JPH0385481A - Gamma camera - Google Patents
Gamma cameraInfo
- Publication number
- JPH0385481A JPH0385481A JP22370689A JP22370689A JPH0385481A JP H0385481 A JPH0385481 A JP H0385481A JP 22370689 A JP22370689 A JP 22370689A JP 22370689 A JP22370689 A JP 22370689A JP H0385481 A JPH0385481 A JP H0385481A
- Authority
- JP
- Japan
- Prior art keywords
- axis
- weighting
- pmt
- light emitting
- pmts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004364 calculation method Methods 0.000 claims abstract description 26
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 230000009466 transformation Effects 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 8
- 206010036618 Premenstrual syndrome Diseases 0.000 abstract description 24
- 101001123534 Nicotiana tabacum Putrescine N-methyltransferase 2 Proteins 0.000 abstract description 10
- 230000005855 radiation Effects 0.000 abstract description 5
- 230000005484 gravity Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 14
- 101150036326 PMT2 gene Proteins 0.000 description 8
- 101100043108 Schizosaccharomyces pombe (strain 972 / ATCC 24843) spb1 gene Proteins 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Nuclear Medicine (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、シンチレータの背面に多数併設し光電変換す
る光電子増倍管を備え、この光電子増倍管の出力から発
光位置を求めるガンマカメラに関する。[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention includes a large number of photomultiplier tubes that are installed on the back side of a scintillator and performs photoelectric conversion, and determines the light emission position from the output of the photomultiplier tubes. Regarding gamma cameras seeking.
(従来の技術)
従来のガンマカメラ、例えばアンガ一方式を採用したガ
ンマカメラでは、放射線を入力するシンチレータと、こ
のシンチレータの背面に多数併設され光電変換する光電
子増倍管(以下PMTという。)とを備えている。(Prior Art) A conventional gamma camera, for example, a gamma camera that employs an angle type, has a scintillator that inputs radiation, and a large number of photomultiplier tubes (hereinafter referred to as PMTs) that are attached to the back of this scintillator and that perform photoelectric conversion. It is equipped with
第5図はこの種のガンマカメラのPMTを示す概略構成
図、第6図は前記PMTの各座標軸に対する重み付け加
算を示す概略構成図である。−例としてPMT群はN0
01からNo、61までの61本のPMTからなり、視
野範囲内に入った図示しない放射線によりシンチレータ
内で発光する発光位置は、各軸(計算するための軸)に
対する各PMT出力をその位置に応じて重み付け加算を
行なうことにより求められる。FIG. 5 is a schematic block diagram showing a PMT of this type of gamma camera, and FIG. 6 is a schematic block diagram showing weighted addition for each coordinate axis of the PMT. -For example, the PMT group is N0
Consisting of 61 PMTs from No. 01 to No. 61, the light emitting position within the scintillator due to radiation (not shown) that has entered the field of view is determined by setting each PMT output for each axis (axis for calculation) to that position. It is obtained by performing weighted addition accordingly.
例えば第6図に示すようにシンチレータからガラス、ラ
イトガイドを介して複数のPMTに入力した放射線は、
5つのPMT (le第5図に示すNo、1〜N0.5
のPMT)にまり光電変換される。そして各々のPMT
出力は位置に応じてWl−−2,W2−−1.W3−0
.W4−+1゜W5−+2の所定の重み付けが行なわれ
、これらの出力が加算される。これによりNo、1〜N
025すなわちX軸に対する複数のPMTの最大発光位
置を求め、さらに図示しないY軸に対する最大発光位置
を求める。For example, as shown in Figure 6, radiation input from a scintillator to multiple PMTs via glass and a light guide is
5 PMTs (Le No. 1 to No. 0.5 shown in Figure 5)
PMT) and undergoes photoelectric conversion. and each PMT
The outputs are Wl--2, W2--1. W3-0
.. A predetermined weighting of W4-+1°W5-+2 is performed and these outputs are added. As a result, No, 1 to N
025, that is, the maximum light emission positions of the plurality of PMTs with respect to the X axis are determined, and further the maximum light emission positions with respect to the Y axis (not shown) are determined.
このように発光の位置計算に用いる座標系では、X軸、
Y軸の2軸からなる直交座標を用いていた。In this way, in the coordinate system used to calculate the position of light emission, the X axis,
Cartesian coordinates consisting of two axes, the Y-axis, were used.
また最近では、発光位置の精度を向上させるべく、3輪
(交差角60°)を用いる方法も提案されている。Recently, a method using three wheels (crossing angle of 60°) has also been proposed in order to improve the accuracy of the light emitting position.
(発明が解決しようとする課題)
然し乍ら、従来のガンマカメラにあっては、次のような
問題がある。すなわち上述したガンマカメラにおいて、
3軸方式を用いた発光位置の計算では、重み付け、加算
等を3度行なう必要があった。このため発光位置計算に
必要以上の時間がかかってしまうという問題があった。(Problems to be Solved by the Invention) However, conventional gamma cameras have the following problems. In other words, in the gamma camera described above,
In calculating the light emitting position using the three-axis method, it was necessary to perform weighting, addition, etc. three times. For this reason, there is a problem in that the calculation of the light emitting position takes more time than necessary.
また3軸について計算を行なうため、回路構成が複雑化
してしまうという問題があった。Furthermore, since calculations are performed on three axes, there is a problem in that the circuit configuration becomes complicated.
そこで本発明の目的は、発光位置の計算時間を短縮でき
、簡易な構成からなり、信頼性を向上し得るガンマカメ
ラを提供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a gamma camera that can shorten the calculation time of the light emitting position, has a simple configuration, and can improve reliability.
[発明の構成]
(課題を解決する為の手段)
本発明は上記の課題を解決し目的を達成する為に次のよ
うな手段を講じた。すなわち本発明は、シンチレータの
背面に併設し光電変換する複数の変換手段と、この変換
手段の出力に基づき発光の概略位置を検出する検出手段
と、この検出手段で検出した概略位置に対応する前記変
換手段を中心としこの変換手段の外周に接する複数の変
換手段を選択する選択手段と、この選択手段で選択した
前記複数の変換手段の出力の一部を用い、3軸座標の各
軸に対し前記変換手段の位置に応じて重み付け加算し前
記3軸座標から2軸座標へ変換し前記シンチレータ内の
発光位置を求める計算手段とを備えたものである。[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems and achieve the objects, the present invention takes the following measures. That is, the present invention includes a plurality of conversion means installed on the back side of a scintillator for photoelectric conversion, a detection means for detecting the approximate position of light emission based on the output of the conversion means, and a plurality of conversion means for detecting the approximate position of light emission based on the output of the conversion means, and the above-mentioned conversion means corresponding to the approximate position detected by the detection means. A selection means for selecting a plurality of transformation means centered around the transformation means and in contact with the outer periphery of this transformation means, and a part of the output of the plurality of transformation means selected by this selection means, for each axis of the three-axis coordinates. and calculating means for performing weighted addition according to the position of the converting means, converting the three-axis coordinates into two-axis coordinates, and determining the light emitting position within the scintillator.
(作 用)
このような手段を講じたことにより、次のような作用を
呈する。選択手段で選択した変換手段の出力の一部のみ
を用いることにより、各軸に対し、重み付け・加算に用
いる変換手段の数を減少させるので、発光位置に対する
計算量が減少する。(Effects) By taking such measures, the following effects will be exhibited. By using only a part of the output of the conversion means selected by the selection means, the number of conversion means used for weighting and addition for each axis is reduced, so the amount of calculation for the light emission position is reduced.
これにより発光位置の計算時間を短縮でき、しかもアル
ゴゾズムを簡略化できるので、回路構成を簡単化でき、
さらには装置の信頼性を向上できる。This reduces the calculation time for the light emitting position, and also simplifies the algorithm, which simplifies the circuit configuration.
Furthermore, the reliability of the device can be improved.
(実施例)
第1図は本発明に係るガンマカメラを示す概略ブロック
図、第2図は前記ガンマカメラのPMTブロックを説明
するための概略図、第3図はPMTブロックに設定した
3軸の各軸に対し3つのPMTを用いる場合を示す概略
図、第4図はPMTブロックに設定した3軸の各軸に対
し5つのPMTを用いる場合を示す概略図である。(Example) Fig. 1 is a schematic block diagram showing a gamma camera according to the present invention, Fig. 2 is a schematic diagram for explaining the PMT block of the gamma camera, and Fig. 3 is a schematic diagram of the three axes set in the PMT block. FIG. 4 is a schematic diagram showing the case where three PMTs are used for each axis. FIG. 4 is a schematic diagram showing the case where five PMTs are used for each of the three axes set in the PMT block.
第1図において、ガンマカメラは、シンチレータ1の背
面に併設し光電変換する複数の変換手段としての光電子
増幅管2 (PMT)と、このPMT2の出力に基づき
発光中心の概略位置を検出する検出手段としての位置検
出回路3、この位置検出回路3で検出された概略位置に
対応する前記PMT2の一つを中心とし、第2図に示す
PMT2の外周に接する複数のPMT2で構成する6角
状ブロツクを選択する選択手段としての選択回路4を有
している。In FIG. 1, the gamma camera includes a photomultiplier tube 2 (PMT) which is attached to the back of a scintillator 1 and serves as a plurality of conversion means for photoelectric conversion, and a detection means which detects the approximate position of the emission center based on the output of the PMT 2. A hexagonal block consisting of a plurality of PMTs 2 centered on one of the PMTs 2 corresponding to the approximate position detected by the position detection circuit 3 and touching the outer periphery of the PMT 2 shown in FIG. It has a selection circuit 4 as selection means for selecting.
またガンマカメラは、選択回路4で選出された前記PM
T2の出力の一部を用い、PMT2の位置に応じて3軸
座標の各軸について重み付け加算し3軸座標から2軸座
標へ座標変換して前記シンチレータ内の発光位置を求め
る計算手段としての計算回路5、前記PMT2の出力を
全て加算しエネルギー信号を得るエネルギー計算回路6
を備えている。Further, the gamma camera selects the PM selected by the selection circuit 4.
Calculation as a calculation means to calculate the light emitting position in the scintillator by weighting and adding each axis of the three-axis coordinate according to the position of the PMT2 and converting the coordinate from the three-axis coordinate to the two-axis coordinate using a part of the output of T2. circuit 5, an energy calculation circuit 6 that adds all the outputs of the PMT 2 and obtains an energy signal;
It is equipped with
前記計算回路5は、PMT2の出力を入力し3軸からな
るL軸重み付け・加算部101M軸重み付け・加算部2
0.N軸重み付け・加算部30゜これらの重み付け・加
算出力を各軸のPMTの数で除算する除算部31.この
除算部31からの3軸出力に基づき2軸出力としてX座
標位置。The calculation circuit 5 inputs the output of the PMT 2 and has an L-axis weighting/adding unit 101 consisting of three axes;
0. N-axis weighting/addition unit 30. A division unit 31 that divides these weighting/addition outputs by the number of PMTs on each axis. Based on the three-axis output from this dividing unit 31, the X-coordinate position is output as two-axis output.
Y座標位置に座標変換する座標変換部32から構成され
る。It is composed of a coordinate conversion section 32 that performs coordinate conversion to a Y coordinate position.
前記り軸重み付け・加算部10は、PMT出力を重み付
けする分子重み付け部11.PMT出力を重み付けする
分母重み付け部121重み付け出力を各軸のPMTの数
だけ加算する加算部13゜14から構成される。またM
軸重み付け・加算部20、N軸重み付け・加算部30も
前記り軸重み付け・加算部10と同一構成になっている
。The axis weighting/adding section 10 includes a numerator weighting section 11. which weights the PMT output. It is composed of a denominator weighting section 121 that weights PMT outputs, and addition sections 13 and 14 that add weighted outputs by the number of PMTs on each axis. Also M
The axis weighting/adding section 20 and the N-axis weighting/adding section 30 also have the same configuration as the axis weighting/adding section 10 described above.
次に図面を参照して本実施例を説明する。まず第1図に
示すように放射線は、シンチレータ1の背面に設けられ
た複数のPMT2により光電変換され、このPMT2の
出力に基づき位置検出回路3により発光中心の概略位置
が検出される。そして第2図に示すように発光位置中心
の特定のPMT2とこの特定のPMT2の周囲の6つの
PMT2からなるPMTブロックを選択回路4により選
択する。例えばNo、7.8.13,14゜15.21
.22で構成されるPMTブロックBKである。Next, the present embodiment will be described with reference to the drawings. First, as shown in FIG. 1, radiation is photoelectrically converted by a plurality of PMTs 2 provided on the back surface of a scintillator 1, and the approximate position of the emission center is detected by a position detection circuit 3 based on the output of the PMTs 2. Then, as shown in FIG. 2, the selection circuit 4 selects a PMT block consisting of a specific PMT 2 at the center of the light emitting position and six PMTs 2 around this specific PMT 2. For example, No, 7.8.13, 14°15.21
.. This is a PMT block BK consisting of 22 blocks.
ここで第3図(a)に示すように前記PMTブロックB
Kに対して交角が相互に60°である3つの座標軸すな
わちL1紬、N1軸、N、軸を設定する。すなわち各軸
において、3つのPMT出力を用いる。例えば第3図(
b)に示すようにM軸については、C,D、EのPMT
出力を用いる。Here, as shown in FIG. 3(a), the PMT block B
Three coordinate axes having mutually intersecting angles of 60 degrees with respect to K, namely, the L1 axis, the N1 axis, and the N axis are set. That is, three PMT outputs are used for each axis. For example, Figure 3 (
As shown in b), for the M axis, the PMTs of C, D, and E are
Use output.
(1)そしてこれらの3つのL1軸、J軸。(1) And these three L1 axes and J axes.
N1軸の各軸に対し、L軸重み付け・加算部10゜M軸
重み付け・加算部20.N軸重み付け・加算部30に設
けられた分子重み付け部1分母重み付け部(L軸重み付
け・加算部10では分子重み付け部111分母重み付け
部12)により、例えば前述した第6図に示すような発
光位置に応じて所定の重み付けを行なう。さらに各部に
設けられた加算部(L軸重み付け・加算部10では加算
部13.14)により加算しこの加算出力を除算部31
により各軸のPMTの数3で除算すると、3軸ともに軸
上の最大発光位置(図示のドツト位置)が求められる。For each axis of the N1 axis, an L-axis weighting/adding section 10° and an M-axis weighting/adding section 20. The numerator weighting unit 1 denominator weighting unit (the numerator weighting unit 111 and the denominator weighting unit 12 in the L-axis weighting/adding unit 10) provided in the N-axis weighting/adding unit 30 calculate the light emission position as shown in FIG. 6, for example. A predetermined weighting is performed according to. Furthermore, addition units provided in each section (addition units 13 and 14 in the L-axis weighting/addition unit 10) perform addition, and the output of this addition is sent to the division unit 31.
By dividing by the number of PMTs on each axis (3), the maximum light emitting position (the dot position shown in the figure) on all three axes can be obtained.
さらに求めた各軸上の最大発光位置から軸に対して垂線
を引き、これらの3本の垂線により得られる三角形の重
心G1を求めると、これがシンチレータの発光位置とな
る。Further, perpendicular lines are drawn to the axes from the determined maximum light emitting positions on each axis, and the center of gravity G1 of the triangle obtained by these three perpendicular lines is determined, which becomes the light emitting position of the scintillator.
このように発光位置を求めるのに、重み付け・加算に用
いるPMT2を各軸について3つと減少させたので、従
来の7つのPMT2を用いて計算するよりも大幅に計算
量が減少する。これにより計算に要する時間が大幅に短
縮でき、しかもアルゴリズムを簡略化できるので、装置
の信頼性を向上できる。さらにはアルゴリズムを簡略化
するので、回路構成を簡単化できる。Since the number of PMT2 used for weighting and addition is reduced to three for each axis in determining the light emission position in this way, the amount of calculation is significantly reduced compared to the conventional calculation using seven PMT2. As a result, the time required for calculation can be significantly shortened, and the algorithm can be simplified, so that the reliability of the device can be improved. Furthermore, since the algorithm is simplified, the circuit configuration can be simplified.
(2)次に各軸上における重み付け加算を5つのPMT
2について行なう場合について説明する。(2) Next, weighted addition on each axis is performed using five PMTs.
The case of carrying out 2 will be explained.
第4図(a)に示すように座標系が前記第3図に示すり
、軸2M1軸、N1軸からなる座標系に対して30°ず
れたL2軸、N2軸、N2軸からなる。例えば第4図(
b)に示すようにN2軸に対しては、BCDEFの5つ
のPMTが計算の対象となる。この5つのPMT2を用
いて発光位置を計算する場合においても、前述した要領
と同様な要領で行なうことができる。As shown in FIG. 4(a), the coordinate system consists of the L2, N2, and N2 axes, which are shifted by 30 degrees from the coordinate system shown in FIG. 3 and consisting of the axes 2M1 and N1. For example, Figure 4 (
As shown in b), for the N2 axis, five PMTs of BCDEF are subject to calculation. Even when calculating the light emission position using these five PMTs 2, it can be performed in the same manner as described above.
すなわち第4図(a)に示すように求めた各軸上の最大
発光位置から軸に対して垂線を引き、これらの3本の垂
線により得られる三角形の重心G2を求めると、これが
シンチレータの発光位置となる。In other words, by drawing perpendicular lines to the axes from the maximum light emission position on each axis determined as shown in Figure 4 (a), and finding the center of gravity G2 of the triangle obtained by these three perpendicular lines, this is the light emission of the scintillator. position.
このように発光位置を求めるのに、重み付け・加算に用
いるPMT2を各軸について5つと減少させたので、従
来の7つのPMT2を用いて計算するよりも比較的計算
量が減少する。これにより計算に要する時間が短縮でき
、しかもアルゴリズムを簡略化できるので、装置の信頼
性を向上できる。さらにはアルゴリズムを簡略化するの
で、回路構成を簡単化できる。Since the number of PMT2 used for weighting and addition is reduced to five for each axis in determining the light emitting position in this way, the amount of calculation is relatively reduced compared to the conventional calculation using seven PMT2. This reduces the time required for calculation and simplifies the algorithm, thereby improving the reliability of the device. Furthermore, since the algorithm is simplified, the circuit configuration can be simplified.
なお本発明は上述した実施例に限定されるものではない
、。上述した実施例では、PMT2を3つまたは5つ選
択したが、従来の7つのPMT2を越えなければ、その
他のPMT2の数を選択しても良い。本発明の要旨を逸
脱しない範囲で種々変形実施可能であるのは勿論である
。Note that the present invention is not limited to the embodiments described above. In the embodiment described above, three or five PMT2 are selected, but any other number of PMT2 may be selected as long as the number does not exceed the conventional seven PMT2. Of course, various modifications can be made without departing from the spirit of the invention.
[発明の効果]
本発明によれば、選択手段で選択した変換手段の出力の
一部のみを用いることにより、各軸に対し、重み付け・
加算に用いる変換手段の数を減少させるので、発光位置
に対する計算量が減少する。[Effects of the Invention] According to the present invention, by using only a part of the output of the conversion means selected by the selection means, weighting and
Since the number of conversion means used for addition is reduced, the amount of calculation for the light emitting position is reduced.
これにより発光位置の計算時間を短縮でき、しかもアル
ゴリズムを簡略化できるので、回路構成を簡単化でき、
さらには装置の信頼性を向上できるガンマカメラを提供
できる。This reduces the calculation time for the light emitting position, and also simplifies the algorithm, which simplifies the circuit configuration.
Furthermore, it is possible to provide a gamma camera that can improve the reliability of the device.
第1図は本発明に係るガンマカメラを示す概略ブロック
図、第2図は前記ガンマカメラのPMTブロックを説明
するための概略図、第3図はPMTブロックに設定した
3軸の各軸に対し3つのPMTを用いる場合を示す概略
図、第4図はPMTブロックに設定した3軸の各軸に対
し5つのPMTを用いる場合を示す概略図、第5図は従
来のPMTを示す概略図、第6図はPMTの発光位置計
算を示す概略図である。
1・・・シンチレータ、2・・・PMT、3・・・位置
検出回路、4・・・選択回路、5・・・計算回路、6・
・・エネルギー計算回路、10・・・L軸重み付け・加
算部、20・・・M軸重み付け・加算部、30・・・N
軸重み付け・加算部、31・・・除算部、32・・・座
標変換部、11・・・分子重み付け部、12・・・分母
重み付け部、13.14・・・加算部、PMT・・・光
電子増倍管、L+ 、Mr 、N+ 、L2 、M2
、N2・・・各軸。Fig. 1 is a schematic block diagram showing a gamma camera according to the present invention, Fig. 2 is a schematic diagram for explaining the PMT block of the gamma camera, and Fig. 3 is a schematic diagram for explaining the PMT block of the gamma camera. A schematic diagram showing the case where three PMTs are used, FIG. 4 is a schematic diagram showing the case where five PMTs are used for each of the three axes set in the PMT block, and FIG. 5 is a schematic diagram showing the conventional PMT. FIG. 6 is a schematic diagram showing calculation of the light emission position of PMT. DESCRIPTION OF SYMBOLS 1...Scintillator, 2...PMT, 3...Position detection circuit, 4...Selection circuit, 5...Calculation circuit, 6...
...Energy calculation circuit, 10...L-axis weighting/addition section, 20...M-axis weighting/addition section, 30...N
Axis weighting/addition section, 31... Division section, 32... Coordinate transformation section, 11... Numerator weighting section, 12... Denominator weighting section, 13.14... Addition section, PMT... Photomultiplier tube, L+, Mr, N+, L2, M2
, N2...each axis.
Claims (1)
段と、この変換手段の出力に基づき発光の概略位置を検
出する検出手段と、この検出手段で検出した概略位置に
対応する前記変換手段を中心としこの変換手段の外周に
接する複数の変換手段を選択する選択手段と、この選択
手段で選択した前記複数の変換手段の出力の一部を用い
、3軸座標の各軸に対し前記変換手段の位置に応じて重
み付け加算し前記3軸座標から2軸座標へ変換し前記シ
ンチレータ内の発光位置を求める計算手段とを具備した
ことを特徴とするガンマカメラ。The system mainly includes a plurality of conversion means installed on the back side of the scintillator for photoelectric conversion, a detection means for detecting the approximate position of light emission based on the output of the conversion means, and the conversion means corresponding to the approximate position detected by the detection means. A selection means for selecting a plurality of transformation means in contact with the outer periphery of the transformation means, and a part of the outputs of the plurality of transformation means selected by this selection means are used to position the transformation means with respect to each axis of the three-axis coordinate. 1. A gamma camera comprising calculation means for converting the three-axis coordinates into two-axis coordinates by performing weighted addition according to the above, and determining the light emitting position within the scintillator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22370689A JPH0385481A (en) | 1989-08-30 | 1989-08-30 | Gamma camera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22370689A JPH0385481A (en) | 1989-08-30 | 1989-08-30 | Gamma camera |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0385481A true JPH0385481A (en) | 1991-04-10 |
Family
ID=16802387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22370689A Pending JPH0385481A (en) | 1989-08-30 | 1989-08-30 | Gamma camera |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0385481A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8619051B2 (en) | 2007-02-20 | 2013-12-31 | Immersion Corporation | Haptic feedback system with stored effects |
-
1989
- 1989-08-30 JP JP22370689A patent/JPH0385481A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8619051B2 (en) | 2007-02-20 | 2013-12-31 | Immersion Corporation | Haptic feedback system with stored effects |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014012351A1 (en) | Positioning system of mobile robot and positioning method thereof | |
US5118948A (en) | Gamma camera device | |
CN110017810A (en) | A kind of photoelectrical position sensor and monocular vision assembled gesture measuring system and method | |
CN109676602A (en) | Self-adapting calibration method, system, equipment and the storage medium of walking robot | |
JPH06137840A (en) | Automatic calibration device for visual sensor | |
Kant | Hexagonal grid drawings | |
CN110856104A (en) | Ultra-wideband indoor positioning method combining least square positioning and trilateral positioning | |
JPH0385481A (en) | Gamma camera | |
JP2002081904A (en) | Head motion tracker and method for correcting its measured value | |
CN110068282B (en) | Method for detecting deformation of main beam of hoisting machine based on photogrammetry | |
CN110455260A (en) | Tunnel contour determines method, apparatus and electronic equipment | |
TWI625700B (en) | Redundant point detection method for point cloud data bonding | |
JPH0523439B2 (en) | ||
CN112685860B (en) | Curved surface attitude detection method and device, terminal equipment and storage medium | |
CN100480971C (en) | Optical sensing apparatus for navigating position and a navigation method thereof | |
US5519224A (en) | Method of localizing scintillation events detected by scintillation camera systems | |
RU2085850C1 (en) | System of course and vertical and method determining magnetic course | |
JPH0587793B2 (en) | ||
JPH02272385A (en) | Gamma camera device | |
CN113899371B (en) | Electromagnetic space positioning model and positioning algorithm of single coil receiving end | |
JPH0368890A (en) | Gamma camera apparatus | |
CN115755084A (en) | Fog detection method and device | |
JP3494576B2 (en) | Optical declination measuring device | |
JPS63300985A (en) | Ring type ect device | |
JPH04208894A (en) | Gamma camera device |