JPH0384350A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0384350A
JPH0384350A JP1219726A JP21972689A JPH0384350A JP H0384350 A JPH0384350 A JP H0384350A JP 1219726 A JP1219726 A JP 1219726A JP 21972689 A JP21972689 A JP 21972689A JP H0384350 A JPH0384350 A JP H0384350A
Authority
JP
Japan
Prior art keywords
heater
indoor
current
threshold
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1219726A
Other languages
Japanese (ja)
Other versions
JPH0820094B2 (en
Inventor
Takatomo Matsumi
松實 孝友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1219726A priority Critical patent/JPH0820094B2/en
Publication of JPH0384350A publication Critical patent/JPH0384350A/en
Publication of JPH0820094B2 publication Critical patent/JPH0820094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To enable maximization of capacity of a compressor during limitation of current capacity of a source plug socket by providing a threshold decreasing means to output a signal by means of which a threshold on the outdoor machine side is decrease and a threshold increasing means to output a signal by means of which a threshold on the outdoor machine side is increased. CONSTITUTION:Since, when the number of revolutions of an indoor blower 3 is high (when an indoor blower current Ifi is high), the temperature of a heater 2 is low and a heater current Ih is high, a current Ic of a compressor 7 is limited to a lower value by means of a threshold decreasing means 9, and a threshold Nh of an outdoor machine 6 is set to a low value. Reversely, since, when the number of revolutions of the indoor blower 3 is low (when Ifi is low), the temperature of the heater 2 is high and the heater current Ih is low, a threshold Nl of an outdoor machine 6 is set to a high value by means of a threshold increasing means 10, and the current Ic of the compressor 7 is allowable up to a high value. Thus, the heater 2 having a self-current limiting function is used as an auxiliary heating heater, and during limitation of current capacity of a source plug socket, capacity of the compressor 7 can be maximized.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、室内の空気の温度や湿度等を調整するための
空気調和機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an air conditioner for adjusting the temperature, humidity, etc. of indoor air.

〈従来技術〉 従来、室内の空気の温度や湿度等を調整するための空気
調和機に補助暖房手段として使われているヒータは、ニ
クロムヒータやシーズヒータと呼ばれるもので、通電初
期は突入電流が流れるが、その後は定電流特性を示す。
<Prior art> Heaters conventionally used as auxiliary heating means in air conditioners to adjust the temperature and humidity of indoor air are called nichrome heaters and sheathed heaters. However, after that, it shows constant current characteristics.

このヒータは、室内機側に配され、パヒータ入°°の暖
房運転時には連続通電、或はバイメタルザーモ等による
断続通電制御されている。
This heater is arranged on the indoor unit side, and is controlled to be continuously energized during heating operation when the paheater is turned on, or to be energized intermittently by a bimetal thermometer or the like.

一方、空気調和機は、使用する電源コンセントの電流容
量(家庭用コンセント(よ通常15A)の制約から、室
外機(特に圧縮機)のピーク電流制御が必要であるが、
前記”ヒータ入”の暖房運転時には、室内送風機の風量
等に拘らず、無条件に室内機側で消費するヒータ電流分
を差し引いたピーク電流制御のしきい値を適用する方式
が採られていた。
On the other hand, air conditioners require peak current control of the outdoor unit (especially the compressor) due to the current capacity of the power outlet used (household outlets (typically 15A)).
During the above-mentioned heating operation with the heater on, a method was adopted in which a threshold value for peak current control was applied by unconditionally subtracting the heater current consumed by the indoor unit, regardless of the air volume of the indoor blower, etc. .

く 発明が解決しようとする課題 〉 しかしながら、近年のセラミック加工技術の進歩により
、その内部抵抗が正温度特性を示す、即ち自己電流制限
機能を持つセラミックヒータ(以下、PTCヒータとい
う。)が出現普及し、空気調和機の補助暖房ヒータ用と
しても使用されるようになってきた。これは、PTCヒ
ータが自己電流制限機能を持つので、連続通電しても過
熱による断線故障を起こさず、バイメタル等の制御部品
が不要となる利点があるからである。
Problems to be Solved by the Invention 〉 However, due to recent advances in ceramic processing technology, ceramic heaters (hereinafter referred to as PTC heaters) whose internal resistance exhibits positive temperature characteristics, that is, have a self-current limiting function, have become popular. However, it has also come to be used as an auxiliary heater for air conditioners. This is because the PTC heater has a self-current limiting function, so even if it is continuously energized, there will be no disconnection failure due to overheating, and there is an advantage that control parts such as bimetal are not required.

一方、電源コンセントの電流容量の制約の中て、圧縮機
の能力を最大限に発揮して(即ちできるだ(〕圧縮機に
電流を流して)、急速暖房や高温吹き出し暖房を行える
空気調和機が依然として求められている。
On the other hand, an air conditioner that can perform rapid heating or high-temperature blow-out heating by maximizing the ability of the compressor (by passing current through the compressor) within the constraints of the current capacity of the power outlet. is still in demand.

今、P T Cヒータの温度特性を考慮すると、これは
その内部抵抗が正温度特性を示すから、ヒータ電流と温
度の関係が第5図に示すような負特性になる。また、P
’FCヒータの温度は室内送風機からの熱交換風量(す
なわち室内送風機の回転数)により変化する特性を有す
る。すなわち、室内送風機の回転数が高い程ヒータ温度
(よ低く、ヒータ電流は大きい(第6.7図のH)。逆
に、室内送風機の回転数が低い程ヒータ温度は高く、ヒ
ータ電流は小さい(第6.7図のし)。
Now, considering the temperature characteristics of the PTC heater, since its internal resistance exhibits positive temperature characteristics, the relationship between heater current and temperature becomes negative characteristics as shown in FIG. Also, P
'The temperature of the FC heater has a characteristic that changes depending on the heat exchange air volume from the indoor blower (ie, the rotation speed of the indoor blower). In other words, the higher the rotation speed of the indoor fan, the lower the heater temperature (lower, and the larger the heater current (H in Figure 6.7). Conversely, the lower the rotation speed of the indoor fan, the higher the heater temperature and the smaller the heater current. (Figure 6.7).

このようにPTCヒータのヒータ電流は室内送風機の風
量によって変化する。そのため、PTCヒータを補助暖
房用ヒータとして空気調和機に使用した場合、室外機の
ピーク電流制御のしきい値を、従来の如く、ヒータの定
格電力からあらかじ一 め算出したヒータ電流を無条件に差し引いて決めると、
室内送風機の風量によってヒータ電流が下がったときに
その分の電流を有効に利用していないことになり、電源
コンセントの電流容量を有効に使って最大限に圧縮機の
能力を発揮させることはできなかった。
In this way, the heater current of the PTC heater changes depending on the air volume of the indoor blower. Therefore, when a PTC heater is used in an air conditioner as an auxiliary heating heater, the threshold for peak current control of the outdoor unit is unconditionally set to the heater current calculated in advance from the heater's rated power, as in the past. If you decide by subtracting
When the heater current decreases due to the air volume of the indoor fan, that amount of current is not being used effectively, and it is not possible to effectively use the current capacity of the power outlet to maximize the compressor's performance. There wasn't.

本発明は、上記に鑑み、PTCヒータ等の自己電流制限
機能を有するヒータを補助暖房手段として使用した場合
に、電源コンセントの電流容量の制約の中で、圧縮機の
能力を最大限に発揮させることができる空気調和機の提
供を目的とするものである。
In view of the above, the present invention maximizes the ability of a compressor within the constraints of the current capacity of a power outlet when a heater with a self-current limiting function such as a PTC heater is used as an auxiliary heating means. The purpose is to provide an air conditioner that can.

〈 課題を解決するための手段 〉 本発明請求項1による課題解決手段は、第1図〜第4図
の如く、室内機1側に、自己電流制限機能を有するヒー
タ2と、風量切替可能な室内送風機3と、前記ヒータ2
および室内送風機3の運転モードを選択する操作部4と
、該操作部4からの出力信号によりヒータ2および室外
機6を駆動制御する室内側制御部5とを備え、室外機6
側に前記室内側制御部5からの出力信号に応じて室外機
6のピーク電流制御しきい値を変化させる室外側制御部
8を備えた空気調和機において、前記室内側制御部5に
、操作部4からのヒータ2の駆動信号と室内送風機3の
回転数増加信号に基づいて、室外機6側へしきい値を減
少させる信号を出力するしきい値減少手段9と、ヒータ
2の駆動信号と室内送風機3の回転数減少信号に基づい
て室外機G側へしきい値を増大させる信号を出力するし
きい値増大手段10とが設けられたものである。
<Means for Solving the Problems> The means for solving the problems according to claim 1 of the present invention, as shown in FIGS. Indoor blower 3 and the heater 2
and an operation section 4 for selecting an operation mode of the indoor blower 3, and an indoor control section 5 for driving and controlling the heater 2 and the outdoor unit 6 based on an output signal from the operation section 4.
In an air conditioner equipped with an outdoor controller 8 on the side that changes the peak current control threshold of the outdoor unit 6 in accordance with an output signal from the indoor controller 5, the indoor controller 5 is operated. Threshold reducing means 9 outputs a signal for reducing the threshold to the outdoor unit 6 based on the drive signal for the heater 2 and the rotation speed increase signal for the indoor blower 3 from the unit 4; and the drive signal for the heater 2. and a threshold increasing means 10 for outputting a signal for increasing the threshold to the outdoor unit G based on a signal for decreasing the rotational speed of the indoor blower 3.

請求項2では、室内側制御部5に、操作部4からのヒー
タ2の駆動信号と室内送風機3の風量制御信号に基づい
て、室内送風機3の回転数増加信号の出力前に室外機6
側へしきい値を減少させる信号を出力するしきい値減少
手段9と、室内送風機3の回転数減少信号の出力後に室
外機6側へしきい値を増大させる信号を出力するしきい
値増大手段10とが設けられたものである。
In the second aspect, the indoor side control section 5 is configured to control the outdoor unit 6 based on the drive signal for the heater 2 and the air volume control signal for the indoor blower 3 from the operation section 4 before outputting the rotation speed increase signal for the indoor blower 3.
Threshold reducing means 9 outputs a signal to decrease the threshold to the side, and threshold increasing means outputs a signal to increase the threshold to the outdoor unit 6 after outputting the signal to decrease the rotational speed of the indoor fan 3. Means 10 is provided.

く作用〉 上記請求項1による課題解決手段において、室内側制御
部5は操作部4の設定内容と室温検出器14の出力とか
ら、冷房運転、除湿運転、”ヒータ入”暖房運転、”ヒ
ータ切”暖房運転のいずれかの運転モードと室内送風機
の風量を選択して、室内送風機3、ヒータ2、室外側制
御部8を作動させる。
In the problem-solving means according to claim 1, the indoor control section 5 determines the settings of cooling operation, dehumidification operation, "heater on" heating operation, and "heater on" based on the settings of the operation section 4 and the output of the room temperature detector 14. The indoor blower 3, the heater 2, and the outdoor controller 8 are operated by selecting one of the operating modes of "off" and "heating operation" and the air volume of the indoor blower.

ここで、電源コンセントの電流容量をId、室内機の全
電流を11.室外機の全電流をIoとすると、Id≧I
i+Ioでなければならない。さらに、l1=Ifi+
Ih−1−Isi I o= I c+ I fo十T s。
Here, the current capacity of the power outlet is Id, and the total current of the indoor unit is 11. If the total current of the outdoor unit is Io, Id≧I
Must be i+Io. Furthermore, l1=Ifi+
Ih-1-Isi I o= I c+ I fo ten T s.

(但し、I fi:室内送風機電流、■h:ヒータ電流
、Isi・室内側制御部電流、IC1圧縮機電流、I 
f’。
(However, I fi: indoor blower current, h: heater current, Isi/indoor control section current, IC1 compressor current, I
f'.

室外送風機電流、Iso:室外側制御部電流)とすると
、 Id≧I h+ I fi+ I si+ I c+ 
I fo+ I s。
Assuming outdoor blower current, Iso: outdoor control unit current), Id≧I h+ I fi+ I si+ I c+
I fo + I s.

となる。通常、IsiとIsoは低消費電流であり、I
fiとIfoはその選択風量に応じた安定な電流値を示
す。これに対して、ヒータ電流Ihは第7図に記したよ
うに室内送風量が多い程大きい値を示す。つまり、室内
送風機3の回転数が高い時(Ifiが大きい時)はヒー
タ2の温度が低くてヒータ電流Ihが大きいので、しき
い値減少手段9により、圧縮機7の電流Icが低い目に
制限されて、室外機6のしきい値Nhは低い目に設定さ
れる。
becomes. Typically, Isi and Iso have low current consumption, and I
fi and Ifo indicate stable current values according to the selected air volume. On the other hand, as shown in FIG. 7, the heater current Ih exhibits a larger value as the indoor air flow rate increases. In other words, when the rotational speed of the indoor fan 3 is high (when Ifi is large), the temperature of the heater 2 is low and the heater current Ih is large, so the threshold reduction means 9 reduces the current Ic of the compressor 7 to a low value. Therefore, the threshold value Nh of the outdoor unit 6 is set to a low value.

逆に室内送風機3の回転数が低い時(Ifiが小さい時
)はヒータ2の温度が高くてヒータ電流Ihが小さいの
で、しきい値増大手段IOにより、室外機6のしきい値
Nlは高い目に設定され、圧縮機7の電流Icは高い目
まで許容される。
Conversely, when the rotational speed of the indoor fan 3 is low (when Ifi is small), the temperature of the heater 2 is high and the heater current Ih is small, so the threshold value Nl of the outdoor unit 6 is high by the threshold increasing means IO. The current Ic of the compressor 7 is allowed up to a high value.

したがって、自己電流制限機能を持つヒータ2を補助暖
房ヒータとして使用し、電源コンセントの電流容量の制
約の中で圧縮機7の能力を最大限発揮させることができ
る。
Therefore, the heater 2 having a self-current limiting function can be used as an auxiliary heater, and the capacity of the compressor 7 can be maximized within the constraints of the current capacity of the power outlet.

請求項2によると、操作部4から室内送風機3を”弱”
風量に切り替える設定が、室内側制御部5に入力された
とする。室内側制御部5は、しきい値増大手段IOによ
り室内送風機3を”弱”風量に切り替え(第4図のtl
)、ヒータ2の温度が上昇してヒータ電流が低下して安
定する(第4図のt2)。室内側制御部5はtlからt
2の期間にシリアル信号を室外側制御部8に送って、室
外機6のしきい値をNhからNlに切り替えさせる。
According to claim 2, the indoor fan 3 is set to "low" from the operation unit 4.
Assume that a setting for switching to the air volume is input to the indoor control unit 5. The indoor controller 5 switches the indoor fan 3 to a "low" air volume using the threshold increasing means IO (tl in FIG. 4).
), the temperature of the heater 2 increases and the heater current decreases and becomes stable (t2 in FIG. 4). The indoor control section 5 moves from tl to t.
During period 2, a serial signal is sent to the outdoor controller 8 to switch the threshold of the outdoor unit 6 from Nh to Nl.

次に、操作部4から室内送風4fi3を”強”風量に切
り替える設定が室内側制御部5に入力されたとする(第
4図のt3)。室内側制御部5が、すぐに室内送風機3
を”強”風量に切り替えてしまうと、ヒータ2の温度が
低下してヒータ電流が増加し、Id<Ii+Ioとなっ
て、空気調和機に過電流が流れてしまう。それを防ぐた
めに、室内側制御部5は、しきい値減少手段9により操
作部4から”強”風量に切り替える要求を受けた時には
、まずシリアル信号を室外側制御部8に送って、t3か
らt4の期間に室外機6のしきい値をN1からNhに切
り替えさせる。それから、室内側制御部5は、室内送風
機3を”強”風量に切り替える(第4図の14)。する
と、ヒータ2の温度が低下して、ヒータ電流が増大して
安定する(第4図のt5)が、先にしきい値がNhに切
り替わって、室外電流が抑制されているから、Id≧I
i+ Eoを満足するように抑制され、空気調和機の総
電流が電源コンセントの電流容量を越えることはない。
Next, it is assumed that a setting for switching the indoor air blower 4fi3 to a "strong" air volume is input from the operation unit 4 to the indoor control unit 5 (t3 in FIG. 4). The indoor side control unit 5 immediately turns on the indoor blower 3.
If the airflow rate is switched to "strong", the temperature of the heater 2 will drop and the heater current will increase, Id<Ii+Io, and an overcurrent will flow through the air conditioner. In order to prevent this, when the indoor control section 5 receives a request from the operation section 4 to switch to the "high" air volume by the threshold reduction means 9, it first sends a serial signal to the outdoor control section 8, and from t3 The threshold value of the outdoor unit 6 is switched from N1 to Nh during the period t4. Then, the indoor controller 5 switches the indoor blower 3 to the "strong" air volume (14 in FIG. 4). Then, the temperature of the heater 2 decreases, and the heater current increases and becomes stable (t5 in Fig. 4), but since the threshold value is first switched to Nh and the outdoor current is suppressed, Id≧I.
i+Eo, and the total current of the air conditioner does not exceed the current capacity of the power outlet.

したがって、自己電流制限機能を持つヒータを補助暖房
ヒータとして使用し、電源コンセントの電流容量の制約
の中で圧縮機の電流を最大限許容しながらも、室内送風
機の風量切り替え時に過電流保護ヒユーズが作動するこ
とを未然に防ぐことができ、より急速な暖房運転やより
高温吹き出し運転が可能な空気調和機を実現することが
できる。
Therefore, a heater with a self-current limiting function is used as an auxiliary heater, allowing the compressor's current to the maximum within the current capacity of the power outlet. It is possible to prevent the air conditioner from activating, and to realize an air conditioner that is capable of faster heating operation and higher temperature blowing operation.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の実施例を示す空気調和機の機能ブロック図
、第2図は同じく制御ブロック図、第3図は同じく制御
回路図、第4図はヒータ電流と電流検知部のしきい値の
切り替えのタイミングとの関係を示す図である。
<Example> Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is a functional block diagram of an air conditioner showing an embodiment of the present invention, Fig. 2 is a control block diagram, Fig. 3 is a control circuit diagram, and Fig. 4 shows the heater current and the threshold value of the current detection section. It is a figure showing the relationship with the timing of switching.

本発明の空気調和機は、図示の如く、室内機1側に、自
己電流制限機能を有するPTCヒータ2と、風量切替可
能な強弱2速の風量切り替えタップを持つ室内送風機3
と、前記ヒータ2および室内送風機3の運転モードを選
択する操作部4と、該操作部4からの出力信号によりヒ
ータ2および室外機6を駆動制御する室内側制御部5と
を備え、室外機6側に、冷媒肢体を圧縮する3相電動圧
縮機7と、前記室内側制御部5からの出力信号に応じて
室外機6のピーク電流制御しきい値を変化させる室外側
制御部8とを備え、前記室内側制御部5に、操作部4か
らのヒータ2の駆動信号と室内送風機3の風量制御信号
に基づいて、室内送風機3の回転数増加信号の出力前に
室外機6側へしきい値を減少させる信号を出力するしき
い値減少手段9と、室内送風機3の回転数減少信号の出
力後に室外機側6へしきい値を増大させる信号を出力す
るしきい値増大手段10とが設()られたものである。
As shown in the figure, the air conditioner of the present invention includes, on the indoor unit 1 side, a PTC heater 2 having a self-current limiting function, and an indoor blower 3 having a two-speed air volume switching tap capable of switching the air volume.
, an operation section 4 for selecting the operation mode of the heater 2 and the indoor blower 3, and an indoor control section 5 for driving and controlling the heater 2 and the outdoor unit 6 based on output signals from the operation section 4, A three-phase electric compressor 7 that compresses the refrigerant limb, and an outdoor controller 8 that changes the peak current control threshold of the outdoor unit 6 in accordance with the output signal from the indoor controller 5 are installed on the 6 side. In preparation, the indoor side control section 5 is provided with a signal to the outdoor unit 6 based on a drive signal for the heater 2 and an air volume control signal for the indoor blower 3 from the operation section 4 before outputting a signal to increase the rotation speed of the indoor blower 3. Threshold reducing means 9 outputs a signal for decreasing the threshold; Threshold increasing means 10 outputs a signal for increasing the threshold to the outdoor unit 6 after outputting the signal for decreasing the rotational speed of the indoor blower 3. was established ().

そして、第2.3図の如く、商用電源Itに接続された
室内a1の電源ラインには、過電流18i−護ヒユーズ
12を介して直流低圧電源回路I3と室内送風機3とヒ
ータ2が接続されている。
As shown in Fig. 2.3, a DC low-voltage power supply circuit I3, an indoor blower 3, and a heater 2 are connected to the indoor power supply line a1 connected to the commercial power supply It via an overcurrent 18i-protection fuse 12. ing.

前記室内側制御部5は、ワンデツプマイクロコンピュー
タ(以下、マイコンと言う)より成り、人1 力端子P Iは前記操作部4に、P2Ll室温検出器1
4に接続されており、出力端子Q1.Q2は風量制御部
15を介して室内送風機3に、出力端子Q3はヒータ駆
動部16を介してPTCヒータ2に接続され、出力端子
Sl、S2は室外側制御部8に接続されている。
The indoor control section 5 is composed of a one-step microcomputer (hereinafter referred to as microcomputer), and a power terminal P1 is connected to the operation section 4, and a P2L1 room temperature detector 1 is connected to the control section 4.
4, and the output terminal Q1. Q2 is connected to the indoor blower 3 via the air volume control section 15, the output terminal Q3 is connected to the PTC heater 2 via the heater drive section 16, and the output terminals Sl and S2 are connected to the outdoor control section 8.

前記風量制御部15は、送風機用リレートライ、<17
と強風用リレー18および弱風用リレー19とからなり
、Ql出力側に強風用リレーI8が、Q2出力側に弱風
用リレー19がそれぞれ接続されている。また、前記ヒ
ータ駆動部16は、ヒータ用リレードライバ20とヒー
タ用リレー21とからなる。
The air volume control unit 15 includes a blower relay try, <17
A strong wind relay I8 is connected to the Ql output side, and a weak wind relay 19 is connected to the Q2 output side. Further, the heater drive section 16 includes a heater relay driver 20 and a heater relay 21.

木内側制御部5で(よ、直流低圧7R卸回路13から電
源供給を受けて操作部4からの設定人力信号、室温検出
器14からの室温信号を各々PI、P2入力端子から入
力し、あらかじめプログラムされたROM、データRA
M(共に図示せず)を用いた論理演算結果に従って、冷
房運転、除湿運転、”ヒータ入”暖房運転、”ヒータ切
”暖房運転のいずれかのモードを選択して、それに応じ
た出力信号を出力端子Q1.02から送風機用リレード
ライバ17へ、Q3からヒータ用リレードライバ20へ
、Sl、S2から室外側制御部8へ送る。
The Kiuchi control unit 5 receives power from the DC low-voltage 7R wholesale circuit 13, inputs the manual setting signal from the operation unit 4 and the room temperature signal from the room temperature detector 14 from the PI and P2 input terminals, and programmed ROM, data RA
According to the logical operation result using M (both not shown), select one of the following modes: cooling operation, dehumidification operation, "heater on" heating operation, "heater off" heating operation, and output the corresponding output signal. It is sent from the output terminal Q1.02 to the blower relay driver 17, from Q3 to the heater relay driver 20, and from Sl and S2 to the outdoor controller 8.

Q1出力が”H”になると、強風用リレー18が閉成し
て室内送風機3の”強”タップ巻き線に通電されて”強
”回転する。Q2出力が”H”になると、弱風用リレー
19が閉成して”弱”タップ巻き′!fAt二通電され
て”弱”回転する。Q3出力が”I−I”になると、ヒ
ータ用リレー21が閉成してPTCヒータ2に通電され
る。
When the Q1 output becomes "H", the strong wind relay 18 is closed and the "strong" tap winding of the indoor blower 3 is energized to rotate "strong". When the Q2 output becomes "H", the weak wind relay 19 closes and "weak" tap winding'! fAt2 is energized and rotates "weakly". When the Q3 output becomes "I-I", the heater relay 21 is closed and the PTC heater 2 is energized.

前記室外機6は、前記室外側制御部8と、圧縮機7と、
室外送風機22と、室外電流検知回路23とを備え、室
内機1と室外機6とは、2本の電源線と2本のシリアル
信号線とで接続されている。
The outdoor unit 6 includes the outdoor controller 8, a compressor 7,
It includes an outdoor blower 22 and an outdoor current detection circuit 23, and the indoor unit 1 and the outdoor unit 6 are connected by two power lines and two serial signal lines.

前記室外側制御部8は、マイコンより成り、入力端子S
ll、S12は室内側制御部5の出力端子Sl、S2に
接続されており、Sl、S2出力からのノリアル信号が
入力される。また、入力端子pHは、前記室外電流検知
回路23?こ接続されテオリ、該検知回路23はカレン
トトランス24と電流検知部25とから構成される。
The outdoor control section 8 is composed of a microcomputer, and has an input terminal S.
ll and S12 are connected to the output terminals Sl and S2 of the indoor control section 5, and the norial signals from the Sl and S2 outputs are input. Moreover, the input terminal pH is the outdoor current detection circuit 23? In this connection, the detection circuit 23 is composed of a current transformer 24 and a current detection section 25.

室外側制御部8の出力端子Qllは、リレードライバ2
6.リレー27を介して室外送風機22に接続され、出
力端子Q+2〜Q]7は、駆動回路28を介して圧縮機
7に接続されている。
The output terminal Qll of the outdoor controller 8 is connected to the relay driver 2
6. It is connected to the outdoor blower 22 via a relay 27, and the output terminals Q+2 to Q]7 are connected to the compressor 7 via a drive circuit 28.

該駆動回路28は、インバータ駆動部29と、6個のパ
ワートランジスタより成る3相インバ一タ電源回路30
から構成される。
The drive circuit 28 includes an inverter drive unit 29 and a three-phase inverter power supply circuit 30 consisting of six power transistors.
It consists of

そして、室内側制御部5からのノリアル信号と電流検知
部25からの入力に応じて、あらかじめプログラムされ
たROMとデータRAM(共に図示せず)を用いた論理
演算結果に従って、リレードライバ26およびインバー
タ駆動部29に出力端子Q11およびQ12〜QI7か
ら信号を送る。
The relay driver 26 and the inverter are controlled according to the logical operation results using the pre-programmed ROM and data RAM (both not shown) in accordance with the norial signal from the indoor controller 5 and the input from the current detector 25. Signals are sent to the drive section 29 from output terminals Q11 and Q12 to QI7.

室外側の電源ラインには、カレンl−)ランス24と直
流低圧電源回路31と室外送風機22と整流回路32と
が接続されている。室外側制御部8は、直流低圧電源回
路31から電源供給され、室外機用のAC電流をカレン
トトランス24が電圧信号に変換し、電流検知部25で
所定のしきい値と比較した結果を室外側制御部8のpH
入力端子へ入力する。
A Karen lance 24, a DC low voltage power supply circuit 31, an outdoor blower 22, and a rectifier circuit 32 are connected to the outdoor power line. The outdoor controller 8 is supplied with power from the DC low-voltage power supply circuit 31, and the current transformer 24 converts the AC current for the outdoor unit into a voltage signal, and the current detector 25 compares the result with a predetermined threshold value and sends the result to the indoor controller. pH of outer control section 8
Input to input terminal.

また、Qll出力が”H”になると、リレー27が閉成
して室外送風機22に通電される。そして、室外側制御
部8のQ12〜Q17出力によりインバータ駆動部29
が出力する6本のドライブ信号に応じて、3相インバ一
タ電源回路30は3相電動圧縮機7をPWM制御してい
る。出力端子Q12〜Q17からの出力パルスのデj、
−ティと周波数とにより、3相電動圧縮機7に印加され
るインバータ波形の周波数”f”と電圧”V”とが決ま
る。
Further, when the Qll output becomes "H", the relay 27 is closed and the outdoor blower 22 is energized. Then, the inverter drive unit 29 is driven by the Q12 to Q17 outputs of the outdoor side control unit 8.
The three-phase inverter power supply circuit 30 performs PWM control on the three-phase electric compressor 7 in accordance with six drive signals output by the three-phase electric compressor 7. Dej of output pulses from output terminals Q12 to Q17,
-T and the frequency determine the frequency "f" and voltage "V" of the inverter waveform applied to the three-phase electric compressor 7.

V/fの2乗が3相電動圧縮機7のトルクに比例するか
ら、V/fの比が一定になるように制御している。
Since the square of V/f is proportional to the torque of the three-phase electric compressor 7, the ratio of V/f is controlled to be constant.

運転中に3相電動圧縮機7の電流Icは種々の要因で変
動する。暖房運転時及び冷房運転時に室外機の外気温度
が非常に高い場合は、3相電動圧縮機7の吐出圧力が上
昇して過負荷状態となり、3相電動圧縮機7のAC電流
が増大する。
During operation, the current Ic of the three-phase electric compressor 7 fluctuates due to various factors. When the outside air temperature of the outdoor unit is very high during heating operation and cooling operation, the discharge pressure of the three-phase electric compressor 7 increases, resulting in an overload state, and the AC current of the three-phase electric compressor 7 increases.

また、暖房運転時に外気温度が非常に低い場合は、起動
時にザクジョンから冷媒液体状態でシリンダーに入りシ
リンダーとロータがロックしてしまう、いわゆる“液か
み”状態となり、3相電動圧縮機7のAC電流が増大す
る。この”液かみ”状態は、圧縮機の温度が上昇して冷
媒が循環し始めると解消される。また、電源電圧が低下
すると、3相電動圧縮機7は、それまでと同じ速度で回
転し続けようとする慣性により、AC電流が増大する。
In addition, if the outside temperature is very low during heating operation, the refrigerant enters the cylinder in a liquid state during startup, resulting in a so-called "liquid trap" state in which the cylinder and rotor are locked, and the AC of the three-phase electric compressor 7 is Current increases. This "liquid-filled" condition disappears when the compressor temperature rises and the refrigerant begins to circulate. Furthermore, when the power supply voltage decreases, the AC current increases due to the inertia of the three-phase electric compressor 7 to continue rotating at the same speed as before.

そのAC電流変動をカレントトランス24を介して電流
検知部25が検知し、ピーク電流が所定のしきい値を越
えた場合はインバータ波形の周波数と電圧を抑制する信
号を室外側制御部8にフィードバックしている。
The current detection unit 25 detects the AC current fluctuation via the current transformer 24, and if the peak current exceeds a predetermined threshold, a signal to suppress the frequency and voltage of the inverter waveform is fed back to the outdoor control unit 8. are doing.

上記槽底において、室内側制御部5は操作部4の設定内
容と室温検出器14の出力とから、冷房運転、除湿運転
、”ヒータ入”暖房運転、”ヒータ切”暖房運転のいず
れかの運転モードと室内送風機の風量を選択して、風量
制御部15.ヒータ駆動部16、室外側制御部8へ信号
を送る。その信号に5 従って、風量制御部15は室内送風機3を、ヒータ駆動
部16はPTCヒータ2を作動させる。そして、室外側
制御部8は駆動回路28を通じて圧縮機7を作動させ、
同時に室外送風機22を作動させる。
At the bottom of the tank, the indoor control section 5 selects one of the following modes: cooling operation, dehumidification operation, heating operation with "heater on", or heating operation with "heater off", based on the settings of the operation section 4 and the output of the room temperature detector 14. After selecting the operation mode and the air volume of the indoor blower, the air volume control section 15. A signal is sent to the heater drive section 16 and the outdoor control section 8. According to the signal, the air volume control section 15 operates the indoor blower 3, and the heater drive section 16 operates the PTC heater 2. Then, the outdoor controller 8 operates the compressor 7 through the drive circuit 28,
At the same time, the outdoor blower 22 is activated.

ここで、電源コンセントの電流容量をId、室内機の全
電流をIi、室外機の全電流をIoとすると、I’d≧
Ii+Ioでなければならない。さらに、1i=tri
+rh+ l5i IO= r c+ I fo+ I s。
Here, if the current capacity of the power outlet is Id, the total current of the indoor unit is Ii, and the total current of the outdoor unit is Io, then I'd≧
It must be Ii+Io. Furthermore, 1i=tri
+rh+ l5i IO= r c+ I fo+ I s.

(但し、I fi:室内送風機電流、Ih:ヒータ電流
、r si:室内側制御部電流、■c:圧縮機電流、I
fo・室外送風機電流、Iso:室外側制御部電流)と
すると、 Id≧I h+ I fi+ I si+ I c+ 
I fo+ I s。
(However, I fi: indoor blower current, Ih: heater current, r si: indoor control unit current, c: compressor current, I
fo・outdoor blower current, Iso: outdoor control section current), then Id≧I h+ I fi+ I si+ I c+
I fo + I s.

となる。通常、IsiとIsoは低消費電流であり、I
fiとIfoはその選択風量に応じた安定な電流値を示
す。それに対して、Ihは第7図に記したように室内送
風量が多い程大きい値を示す。つまり、室内送風機3の
回転数が高い時(Ifiが大きい時)6 はPTCヒータ2の温度が低くてihが大きいので、圧
縮機7の電流Icが低い目に制限されて、室外電流検知
回路23のしきい値も低い目に設定される。逆に室内送
風機3の回転数が低い時(Ifiが小さい時)はPTC
ヒータ2の温度が高くてIhが小さいので、圧縮機7の
電流1cは高い目まで許容され、室外電流検知回路23
のしきい値は高い目に設定される。室内送風機3が”強
”風量の時の室外電流検知回路23のしきい値をNh、
”弱”風量の時のしきい値をNlとすると、前述の内容
から、Nh<Nlであることがわかる。
becomes. Typically, Isi and Iso have low current consumption, and I
fi and Ifo indicate stable current values according to the selected air volume. On the other hand, as shown in FIG. 7, Ih shows a larger value as the amount of air blown into the room increases. In other words, when the rotational speed of the indoor fan 3 is high (when Ifi is large), the temperature of the PTC heater 2 is low and ih is large, so the current Ic of the compressor 7 is limited to a low value, and the outdoor current detection circuit The threshold value of 23 is also set to a low value. Conversely, when the rotation speed of the indoor fan 3 is low (when Ifi is small), the PTC
Since the temperature of the heater 2 is high and Ih is small, the current 1c of the compressor 7 is allowed up to a high level, and the outdoor current detection circuit 23
The threshold is set to a high value. The threshold value of the outdoor current detection circuit 23 when the indoor fan 3 has a "strong" air volume is Nh,
Assuming that the threshold value at a "weak" air volume is Nl, it can be seen from the above that Nh<Nl.

今、“ヒータ人”暖房運転、室内送風機”強”、室温2
0度という設定がされているとする。室内側制御部5の
Ql出力とQ3出力とが”H”で強風用リレー18とヒ
ータ用リレー21が閉成し、室内送風機3は”強”回転
し、PTCヒータ2は通電されている。室内送風機3が
”強”回転であるから、前述のようにPTCヒータ2の
温度は低くてヒータ電流は第7図のHのように大きい目
である。したがって、電流検知部25は低い目のしきい
値Nhを選択している。即ち、しきい値Nh以下の制御
条件に従って、室温20度にずへく3相電動圧縮機7を
作動させている。室温情報は室温検出器I4から室内側
制御部5(こ入力され、シリアル信号として室外側制御
部8に伝えられて、室温が設定に満たない場合はインバ
ータ波形の周波数と電圧とを増大させ、設定に達してい
れば減少させるように制御される。
Currently, the “heater” is in heating operation, the indoor fan is “strong”, and the room temperature is 2.
Assume that the setting is 0 degrees. When the Ql output and Q3 output of the indoor controller 5 are "H", the strong wind relay 18 and the heater relay 21 are closed, the indoor blower 3 is rotating "strongly", and the PTC heater 2 is energized. Since the indoor blower 3 is rotating at high speed, the temperature of the PTC heater 2 is low as described above, and the heater current is large as indicated by H in FIG. Therefore, the current detection unit 25 selects a low threshold value Nh. That is, the three-phase electric compressor 7 is operated at a room temperature of 20 degrees Celsius according to the control condition below the threshold value Nh. Room temperature information is inputted from the room temperature detector I4 to the indoor control unit 5, and is transmitted as a serial signal to the outdoor control unit 8. If the room temperature is less than the set value, the frequency and voltage of the inverter waveform are increased. If it reaches the setting, it is controlled to decrease.

ここで、操作部4から室内送風機3を”弱′”風量に切
り替える設定が、室内側制御部5に入力されたとする。
Here, it is assumed that a setting for switching the indoor fan 3 to a "low" air volume is input from the operation unit 4 to the indoor control unit 5.

すると室内側制御部5は、しきい値増大手段10により
まずQ1出力を”L”にQ2出力を”H”にして、室内
送風機3を弱”風量に切り替える(第4図のtl)。す
るとPTCヒータ2の温度が上昇してヒータ電流が低下
して安定する(第4図のt2)。室内側制御部5は[1
からt2の期間にシリアル信号を室外側制御部8に送っ
て、電流検知部25のしきい値をNhからN1に切り替
えさせる。
Then, the indoor control section 5 first sets the Q1 output to "L" and the Q2 output to "H" by the threshold increasing means 10, and switches the indoor fan 3 to a low air volume (tl in FIG. 4). The temperature of the PTC heater 2 increases and the heater current decreases and becomes stable (t2 in FIG. 4).
to t2, a serial signal is sent to the outdoor controller 8 to switch the threshold value of the current detector 25 from Nh to N1.

次に、操作部4から室内送風機3を”強”風量に1;7
Jり林λろ設定か室内側制御部5に入力され)ことする
(第4図のt3)。その場合の電流検知部25のしきい
値はN1である。この時、操作部4からの”強”風温へ
の切り替え要求を受けて、室内(fll+制御部5か、
すくに風量制御部15を通じて室内送風機3を”強”風
量に切り替えてしまうと、P T Cヒータ2の温度が
低下してヒータ電流が増加し、Id< I i+ Io
どなって、空気調和機の過電流保護ヒユーズ12が溶断
してしまう。
Next, from the operation unit 4, set the indoor fan 3 to “strong” air volume by 1;7.
The setting is inputted to the indoor control unit 5 (t3 in FIG. 4). In that case, the threshold value of the current detection section 25 is N1. At this time, in response to a request from the operation unit 4 to switch to the “strong” air temperature,
If the indoor blower 3 is switched to the "high" air volume through the air volume control unit 15 too soon, the temperature of the PTC heater 2 will drop and the heater current will increase, resulting in Id<Ii+Io
Suddenly, the overcurrent protection fuse 12 of the air conditioner blows out.

それを防ぐために、室内側制御部5は操作部4から”強
°°風量に切り替える要求を受けた時には、しきい値減
少手段9によりまずノリアル信号を室外側制御部8に送
って、t3から14の期間に電流検知部25のしきい値
をNlからNhに切り替えさせる。しきい値がそれまで
よりも低いNhに切り替わったわけだから、もし、その
時の3相電動圧縮機7のAC電流1cが大きくて、検知
出力がしきい値Nhを越えていれば、電流検知部25は
抑制信号を室外側制御部8に出力し、結果、インバータ
波形の周波数と電圧は減少して、3相電動圧]!I 縮機7のAC電流1cは減少する。
In order to prevent this, when the indoor side control section 5 receives a request from the operation section 4 to switch to "strong air volume," the threshold reduction means 9 first sends a normal signal to the outdoor side control section 8, and from t3 14, the threshold value of the current detection unit 25 is switched from Nl to Nh.Since the threshold value has been switched to Nh, which is lower than before, if the AC current 1c of the three-phase electric compressor 7 at that time is If the detection output exceeds the threshold value Nh, the current detection unit 25 outputs a suppression signal to the outdoor control unit 8, and as a result, the frequency and voltage of the inverter waveform decrease, and the three-phase electric voltage ]!I The AC current 1c of the compressor 7 decreases.

それから、室内側制御部5はQ2出力を”■7″に、Q
1出力を”H”にして、室内送風機3を”強°°風量に
切り替える(第4図のt4)。すると、PTCヒータ2
の温度が低下して、ヒータ電流か増大して安定する(第
4図のt5)が、先にしきい値がNhに切り替わって、
室外電流が抑制されているから、rd≧Ii+Toを満
足するように抑制され、空気調和機の総電流が電源コン
セントの電流容量を越えることはない。
Then, the indoor control section 5 changes the Q2 output to "■7",
1 output to "H" and switch the indoor fan 3 to "high air volume" (t4 in Fig. 4). Then, the PTC heater 2
As the temperature decreases, the heater current increases and becomes stable (t5 in Figure 4), but first the threshold value switches to Nh,
Since the outdoor current is suppressed, it is suppressed so that rd≧Ii+To is satisfied, and the total current of the air conditioner does not exceed the current capacity of the power outlet.

したがって、自己電流制限機能を持つPTCヒータを補
助暖房ヒータとして使用し、電源コンセントの電流容量
の制約の中で圧縮機の電流を最大限許容しながらも、室
内送風機の風量切り替え時7こ過電流保護ヒユーズが作
動することを未然に防ぐことができ、より急速な暖房運
転やより高温吹き出し運転が可能な空気調和機を実現す
ることができる。
Therefore, a PTC heater with a self-current limiting function is used as an auxiliary heating heater, and while allowing the compressor current to the maximum within the current capacity constraints of the power outlet, the current exceeds 7 when switching the air volume of the indoor blower. It is possible to prevent the protective fuse from operating, and it is possible to realize an air conditioner that is capable of faster heating operation and higher temperature blowing operation.

なお、本発明は、」二足実施例に限定されるものではな
く、本発明の範囲内で上記実施例に多くの0 修正および変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the two-legged embodiment, and it goes without saying that many modifications and changes can be made to the above-described embodiment without departing from the scope of the present invention.

〈発明の効果〉 以」二の説明から明らか通り、本発明請求項Iによると
、室内機側に、ヒータ43よび室内送風機の運転モード
を選択する操作部と、該操作部からの出力信号によりヒ
ータおよび室外機を駆動制御する室内側制御部とを備え
、室外機側に前記室内側制御部からの出力信号に応じて
室外機のピーク電流制御しきい値を変化させる室外側制
御部を備え、前記室内側制御部に、操作部からのヒータ
の駆動信号と室内送風機の回転数増加信号に基づいて室
外機側へしきい値を減少させる信号を出力するしきい値
減少手段と、ヒータ駆動信号と室内送風機の回転数減少
信号に基づいて室外機側へしきい値を増大させる信号を
出力するしきい値増大手段とが設けられているので、電
源コンセントの電流容量の制約の中で圧縮機の能力を最
大限に発揮させることができる。
<Effects of the Invention> As is clear from the explanation in section 2 below, according to claim I of the present invention, there is an operation section on the indoor unit side for selecting the operation mode of the heater 43 and the indoor blower, and an output signal from the operation section is provided. an indoor control section that drives and controls the heater and the outdoor unit, and an outdoor control section that changes a peak current control threshold of the outdoor unit in accordance with an output signal from the indoor control section on the outdoor unit side. , a threshold value reducing means for outputting a signal to the indoor side control section to reduce the threshold value to the outdoor unit based on a heater drive signal and an indoor blower rotation speed increase signal from the operation section; and a heater drive. Since a threshold increasing means is provided which outputs a signal to increase the threshold to the outdoor unit based on the signal and the indoor fan rotation speed reduction signal, compression can be achieved within the current capacity constraints of the power outlet. You can make the most of your machine's capabilities.

請求項2によると、室内送風機の回転数増加信号の出力
前ζこ室外機側へしきい値を減少させる信号を出力し、
室内送風機の回転数減少信号の出力後に室外機側へしき
い値を増大させる信号を出力するため、圧縮機の電流を
最大限許容しながらも、室内送風機の風量切り替え時に
過電流保護ヒユーズが作動することを未然に防ぐことが
でき、より急速な暖房運転やより高温吹き出し運転を可
能にすることができるといった優れた効果がある。
According to claim 2, before outputting the rotation speed increase signal of the indoor blower, a signal for decreasing the threshold value is outputted to the outdoor unit side,
Since a signal to increase the threshold is output to the outdoor unit after the indoor blower rotation speed reduction signal is output, the overcurrent protection fuse is activated when the indoor blower air volume is switched, while allowing the maximum compressor current. This has excellent effects such as being able to prevent this from occurring and enabling more rapid heating operation and higher temperature blowing operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す空気調和機の機能ブロッ
ク図、第2図は同じく制御ブロック図、第3図は同じく
制御回路図、第4図はヒータ電流と電流検知部のしきい
値の切り替えのタイミングとの関係を示す図、第5図は
PT’Cヒータの電流思度特性図、第6図はPTCヒー
タの温度−時間特性図、第7図はPTCヒータの電流−
時間特性図である。 l二基内機、2:ヒータ、3:室内送風機、4:操作部
、5:室内側制御部、6:室外機、8:室外側制御部、
9:しきい値減少手段、10:しきい値増大手段。 3 特開平3 84350 (8) 」−込w痕 一トーー w痕 一トーー 四色 一ζ−− w痕 喝ト一一
Fig. 1 is a functional block diagram of an air conditioner showing an embodiment of the present invention, Fig. 2 is a control block diagram, Fig. 3 is a control circuit diagram, and Fig. 4 shows the heater current and the threshold of the current detection section. A diagram showing the relationship with the timing of value switching, Figure 5 is a current characteristic diagram of the PT'C heater, Figure 6 is a temperature-time characteristic diagram of the PTC heater, and Figure 7 is a current-temperature characteristic diagram of the PTC heater.
It is a time characteristic diagram. 1 Two indoor units, 2: Heater, 3: Indoor blower, 4: Operation unit, 5: Indoor control unit, 6: Outdoor unit, 8: Outdoor control unit,
9: Threshold reducing means; 10: Threshold increasing means. 3 Japanese Patent Application Publication No. 3 84350 (8) "-w mark 1 toe - w mark 1 toe - 4 colors 1 ζ - w mark mark 11

Claims (1)

【特許請求の範囲】 1、室内機側に、自己電流制限機能を有するヒータと、
風量切替可能な室内送風機と、前記ヒータおよび室内送
風機の運転モードを選択する操作部と、該操作部からの
出力信号によりヒータおよび室外機を駆動制御する室内
側制御部とを備え、室外機側に、前記室内側制御部から
の出力信号に応じて室外機のピーク電流制御しきい値を
変化させる室外側制御部を備えた空気調和機において、
前記室内側制御部に、操作部からのヒータの駆動信号と
室内送風機の回転数増加信号に基づいて、室外機側へし
きい値を減少させる信号を出力するしきい値減少手段と
、ヒータの駆動信号と室内送風機の回転数減少信号に基
づいて室外機側へしきい値を増大させる信号を出力する
しきい値増大手段とが設けられたことを特徴とする空気
調和機。 2、請求項1記載の室内側制御部に、操作部からのヒー
タの駆動信号と室内送風機の風量制御信号に基づいて、
室内送風機の回転数増加信号の出力前に室外機側へしき
い値を減少させる信号を出力するしきい値減少手段と、
室内送風機の回転数減少信号の出力後に室外機側へしき
い値を増大させる信号を出力するしきい値増大手段とが
設けられたことを特徴とする空気調和機。
[Claims] 1. A heater having a self-current limiting function on the indoor unit side;
The outdoor unit includes an indoor blower capable of switching air volume, an operation section for selecting an operation mode of the heater and the indoor blower, and an indoor control section for driving and controlling the heater and the outdoor unit based on an output signal from the operation section. In an air conditioner equipped with an outdoor controller that changes a peak current control threshold of the outdoor unit according to an output signal from the indoor controller,
a threshold value reducing means for outputting a signal to the indoor side control unit to reduce a threshold value to the outdoor unit based on a heater drive signal and an indoor blower rotation speed increase signal from the operation unit; 1. An air conditioner comprising threshold increasing means for outputting a signal for increasing a threshold to an outdoor unit based on a drive signal and an indoor fan rotation speed reduction signal. 2. The indoor control section according to claim 1, based on the heater drive signal and the indoor blower air volume control signal from the operation section,
Threshold reducing means for outputting a signal for reducing the threshold to the outdoor unit before outputting a signal for increasing the rotational speed of the indoor blower;
1. An air conditioner comprising threshold increasing means for outputting a signal for increasing a threshold to an outdoor unit after outputting a signal for decreasing the rotational speed of an indoor blower.
JP1219726A 1989-08-24 1989-08-24 Air conditioner Expired - Fee Related JPH0820094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1219726A JPH0820094B2 (en) 1989-08-24 1989-08-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1219726A JPH0820094B2 (en) 1989-08-24 1989-08-24 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0384350A true JPH0384350A (en) 1991-04-09
JPH0820094B2 JPH0820094B2 (en) 1996-03-04

Family

ID=16740010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1219726A Expired - Fee Related JPH0820094B2 (en) 1989-08-24 1989-08-24 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0820094B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080866A (en) * 2009-11-26 2011-06-01 夏普株式会社 Air conditioner and method for controlling positive temperature coefficient (ptc) heater
JP2011257079A (en) * 2010-06-10 2011-12-22 Sharp Corp Air conditioning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162837A (en) * 1986-01-10 1987-07-18 Daikin Ind Ltd Air conditioner
JPS63210546A (en) * 1987-02-27 1988-09-01 Hitachi Ltd Rotational speed control type air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162837A (en) * 1986-01-10 1987-07-18 Daikin Ind Ltd Air conditioner
JPS63210546A (en) * 1987-02-27 1988-09-01 Hitachi Ltd Rotational speed control type air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080866A (en) * 2009-11-26 2011-06-01 夏普株式会社 Air conditioner and method for controlling positive temperature coefficient (ptc) heater
JP2011112281A (en) * 2009-11-26 2011-06-09 Sharp Corp Method of controlling ptc heater and air conditioner
US9182134B2 (en) 2009-11-26 2015-11-10 Sharp Kabushiki Kaisha Air conditioner having positive temperature coefficient heater
JP2011257079A (en) * 2010-06-10 2011-12-22 Sharp Corp Air conditioning device

Also Published As

Publication number Publication date
JPH0820094B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JP2539571B2 (en) Outdoor fan control device and outdoor fan control method using the same
JPH0384350A (en) Air conditioner
JPH09113014A (en) Controller for air conditioner
JP3152560B2 (en) Air conditioner
JP3762495B2 (en) Air conditioner
JP2005069618A (en) Separate type air conditioner
JP2001099459A (en) Method of evaluating test run of air conditioner
JP3157381B2 (en) Air conditioner
JPS6029540A (en) Air quantity controlling method for air conditioner
JPH08152179A (en) Control method for air conditioner using ptc heater
JP7168854B2 (en) Air conditioner and preheating operation method
KR100272230B1 (en) Device and method for controlling operation of air conditioner
JPH01174842A (en) Safety device for prevention of overheating of heater in air conditioner
JP4229541B2 (en) Air conditioner control device
JPS63117692A (en) Control circuit for air conditioning motor
JPS6278486A (en) Drive control circuit of compressor
JP2670347B2 (en) Blower
JPS6179943A (en) Air conditioner
JPH0463978B2 (en)
JPS5832104Y2 (en) Air conditioner control circuit
JPH044502B2 (en)
JP3536454B2 (en) Heat pump system
JP2000205633A (en) Separate type air conditioner
JPH10227506A (en) Air conditioner
JPS63231133A (en) Heat pump type air-conditioning machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees