapes, we measured the viscosity at 100°C ('Pf1, the softness and shape retention at the temperature of hot fluid pouring, and the third evaluation method). It is clear from these tables that the obtained neutron shielding material has a large neutron removal cross section, and also has the practical physical properties aimed at by the present invention, such as heating fluidity, softness at room temperature, Shape retention is also moderate.

(評価方法) ここにおける粘度はJ Is−に−2283による10
0℃における動粘度である。軟度はJIS−に−220
7による針入度(100g、5秒間)である。形態保持
性は中性子遮蔽材を室温で1cm角の立方形に整形し、
その形態保持具合を次のような3段階評価をした。
(Evaluation method) The viscosity here is 10 according to J Is-2283.
This is the kinematic viscosity at 0°C. Softness is JIS-220
The penetration rate is 7 (100 g, 5 seconds). Shape retention is achieved by shaping the neutron shielding material into a 1cm square cube at room temperature.
The degree of shape retention was evaluated on the following three levels.

A パテとしてのまとまりが良好。立方体の成形が容易
で、かつ形態が極めて安定に保持される。
A: Good consistency as putty. It is easy to form into a cube, and the shape is maintained extremely stably.

B パテとしてのまとまりを有し、立方体への成形性と
安定性がある。
B: It has a consistency as a putty, and has moldability and stability into a cube.

C流動性が過度に大きく、形を保てない。C The fluidity is too high and the shape cannot be maintained.

L鉦鼓り 無水はう酸70gを用いた以外実施例1の操作を繰り返
した。結果を第2表および第3表に示したが、100℃
における粘度が高く、加熱流動性に欠け、複雑な形状を
した被遮蔽物への充填が困難であった。
The procedure of Example 1 was repeated except that 70 g of anhydrous fluoric acid was used. The results are shown in Tables 2 and 3.
It has a high viscosity and lacks heat fluidity, making it difficult to fill objects with complicated shapes.

実」U残」− 粘度平均分子量eo、oooのポリイソブチレン(「テ
トラックス6T」 (密度0.923g/cmr1、日
本石油化学■社製)100g、無水はつ酸(和光純薬社
製、粒径1004クロン)10gを用いて実施例1の操
作を繰り返し、結果を第2表および第3表に示した。実
施例1と同様に、中性子除去断面積が大きく、実用物性
である加熱流動性、常温における軟度、形態保持性も適
度である。
- 100 g of polyisobutylene with viscosity average molecular weights eo and ooo ("Tetrax 6T" (density 0.923 g/cmr1, manufactured by Nippon Petrochemical Co., Ltd.), 100 g of halogen anhydride (manufactured by Wako Pure Chemical Industries, Ltd., granules) The operation of Example 1 was repeated using 10 g of 1,004 chrome (diameter: 1,004 km), and the results are shown in Tables 2 and 3.Similar to Example 1, the neutron removal cross section was large, and the heating fluidity, which is a practical physical property, was The softness and shape retention at room temperature are also moderate.

実1□□□L工 粘度平均分子量30,000のポリイソブチレン(「テ
トラックス3T」 (密度0.923g/cm3、日本
石油化学■社製)100g、無水はつ酸(和光純薬社製
、粒径tooミクロン)27gを用いて実施例1の操作
を繰り返し、結果を第2表および第3表に示した。実施
例1と同様に、中性子除去断面積が大きく、実用物性で
ある加熱流動性、常温における軟度、形態保持性も適度
である。
Fruit 1 100 g of polyisobutylene with a viscosity average molecular weight of 30,000 ("Tetrax 3T" (density 0.923 g/cm3, manufactured by Nippon Petrochemical Co., Ltd.), oxalic anhydride (manufactured by Wako Pure Chemical Industries, Ltd., The operation of Example 1 was repeated using 27 g of particles with a particle size of too microns, and the results are shown in Tables 2 and 3.Similar to Example 1, the neutron removal cross section is large and the heating fluidity has practical physical properties. The properties of softness, softness at room temperature, and shape retention are also moderate.

法皇LLえ 無水はう酸150gを用いた以外、実施例3の操作を繰
り返し、結果を第2表および第3表に示した。形態保持
性はよいが、加熱流動性に欠けた。
The procedure of Example 3 was repeated except that 150 g of anhydrous fluoric acid was used, and the results are shown in Tables 2 and 3. It had good shape retention but lacked heat flowability.

比[赴は」− 数平均分子量3,600のポリブテン(白石ポリブテン
Hv−30001密度0.910g/cm3、日本石油
化学−社!11)100g1無水はう酸(和光純薬社製
、粒径100ミクロン)10gを用いて実施例1の操作
を繰り返し、結果を第2表および第3表に示した。軟度
が高すぎ形態が保持できなかった。
- Polybutene with a number average molecular weight of 3,600 (Shiraishi Polybutene Hv-30001 density 0.910 g/cm3, Nippon Petrochemical Co., Ltd.! 11) 100 g 1 anhydrous oxalic acid (manufactured by Wako Pure Chemical Industries, particle size 100 The operation of Example 1 was repeated using 10 g of micron) and the results are shown in Tables 2 and 3. The softness was too high and the shape could not be maintained.

比重1」2 無水はう酸70gを用いた以外比較例3を繰り返し、結
果を第2表および第3表に示した。比較例3と同様軟度
が高すぎ形態が保持できなかった。
Comparative Example 3 was repeated except that 70 g of anhydrous fluoric acid having a specific gravity of 1''2 was used, and the results are shown in Tables 2 and 3. Similar to Comparative Example 3, the softness was too high and the shape could not be maintained.

金遣ヱU− パラフィンワックス100g1無水はう酸(和光純薬社
製、粒径tooミクロン)10gを用いて実施例1の操
作にしたがって混練りして得た組成物を熱いまま直接3
cm1深さ3cmの鉄製容器に口まで満たし、そのまま
放冷して表面を観察した。まん中に穴が明いた状態で固
まった。
Money Exchange U- A composition obtained by kneading 100 g of paraffin wax and 10 g of anhydrous fluoric acid (manufactured by Wako Pure Chemical Industries, Ltd., particle size too microns) according to the procedure of Example 1 was directly mixed while hot.
A 3 cm deep iron container was filled to the brim, left to cool, and the surface was observed. It froze with a hole in the middle.

(発明の効果) 以上実施例を挙げて詳細に説明したごとく、本発明によ
り中性子遮蔽性に優れ、常温にて可塑性をもち、加熱に
より容易に流動性をもち、複雑な形状をした被遮蔽物に
も容易に充填または貼付可能な優れた施工性を有し、し
かも容器の開孔時にも容易に流出することなく、火災に
対しても比較的安全であり、その上配合が極めて容易な
中性子遮蔽材の提供が可能になった。
(Effects of the Invention) As described above in detail with reference to examples, the present invention provides shielded objects that have excellent neutron shielding properties, have plasticity at room temperature, easily become fluid when heated, and have complex shapes. Neutrons have excellent workability and can be easily filled or pasted into containers, do not easily leak out when the container is opened, are relatively safe from fire, and are extremely easy to mix. It is now possible to provide shielding materials.

(以下余白)(Margin below)

Claims (1)

【特許請求の範囲】[Claims] 粘度平均分子量が20,000〜80,000の範囲で
あり、かつ密度が0.920g/ml以上であるポリイ
ソブチレン100重量部と粉末状の無機ホウ素化合物1
〜50重量部とからなる中性子遮蔽材。
100 parts by weight of polyisobutylene having a viscosity average molecular weight in the range of 20,000 to 80,000 and a density of 0.920 g/ml or more and powdered inorganic boron compound 1
~50 parts by weight of a neutron shielding material.
JP22406989A 1989-08-30 1989-08-30 Neutron shielding material Pending JPH0385498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22406989A JPH0385498A (en) 1989-08-30 1989-08-30 Neutron shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22406989A JPH0385498A (en) 1989-08-30 1989-08-30 Neutron shielding material

Publications (1)

Publication Number Publication Date
JPH0385498A true JPH0385498A (en) 1991-04-10

Family

ID=16808081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22406989A Pending JPH0385498A (en) 1989-08-30 1989-08-30 Neutron shielding material

Country Status (1)

Country Link
JP (1) JPH0385498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288820A (en) * 2005-04-12 2006-10-26 France Bed Co Ltd Combination quilt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288820A (en) * 2005-04-12 2006-10-26 France Bed Co Ltd Combination quilt

Similar Documents

Publication Publication Date Title
US2961415A (en) Settable neutron radiation shielding material
Sikora et al. Evaluation of the effects of bismuth oxide (Bi2O3) micro and nanoparticles on the mechanical, microstructural and γ-ray/neutron shielding properties of Portland cement pastes
CA2334605A1 (en) Methods for thermally degrading unwanted substances using particulate metal compositions
Al Hassan et al. Thermal stability and gamma ray shielding properties of tungsten borides/epoxy micro-composites
EP0030599B1 (en) Hydrated magnesium nitrate/magnesium chloride reversible phase change compositions and their preparation
JPH0385498A (en) Neutron shielding material
Paliwal et al. Applications of cavity theories for electrons to LiF dosemeters
Chandler et al. Physical properties of a radiopaque denture base material
Terrin et al. Effect of the loading of organomodified clays on the thermal and mechanical properties of a model dental resin
JPS6249305B2 (en)
US4865769A (en) Radiation shielding material and process for preparing the same
JP2017062268A (en) Criticality prevention coating layer and method for forming the same
Prokhorenko et al. Analysis of radiation protective properties of polystyrene-based composite materials
US2727863A (en) Method of preparation of thallium activated potassium iodide
US2988523A (en) Radiation shielding composition and method of manufacture
JPS60237397A (en) Gamma-ray shielding material, combustion resistance thereof is improved
US2378699A (en) Protection of molten magnesium and magnesium-base alloys
JPH01292294A (en) Asphalt composite for radiation shielding
McMillan Radiation shielding composites using thermoplastic polymers mouldable at low temperature
JPS63100391A (en) Phosphor molding body and its manufacture
JPS5826299A (en) Neutron shielding material
JPH0464440B2 (en)
JPS59170179A (en) Heat storage material
Fahmi et al. Analysis of graphite-paraffin composite in neutron radiography, impact resistance, and thermal neutron attenuation
CN107636094A (en) The one-part curable thermoset composition of high-temperature stable