JPH038457A - Method and device for solid separation - Google Patents

Method and device for solid separation

Info

Publication number
JPH038457A
JPH038457A JP14492689A JP14492689A JPH038457A JP H038457 A JPH038457 A JP H038457A JP 14492689 A JP14492689 A JP 14492689A JP 14492689 A JP14492689 A JP 14492689A JP H038457 A JPH038457 A JP H038457A
Authority
JP
Japan
Prior art keywords
gas
outer cylinder
solid
side wall
solids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14492689A
Other languages
Japanese (ja)
Inventor
Tomohiko Miyamoto
知彦 宮本
Sadao Takahashi
高橋 貞夫
Shuntaro Koyama
俊太郎 小山
Toshiki Furue
古江 俊樹
Fumihiko Hanayama
文彦 花山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP14492689A priority Critical patent/JPH038457A/en
Publication of JPH038457A publication Critical patent/JPH038457A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the separation efficiency of solid by providing the inlet opening to let gas flow in along the tangential direction of cross-sectional circle to an outer tube, a solid discharge opening to the side wall of outer tube in the downstream area of the influent gas, and an inner tube for cleaned gas in the outer tube confronting the discharge opening. CONSTITUTION:The inlet opening 10 to let gas flow in is provided along the tangential direction of cross-sectional circle to the outer tube 1, and the discharge opening 8 to discharge solid is disposed to the side wall of the outer tube 1 in the downstream area of the influent gas. The inner tube 7 for the passage of cleaned gas separated from solids is provided in the outer tube 1 confronting the discharge opening 6 so as to be disposed with a distance between the outer tube 1. Thus, the generation of swirl flow in the bottom part of outer tube is prevented by eliminating the bottom part of outer tube, and solids are prevented from colliding against the bottom part and from being accompanied with the returning gas flow and being mixed with the cleaned gas, so that the fine particles of small specific weight in a fluid are surely separated and removed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は含塵流体に旋回流を与え、遠心力により流体中
の異物を分離除去する装置および方法に係り、特に、火
力発電、セメント工業、化学工業、製鉄業等の脱塵装置
に適用しうる気体中の固形物を分離、除去するに好適な
固体分離装置および固体分離方法に関する。
The present invention relates to an apparatus and method for applying a swirling flow to a dust-containing fluid and separating and removing foreign matter in the fluid using centrifugal force, and is particularly applicable to dust removal equipment for thermal power generation, cement industry, chemical industry, steel industry, etc. The present invention relates to a solid separation device and a solid separation method suitable for separating and removing solids from a humid gas.

【従来の技術] 流体中に含まれる異物の分離除去にはその目的とする浄
化度により、静電力、遠心力、慣性力、重力等が用いら
れている。そのうち遠心力による分離法は一般に、低圧
力損失、取り扱いが容易等の利点があり、清浄な空気と
浄化燃料ガスを必要とするエンジン、タービン等の内燃
機関を保護するために、燃焼用空気の浄化に用いられる
。また発電プラント排出ガス浄化にみられる環境の保全
用にも広く利用されている。 特開昭52−92973号公報に記載の固体状異物分離
装置、特開昭52−99478号公報記載の粉塵含有気
体の分離法およびその装置等も遠心力を利用して流体中
から異物を分離除去するものである。 前者はエンジン等に必要な空気、燃料ガス中の異物除去
を主な対象としたもので、ケーシング部材である筒の中
にデフレクタと呼ばれる翼を入れ比較的小さい遠心力で
異物を除去可能にしたことにより、従来のような異物の
高速移動による摩耗作用がなくなり、装置の長寿命化が
可能になる。 後者は環境の保全を対象としたもので、先行技術にみら
れる塵の分離効率をより向上させうる分離法および装置
で、被処理ガスを一次集塵筒の内壁に沿って形成された
ガスの旋回気流の始端の中心部からその内部に並流かつ
直進的に導入し、この導入された被処理ガス中の塵を一
次集塵筒の終端部から被処理ガスの一部と共に二次集塵
筒に導入して二次集塵筒で集塵処理した後、ガスを再度
−次集塵筒に返送するもので、高効率な集塵処理を可能
にしたものである。 【発明が解決しようとする課題】 これら先行の従来技術は前記の長所を有するが、数μl
の径を持つ、微細で比重の小さい固形物の除去に対する
配慮がされておらす、例えば石炭をガス化した場合に発
生する粗ガス中に含まれるチャーと呼ばれる径が数μl
で、比重1,1程度の微粒子の除去には不向きである。 これは固形物の排出部におけるガスの乱れ、すなわち浄
化ガスの排出部に存在する含塵ガスの一部が反転し、反
転ガス中に微細な粒子を同伴して、浄化ガス中に微細な
粒子を混入したままガスを排出する構造となっているた
めである。詳しくは第3図に示すように、外筒1の入口
から被浄化ガスを導入し、該外筒1に挿入した翼2で旋
回流3を発生させる。旋回流3により被浄化ガス中の固
形物4は遠心力を受は外筒1の内壁側に移り、旋回流と
共に外筒底部5に至る。該底部5で固形物は固体の排出
口6から大多数のものは排出されるが、外筒底部5の中
心部にある除塵ガス排出用の内筒7と外筒1で囲われる
区域に旋回して流入して来るガスは固体の排出口6から
は排出されないか、あるいは排出されたとしても排出量
が流入するガス量よりも少ない場合には塵が浄化された
流入ガスの反転流に同伴され内筒7の外壁部近傍を立ち
昇り、内筒7の浄化ガス出口に至るため、固体の分離、
除去性能が低下することになる。また、この反転流は分
離した固体粒子を再飛散させるため、処理すべき含塵ガ
ス量の変化により、脱塵効率が大きく変動することにも
なる。 本発明は、上記従来技術のもつ課題を解決するため、外
筒の底部をなくして該外筒底部内で旋回流が発生するの
を防ぎ、また、固形物が底部に衝突し反転ガス流に同伴
されて浄化ガス中に混入するのを防止し、流体中の微細
で比重の小さい粒子を確実に分離除去することを目的と
する。
[Prior Art] Electrostatic force, centrifugal force, inertial force, gravity, etc. are used to separate and remove foreign substances contained in a fluid, depending on the desired degree of purification. Among them, the centrifugal force separation method generally has advantages such as low pressure loss and easy handling, and is used to remove combustion air to protect internal combustion engines such as engines and turbines that require clean air and purified fuel gas. Used for purification. It is also widely used for environmental conservation purposes such as purification of exhaust gas from power generation plants. The solid foreign matter separation device described in JP-A-52-92973 and the dust-containing gas separation method and device described in JP-A-52-99478 also use centrifugal force to separate foreign matter from fluid. It is to be removed. The former is mainly aimed at removing foreign matter from the air and fuel gas necessary for engines, etc., and uses a blade called a deflector inside a tube that is a casing member, making it possible to remove foreign matter with a relatively small centrifugal force. This eliminates the abrasive effects caused by the high-speed movement of foreign matter as in the prior art, making it possible to extend the life of the device. The latter is aimed at environmental protection, and is a separation method and device that can improve the dust separation efficiency found in the prior art by separating the gas to be treated into the gas formed along the inner wall of the primary dust collection cylinder. The swirling airflow is introduced from the center of the starting end into the interior in a parallel and straight line, and the dust in this introduced to-be-treated gas is collected together with a part of the to-be-treated gas from the terminal end of the primary dust collection cylinder. After the gas is introduced into the cylinder and subjected to dust collection processing in the secondary dust collection cylinder, the gas is returned to the secondary dust collection cylinder again, making highly efficient dust collection processing possible. [Problems to be Solved by the Invention] Although these prior art techniques have the above-mentioned advantages,
For example, the diameter of char contained in the crude gas generated when coal is gasified is several microliters.
Therefore, it is not suitable for removing fine particles with a specific gravity of about 1.1. This is caused by gas turbulence at the solid discharge section, that is, part of the dust-containing gas present at the purification gas discharge section is reversed, and fine particles are entrained in the reversed gas, resulting in fine particles in the purified gas. This is because the structure is such that the gas is discharged while still containing the gas. Specifically, as shown in FIG. 3, the gas to be purified is introduced from the inlet of the outer cylinder 1, and a swirling flow 3 is generated by the blades 2 inserted into the outer cylinder 1. Due to the swirling flow 3, the solid matter 4 in the gas to be purified is subjected to centrifugal force and moves to the inner wall side of the outer cylinder 1, and reaches the bottom portion 5 of the outer cylinder together with the swirling flow. In the bottom part 5, most of the solids are discharged from the solid discharge port 6, but they turn to an area surrounded by the inner cylinder 7 and the outer cylinder 1, which are located in the center of the outer cylinder bottom part 5 and are used for discharging dust removal gas. The incoming gas is not discharged from the solid outlet 6, or even if it is discharged, if the amount of discharged gas is less than the amount of incoming gas, the dust is entrained in the reverse flow of the purified incoming gas. The liquid rises near the outer wall of the inner cylinder 7 and reaches the purified gas outlet of the inner cylinder 7, so solids are separated and
Removal performance will deteriorate. Furthermore, since this reverse flow re-disperses the separated solid particles, the dust removal efficiency will vary greatly depending on the amount of dust-containing gas to be treated. In order to solve the problems of the prior art described above, the present invention eliminates the bottom of the outer cylinder to prevent swirling flow from occurring within the bottom of the outer cylinder, and also prevents solid matter from colliding with the bottom and creating a reversed gas flow. The purpose is to prevent fine particles with low specific gravity from being entrained in the purification gas and to reliably separate and remove fine particles with low specific gravity in the fluid.

【課題を解決するための手段】[Means to solve the problem]

本発明は上記目的を達成するために、ガス中の固形物を
遠心力によって分離除去する分離装置において、横断面
の円周の接線方向に沿って前記ガスを流入させる流入口
を備えた外筒と、流入ガス流の下流域の外筒側壁に前記
固形物を排出する固体排出口を備え、該排出口に対向す
る外筒内には外筒と間隔をおいて設けられる浄化ガス流
路用の内筒とを備えた固体分離装置およびその装置を用
いる固体分離方法を提供する。ここで固形物を排出する
固体排出口は外筒内でのガス旋回流に並行した方向であ
って、少なくとも外筒側壁の一部に開口しており、ガス
流入口の下流側側壁と固体排出口の下流側の側壁の間の
外筒側壁外部空間を仕切板で覆い区割部とし、該区割部
に熱回収装置を設ける構成を採用してもよい。 さらに、この固体分離装置を複数個並列および/または
直列状に組み合わせてもよい。
In order to achieve the above object, the present invention provides a separation device for separating and removing solids in a gas by centrifugal force, and an outer cylinder provided with an inlet for allowing the gas to flow in along the tangential direction of the circumference of the cross section. and a solid discharge port for discharging the solids on the side wall of the outer cylinder in the downstream region of the inflow gas flow, and a purified gas flow path provided in the outer cylinder opposite to the discharge port at a distance from the outer cylinder. A solid separation device equipped with an inner cylinder and a solid separation method using the device are provided. Here, the solid discharge port for discharging the solids is in a direction parallel to the gas swirl flow within the outer cylinder, and is open in at least a part of the side wall of the outer cylinder, and is connected to the downstream side wall of the gas inlet. A configuration may be adopted in which the outer cylinder side wall external space between the side walls on the downstream side of the outlet is covered with a partition plate to form a partition, and a heat recovery device is provided in the partition. Furthermore, a plurality of solid separators may be combined in parallel and/or in series.

【作用】[Effect]

第1図により本発明の詳細な説明する。第1図は本発明
の固体分離装置の一エレメントの縦断面を示すもので、
円筒状の外筒1、該外筒1内に挿入した内筒7、該外筒
1の壁面に設けられた固体排出口6を取り巻く集塵箱8
から成る。外筒1の片端部9は閉じられ、該端部9側の
側壁には被処理ガスを導入するための外筒の横断面の円
周の接線方向に開口した入口部10を少なくとも一箇所
開口させている。該外筒1の入口側の端部9の反対側の
端部11は全体が浄化ガスの出口として開口している。 また該外筒1の中央部には固体排出口6が流入ガスの旋
回流3と並行する方向に開口し、該排出口6をおおうよ
うに外筒1の外壁に接続した分離固体排出口12をもつ
集塵箱8が設けられている。本例においては固体排出口
6は外筒1全周にわたって設けられているが、外筒1の
周方向壁面の一部分に固体排出口6を設けたものでもよ
い。一方、外筒1の固体排出口6の内側には外筒1と同
一軸心をもち、外筒1とは間隔をおいて設けられた上、
下端部が開口した内筒7が設置されている。 本発明の分離器では被処理ガスを外筒1の側壁の入口部
10から接線方向に導入し、被処理ガスを高速で旋回さ
せる。この旋回流3により、旋回流中に存在する固形物
4には遠心力が与えられ、処理ガス中に分散していた固
形物4が外筒1を旋回し、下降するに従って外筒1の内
壁側に移動する。該内壁側に移動した固形物4は壁に支
えられて、これ以上は半径方向に移動できず旋回流3に
沿って外筒1の内壁部を下降し、固体排出口6に至る。 固体排出口6は外筒1の周囲に旋回流3と並行して、少
なくとも一周以上開口しているため、この部分を旋回す
る固形物4はすべて支えがなくなり、外筒1から飛び出
して集塵箱8へ放出される。固形物4を分離したガスは
、そのまま旋回しなから外筒1内を下降し、浄化ガス出
口11より排出する。 なお、第1図は本発明の原理を示したもので、導入ガス
に旋回流3を与える部位の構造は第3図に示す旋回翼構
造であっても、第1図に示す開口構造であってもよい。 さらには外筒1内に螺旋型、プロペラ型の翼を挿入し旋
回流3を与える方式でもよい。また外筒1に開口する固
体排出口6は外筒1に数段階に設置することも可能であ
る6重要なことは遠心力により外筒1の内壁側に集めた
固形物4を固体の排出口から放出し、浄化されたガスの
流れ方向を反転とか流波により変えることなく取り出す
ことである。第2図は本発明の原理から成る固体分離器
のエレメントを複数本並列および/または直列状に組み
合わせ処理容量の増加を図った場合、すなわち実用に供
する場合の固体分離器の構造を示したものである。第1
図に示した外筒1、内筒7、固体排出口6等から成る固
体分離器の一エレメントを複数本並列に列べ、全体を容
器15に収納している。並列に配置された各外筒1の被
処理ガス入口部10の下流側側壁、浄化ガス出口側開口
部11の上流側側壁および固体排出口6の上流側側壁が
それぞれ仕切板16により容器15に支持されている。 浄化ガス出口側開口部11と固体排出口6とを支持する
二つの仕切板16と容器15で囲われる空間8が第1図
で示した集塵箱8に相当する。容器15に少なくとも一
箇所、ガス導入口18が設けられ、このガス導入口18
は各外筒1の被処理ガス入口部10が臨んでいる側の容
器15と仕切板16とで形成される空間に連なっている
。被浄化ガスはガス導入口18より該容器15内に導入
され、各外筒1のガス入口部10に分配される。外筒1
側壁の接線方向に少なくとも一箇所以上開口したガス入
口部10から流入したガスは旋回流3となり、外筒1内
で含有するa<固体)4を遠心力により外筒1内壁側に
移動させながら下降する。該内壁側に集められた固体4
は固体排出口6に至り、遠心力により外筒1内から間外
の集塵空間8に放出される。 固体4を放出後の浄化ガスは外筒1の固体排出口6に対
応した位置であって、外筒1内に設けられた内筒7の内
部を下降し、浄化ガス出口側壁開口部11を経て容器1
5の出口19へと至る。複数本のエレメントを組み合わ
せた場合には第1図に示す集塵箱8は個々のエレメント
に取り付けてもよいが構造を簡略化するには第2図に示
すように、個々の部位には取り付けず、固体排出口6を
囲うように各エレメントの固体排出口6の外周部にガイ
ド20を取り付け、集塵空間8は一体化する構造がよい
。ガイド20の働きは、個々のエレメントから放出され
る固体4相互の干渉による集塵効率の低下を防止するた
めのものである。また、外筒1のガス入口部10の下流
側側壁と固体排出口6の上流側側壁に設置した仕切板1
6と容器15で囲われる空間は熱回収域21を形成し、
該域21には水等の熱回収液を流し、熱回収を図る。 本発明の固体分離装置の運転では集塵空間8に捕集した
塵を排出するため集塵空間8の出口から連続的に抽気し
、分離した固体粒子4を気流で搬出し、固体分離装置か
ら排出することが好ましい。 捕集する固体粒子4が自重で容易に落下するような比較
的大きな粒子であれば横型に設置することで固体粒子4
を気流搬送することなく排出できる。 また第2図に示す固体容器15からなる分離装置を−ユ
ニツ、トとし、並列に数ユニットさらには直列に数ユニ
ット組み合わせて設置することにより固体粒子分離処理
量の増大、およびより精密な浄化が可能になる。特に直
列に組み合わせる場合には各ユニットにおける外筒、内
筒の径は後流側はど小さい径にすることにより遠心力(
遠心力CCv2/r;v:旋回流速、r:外筒半径)が
強くなり微細な粒子の分離が可能になる。
The present invention will be explained in detail with reference to FIG. FIG. 1 shows a longitudinal section of one element of the solid separator of the present invention.
A cylindrical outer cylinder 1, an inner cylinder 7 inserted into the outer cylinder 1, and a dust collection box 8 surrounding the solid discharge port 6 provided on the wall of the outer cylinder 1.
Consists of. One end 9 of the outer cylinder 1 is closed, and the side wall on the side of the end 9 is provided with at least one inlet 10 that is opened in the tangential direction of the circumference of the cross section of the outer cylinder for introducing the gas to be treated. I'm letting you do it. The entire end 11 of the outer cylinder 1 opposite to the inlet end 9 is open as an outlet for the purified gas. Further, a solid discharge port 6 is opened in the center of the outer cylinder 1 in a direction parallel to the swirling flow 3 of the inflow gas, and a separated solid discharge port 12 is connected to the outer wall of the outer cylinder 1 so as to cover the discharge port 6. A dust collection box 8 is provided. In this example, the solid discharge port 6 is provided over the entire circumference of the outer cylinder 1, but the solid discharge port 6 may be provided in a portion of the circumferential wall surface of the outer cylinder 1. On the other hand, the inside of the solid discharge port 6 of the outer cylinder 1 has the same axis as the outer cylinder 1, and is provided at a distance from the outer cylinder 1.
An inner cylinder 7 whose lower end is open is installed. In the separator of the present invention, the gas to be treated is introduced tangentially from the inlet 10 of the side wall of the outer cylinder 1, and the gas to be treated is swirled at high speed. This swirling flow 3 applies centrifugal force to the solid matter 4 present in the swirling flow, and the solid matter 4 dispersed in the processing gas swirls around the outer cylinder 1, and as it descends, the inner wall of the outer cylinder 1 Move to the side. The solids 4 that have moved toward the inner wall are supported by the wall and cannot move any further in the radial direction, so they descend along the inner wall of the outer cylinder 1 along the swirling flow 3 and reach the solids discharge port 6. Since the solid discharge port 6 opens at least once around the outer cylinder 1 in parallel with the swirling flow 3, all the solids 4 swirling around this area lose support and fly out of the outer cylinder 1 to collect dust. It is released into box 8. The gas from which the solid matter 4 has been separated continues to swirl, descends inside the outer cylinder 1, and is discharged from the purified gas outlet 11. Note that FIG. 1 shows the principle of the present invention, and even if the structure of the part that gives the swirling flow 3 to the introduced gas is the swirl vane structure shown in FIG. 3, the opening structure shown in FIG. It's okay. Furthermore, a method may be adopted in which a spiral or propeller type blade is inserted into the outer cylinder 1 to provide the swirling flow 3. In addition, the solid discharge ports 6 that open to the outer cylinder 1 can be installed in several stages in the outer cylinder 1.6 The important thing is that the solids 4 collected on the inner wall side of the outer cylinder 1 by centrifugal force are discharged from the solids 4. It is to discharge the purified gas from the outlet and take it out without changing the flow direction of the purified gas by reversing or using flow waves. Figure 2 shows the structure of a solid separator when a plurality of solid separator elements based on the principles of the present invention are combined in parallel and/or in series to increase the processing capacity, that is, when it is put into practical use. It is. 1st
A plurality of solid separator elements shown in the figure, each consisting of an outer cylinder 1, an inner cylinder 7, a solid discharge port 6, etc., are arranged in parallel, and the whole is housed in a container 15. The downstream side wall of the treated gas inlet 10, the upstream side wall of the purified gas outlet opening 11, and the upstream side wall of the solid discharge port 6 of each outer cylinder 1 arranged in parallel are connected to the container 15 by a partition plate 16, respectively. Supported. The space 8 surrounded by the container 15 and two partition plates 16 that support the purified gas outlet opening 11 and the solid discharge port 6 corresponds to the dust collection box 8 shown in FIG. At least one gas inlet 18 is provided in the container 15, and this gas inlet 18
is connected to the space formed by the container 15 and the partition plate 16 on the side facing the gas inlet portion 10 of each outer cylinder 1 . The gas to be purified is introduced into the container 15 through the gas inlet 18 and distributed to the gas inlet portions 10 of each outer cylinder 1. Outer cylinder 1
The gas flowing in from the gas inlet 10 which is opened at least at one location in the tangential direction of the side wall becomes a swirling flow 3, and the gas contained in the outer cylinder 1 is moved toward the inner wall of the outer cylinder 1 by centrifugal force. descend. Solids 4 collected on the inner wall side
The solids reach the solid discharge port 6 and are discharged from the inside of the outer cylinder 1 into the outer dust collection space 8 by centrifugal force. After releasing the solid 4, the purified gas is located at a position corresponding to the solid discharge port 6 of the outer cylinder 1, descends inside the inner cylinder 7 provided in the outer cylinder 1, and passes through the purified gas outlet side wall opening 11. Container 1
5, leading to exit 19. When multiple elements are combined, the dust collection box 8 shown in Fig. 1 may be attached to each element, but to simplify the structure, it may be attached to each part as shown in Fig. 2. First, a structure is preferable in which the guide 20 is attached to the outer periphery of the solid discharge port 6 of each element so as to surround the solid discharge port 6, and the dust collection space 8 is integrated. The function of the guide 20 is to prevent the dust collection efficiency from decreasing due to interference between the solids 4 emitted from the individual elements. Furthermore, a partition plate 1 is installed on the downstream side wall of the gas inlet 10 of the outer cylinder 1 and the upstream side wall of the solid discharge port 6.
6 and the space surrounded by the container 15 forms a heat recovery area 21,
A heat recovery liquid such as water is flowed into the area 21 to recover heat. In the operation of the solid separator of the present invention, air is continuously extracted from the outlet of the dust collection space 8 in order to discharge the dust collected in the dust collection space 8, and the separated solid particles 4 are carried out by airflow and removed from the solid separator. It is preferable to discharge it. If the solid particles 4 to be collected are relatively large particles that easily fall under their own weight, the solid particles 4 can be collected horizontally.
can be discharged without air flow. Furthermore, by installing the separation device consisting of the solid container 15 shown in FIG. It becomes possible. In particular, when combining in series, the diameter of the outer cylinder and inner cylinder of each unit should be made smaller on the downstream side to prevent centrifugal force.
The centrifugal force CCv2/r; v: swirling flow velocity, r: outer cylinder radius) becomes stronger, making it possible to separate fine particles.

【実施例】【Example】

実施例1 第1図に示す外筒1、内筒7、集塵箱8からなる一エレ
メントにおいて、内径261、外径38閣、全長150
0■の外筒1、該外筒1の側壁接線方向に高さ22閣、
幅3鴫の被処理ガス流体入口部10を三箇所開口し、該
外筒1の流体入口部10上端より1200mm下流側の
位置に導入ガスの旋回流線に並行して外筒1の側壁に水
平に対し7度の角度で傾斜する22m+++の幅をもつ
固体排出口6を外筒1の被処理ガス出口側開口部11の
周囲に開口した。内筒7は外径22mm、内径18mm
、長さ100mmで固体排出口6の近傍に外筒1と中心
線を同じくして取り付けた。外筒1と内筒7の固定は固
体排出口6の上流側、下流側にそれぞれ内筒7外壁の全
周の1/6に相当する長さを持つ翼状のスペーサー(図
示せず。)を水平に対して7度の角度で傾斜した状態に
組み込んで行った。 外筒1の流体入口部10からは比重1.18で径が1μ
m以下のものを30重量%含むく平均粒子径3μmの塵
をINmコ当り4,2g含む。)被処理ガスを入口部1
0での流速が10〜60m/Sの範囲になるように流入
させた。この時の塵の捕集率(捕集率=捕集量/入口か
らの供給塵量)は53〜65%で1μm以下の塵を23
〜31%捕集できた。 実施例2 実施例1に用いたエレメントと同じものを9個作成し、
第2図に示す構造としたーユニットにおいて、−エレメ
ント当りの被処理ガス量を入口ガス流速で10〜60m
/S、ガス中の塵の濃度を49/Nrnコ、塵の平均粒
子径を3μmとした場合の捕集率は52〜60%であっ
た。また集塵空間8から全供給ガスく被処理ガス)量の
10%を抽気しつつ塵を排出した場合の捕集率は58〜
68%であり、1μm以下の塵を37〜48%捕集でき
た。 実施例3 2t/、iの石炭処理量を持つ石炭ガス化装置の後流に
通常のサイクロンを設置し、その後流に実施例2で用い
た装置を接続して該装置の熱回収域に加圧熱水を循環し
、熱回収を図ると共に石炭ガス化時に副生ずる未反応石
炭(石炭チャー)の捕集を行った。その結果、28kg
/hで水蒸気を発生させると共に通常サイクロンで捕集
できなかった平均粒子径3μmのチャー粒子を58%捕
集できた。 比較例 実施例1に用いた装置の固体排出口6の下流側の内筒7
の外側と外筒1の内側に囲まれる空間域に第3図に示す
ような外筒1底部を取り付け、該空間域に流入するガス
が直進しない構造とした従来型のサイクロンにおいて、
実施例1と同条件で塵の捕集率を求めた。その結果、塵
の捕集率は26〜33%であった。また、実施例1で用
いた装置の固体排出口6の下流側の内筒7の外側と外筒
1の内側に囲まれる空間域を広げた場合、狭めた場合に
おいてそれぞれの捕集率を求めた。結果は、いずれの場
合も実施例1に記載した捕集率より5〜11%低下した
Example 1 An element consisting of an outer cylinder 1, an inner cylinder 7, and a dust collection box 8 shown in FIG.
0■ outer cylinder 1, height 22 cm in the tangential direction of the side wall of the outer cylinder 1,
The inlet portion 10 of the gas to be treated having a width of 3 mm is opened at three locations, and the inlet portion 10 of the fluid inlet portion 10 of the outer tube 1 is opened at 1200 mm downstream from the upper end of the fluid inlet portion 10 of the outer tube 1 in parallel to the swirl flow line of the introduced gas. A solid discharge port 6 having a width of 22 m+++, inclined at an angle of 7 degrees with respect to the horizontal, was opened around the outlet side opening 11 of the gas to be treated in the outer cylinder 1. The inner cylinder 7 has an outer diameter of 22 mm and an inner diameter of 18 mm.
It had a length of 100 mm and was attached near the solid discharge port 6 so that the center line was the same as that of the outer cylinder 1. The outer cylinder 1 and the inner cylinder 7 are fixed by installing wing-shaped spacers (not shown) having a length corresponding to 1/6 of the total circumference of the outer wall of the inner cylinder 7 on the upstream and downstream sides of the solid discharge port 6, respectively. It was installed so that it was tilted at an angle of 7 degrees with respect to the horizontal. From the fluid inlet part 10 of the outer cylinder 1, the specific gravity is 1.18 and the diameter is 1μ.
Each IN m contains 4.2 g of dust with an average particle diameter of 3 μm, including 30% by weight of particles of less than m. ) The gas to be treated is transferred to the inlet section 1.
The flow rate at zero was in the range of 10 to 60 m/s. At this time, the dust collection rate (collection rate = amount of collected/amount of dust supplied from the inlet) is 53 to 65%, and 23% of dust of 1 μm or less is collected.
~31% could be collected. Example 2 Nine elements identical to those used in Example 1 were created,
In the unit with the structure shown in Figure 2, the amount of gas to be treated per element is 10 to 60 m at the inlet gas flow rate.
/S, the concentration of dust in the gas was 49/Nrn, and the collection rate was 52 to 60% when the average particle diameter of the dust was 3 μm. In addition, when dust is discharged while extracting 10% of the total supply gas (to be treated gas) from the dust collection space 8, the collection rate is 58~
68%, and 37 to 48% of dust of 1 μm or less could be collected. Example 3 A normal cyclone was installed downstream of a coal gasification device having a coal throughput of 2t/i, and the device used in Example 2 was connected to the downstream side to add heat to the heat recovery zone of the device. Pressured hot water was circulated to recover heat and collect unreacted coal (coal char), which is a by-product during coal gasification. As a result, 28 kg
/h, and was able to collect 58% of char particles with an average particle diameter of 3 μm, which could not be collected by a normal cyclone. Comparative Example Inner cylinder 7 on the downstream side of the solid discharge port 6 of the device used in Example 1
In a conventional cyclone, the bottom part of the outer cylinder 1 as shown in FIG.
The dust collection rate was determined under the same conditions as in Example 1. As a result, the dust collection rate was 26 to 33%. In addition, the collection rates were determined when the spatial area surrounded by the outside of the inner cylinder 7 and the inside of the outer cylinder 1 on the downstream side of the solid discharge port 6 of the apparatus used in Example 1 was expanded and narrowed. Ta. The results were 5 to 11% lower than the collection rate described in Example 1 in all cases.

【発明の効果】【Effect of the invention】

本発明の固体分離装置は流体の流れる方向には障害物を
設けていないので、流体の反転流が生じなくて、そのた
め分離された固体粒子が再飛散しなくなり、固体分離効
率が向上し、また流体の流量が変化しても固体分離効率
が変動することもない。さらに、簡単な構造のエレメン
トからなるので、このエレメントを複数組み合わせるこ
とにより固体分離効率を高めることが容易にできる。 また、この固体分離装置は石炭ガス化装置、およびその
他の燃焼ガス、その排ガス等から固体微粒子を取り除く
ために用いることができると同時に、装置の素材または
スケールを選択することによりあらゆる産業分野の固体
分離装置に用いることができる。例えば、モータの空冷
用ファンの空気取入部、エアコン、自動車または電車の
室内空気取入部、あるいは人工衛星の前方部に取り付け
、衛星の宇宙空間の塵により減速されるのを防ぐことも
できる。
Since the solid separator of the present invention does not have any obstacles in the direction of fluid flow, there is no reverse flow of the fluid, which prevents separated solid particles from scattering again, improving solid separation efficiency. Even if the fluid flow rate changes, the solid separation efficiency does not change. Furthermore, since it consists of elements with a simple structure, solid separation efficiency can be easily increased by combining a plurality of these elements. In addition, this solid separation equipment can be used to remove solid particles from coal gasification equipment, other combustion gases, and their exhaust gases, etc., and at the same time, by selecting the material or scale of the equipment, it can be used to remove solid particles from all industrial fields. Can be used in separation equipment. For example, it can be attached to the air intake of a motor's cooling fan, an air conditioner, an indoor air intake of a car or train, or the front of an artificial satellite to prevent the satellite from being decelerated by dust in outer space.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示すエレメントの縦断面図、第
2図は本発明のエレメントを組み合わせユニット化した
際の固体分離装置の断面図、第3図は従来技術の一実施
例を示す原理図である。 1・・外筒、 6・・・固体排出口、 7・・内筒、8
・・・集塵箱 第1図
Fig. 1 is a longitudinal cross-sectional view of an element showing the principle of the present invention, Fig. 2 is a cross-sectional view of a solid separator when the elements of the present invention are combined into a unit, and Fig. 3 shows an example of the prior art. It is a principle diagram. 1...Outer cylinder, 6...Solid discharge port, 7...Inner cylinder, 8
...Dust collection box diagram 1

Claims (8)

【特許請求の範囲】[Claims] (1)ガス中の固形物を遠心力によって分離除去する分
離装置において、外筒横断面円周の接線方向に沿って前
記ガスを流入させる流入口を備えた外筒を設け、流入ガ
ス流の下流域の外筒側壁に該固形物を排出する固体排出
口を備え、該排出口に対向する外筒内に、外筒と間隔を
おいて設けられる該固形物を分離した浄化ガスの流路用
内筒を設けたことを特徴とする固体分離装置。
(1) In a separation device that separates and removes solids in a gas by centrifugal force, an outer cylinder is provided with an inlet that allows the gas to flow in along the tangential direction of the circumference of the cross section of the outer cylinder, and the inflow gas flow is A solid discharge port for discharging the solid matter is provided on the side wall of the outer cylinder in the downstream region, and a flow path for purified gas from which the solid matter has been separated is provided in the outer cylinder facing the discharge port at a distance from the outer cylinder. A solid separator characterized by being equipped with an internal cylinder.
(2)固体排出口はガス旋回流に並行する方向であって
、少なくとも外筒側壁の一部に開口したことを特徴とす
る請求項1記載の固体分離装置。
(2) The solid separator according to claim 1, wherein the solid discharge port is opened in a direction parallel to the gas swirl flow and at least in a part of the side wall of the outer cylinder.
(3)ガス流入口の下流側側壁と固体排出口の下流側の
側壁の間の外筒側壁外部空間を仕切板で覆い区割部とし
、該区割部に熱回収装置を設けることを特徴とする請求
項1または2記載の固体分離装置。
(3) The external space of the outer cylinder side wall between the downstream side wall of the gas inlet and the downstream side wall of the solid discharge port is covered with a partition plate to form a partition, and a heat recovery device is provided in the partition. The solid separator according to claim 1 or 2.
(4)請求項1〜3記載の固体分離装置を複数個並列状
および/または直列状に組み合わせてなる固体分離装置
(4) A solid separator comprising a plurality of solid separators according to claims 1 to 3 combined in parallel and/or in series.
(5)ガスは石炭ガス化炉からの排出ガスであることを
特徴とする請求項1〜4記載の固体分離装置。
(5) The solid separation device according to any one of claims 1 to 4, wherein the gas is exhaust gas from a coal gasifier.
(6)ガス中の固形物を遠心力によって分離除去する方
法において、外筒の側壁部のガス流入口から前記ガスを
該外筒の横断面円周の接線方向に導入して前記ガスを旋
回流とすると共に、該固形物に遠心力を与え、該外筒流
入ガス流の下流域の側壁に設けた排出口から固形物を排
出し、固形物を除去された浄化ガスは流れを変えること
なく外筒端部の浄化ガス出口へと流出させることを特徴
とする固体分離方法。
(6) In a method of separating and removing solids in a gas by centrifugal force, the gas is introduced from the gas inlet in the side wall of the outer cylinder in a tangential direction to the circumference of the cross section of the outer cylinder, and the gas is swirled. At the same time, a centrifugal force is applied to the solids, the solids are discharged from a discharge port provided on the side wall of the downstream region of the inflow gas flow of the outer cylinder, and the purified gas from which the solids have been removed changes its flow. A solid separation method characterized by causing the purified gas to flow out to the purified gas outlet at the end of the outer cylinder.
(7)固形物を除去された浄化ガスは流波または拡流さ
せることなく浄化ガス出口へと流出させることを特徴と
する請求項6記載の固体分離方法。
(7) The solid separation method according to claim 6, characterized in that the purified gas from which the solids have been removed is allowed to flow out to the purified gas outlet without being caused to wave or spread.
(8)外筒の流入ガス流の下流域の側壁の全周に設けた
固体排出口から固形物とガスの一部を排出することを特
徴とする請求項6または7記載の固体分離方法。
(8) The solid separation method according to claim 6 or 7, characterized in that the solids and a portion of the gas are discharged from a solid discharge port provided around the entire circumference of the side wall in the downstream region of the inflow gas flow of the outer cylinder.
JP14492689A 1989-06-06 1989-06-06 Method and device for solid separation Pending JPH038457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14492689A JPH038457A (en) 1989-06-06 1989-06-06 Method and device for solid separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14492689A JPH038457A (en) 1989-06-06 1989-06-06 Method and device for solid separation

Publications (1)

Publication Number Publication Date
JPH038457A true JPH038457A (en) 1991-01-16

Family

ID=15373428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14492689A Pending JPH038457A (en) 1989-06-06 1989-06-06 Method and device for solid separation

Country Status (1)

Country Link
JP (1) JPH038457A (en)

Similar Documents

Publication Publication Date Title
RU2353436C2 (en) Separator for separating small particles (versions)
US4198290A (en) Dust separating equipment
US6802881B2 (en) Rotating wave dust separator
US6277278B1 (en) Cyclone separator having a variable longitudinal profile
US3885931A (en) Vortex forming apparatus and method
Caplan Source control by centrifugal force and gravity
JPS59230601A (en) Atomizing drier and method
US4279624A (en) Downflow separator method and apparatus
US2687780A (en) Gas cleaning apparatus
US4286974A (en) Compound particle separator
US3150943A (en) Cyclone-type dust collector
CN107971151B (en) A kind of liquid film type multicyclone
JPH038457A (en) Method and device for solid separation
CN103585845B (en) A kind of multiphase flow filter separator
SU912224A1 (en) Dust separator
RU2056178C1 (en) Whirling dust collector
RU2144436C1 (en) Dust separator with flow former
SU889112A1 (en) Cyclon
RU2080939C1 (en) Inertial filter-separator
CN216223340U (en) Unpowered dust removal equipment suitable for coal is transported
CN215612406U (en) Novel high-efficient cyclone of binary channels
SU1143473A1 (en) Cyclone apparatus
CN208574353U (en) A kind of gas cleaning plant
RU2014111C1 (en) Gas purifier
US2327197A (en) Cinder collector