JPH0384231A - Vibration exempting supporter - Google Patents

Vibration exempting supporter

Info

Publication number
JPH0384231A
JPH0384231A JP21782589A JP21782589A JPH0384231A JP H0384231 A JPH0384231 A JP H0384231A JP 21782589 A JP21782589 A JP 21782589A JP 21782589 A JP21782589 A JP 21782589A JP H0384231 A JPH0384231 A JP H0384231A
Authority
JP
Japan
Prior art keywords
rubber
cords
thickness
column body
elastic column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21782589A
Other languages
Japanese (ja)
Other versions
JP2794462B2 (en
Inventor
Hirohiko Yamada
裕彦 山田
Minanobu Tomio
冨尾 三七喜
Toshiyuki Miyamae
宮前 俊幸
Takao Kawai
孝夫 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP21782589A priority Critical patent/JP2794462B2/en
Publication of JPH0384231A publication Critical patent/JPH0384231A/en
Application granted granted Critical
Publication of JP2794462B2 publication Critical patent/JP2794462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a vibration exempting supporter excellent in vibration exempting function and facilitate its manufacture by setting the thickness of a rubber layer interposed between vertically adjacent cord fabric to be less than 2.0mm as well as the occupied area of fiber cords in a layer including the cord fabric and the occupied volume of the fiber cords in an elastic column body to have specific percentage in relation to the whole layer and the whole elastic column body respectively. CONSTITUTION:Polyester cords 1 are disposed in row, and cotton yarn is woven thereinto so as to manufacture cord fabric 3. This cord fabric 3 is topped with natural rubber so as to form topping cords 4. These topping cords 4 and rubber sheets 5 of varied thickness are alternately laminated to form an elastic column body, and hard flanges 6, 6 made of iron plates are rigidly fixed at both upper and lower ends of the elastic column body, thus manufacturing a vibration exempting supporting body. The thickness of a rubber layer 5 is set to be less than 2.0mm, the occupied area of the polyester cords 1 in the topping cord 4 is to be more than 30% in relation to the whole area of that layer, and the occupied volume of the polyester cords 1 in the elastic column body is to be 10-70% in relation to the whole volume of the elastic column body.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、建物および機械装置等の構造体を下から支
えて上記構造体に地震等による振動を伝えないようにす
るための免震用支持体に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention is a seismic isolation device for supporting structures such as buildings and machinery from below to prevent vibrations caused by earthquakes from being transmitted to the structures. It is related to the support.

(従来の技術) 建物および機械装置等の構造体を下から支持するための
免震用支持体として、鉄板とゴム板とを交互に重ねたも
の(特開昭62−211471号公報参照)、およびメ
ツシュ状の織物とゴム板とを交互に積層したもの等が知
られている。
(Prior Art) As a seismic isolation support for supporting structures such as buildings and mechanical devices from below, steel plates and rubber plates are alternately stacked (see Japanese Patent Laid-Open No. 62-211471); Also known are mesh-like fabrics and rubber plates alternately laminated.

(発明が解決しようとする課題) しかしながら、鉄板とゴム板とを交互に重ねたものは、
個々の板の厚みを小さくして重ね枚数を増大することに
より、横剛性を低下させて免M機能を向上させることが
できる反面、積層工数が増し、また鉄板とゴム板の接着
が困難であるため、接着処理が難しく、また鉄板とゴム
板の間に空気が残留し易いため、接着不良が起き易く、
性能が不均一になるという問題があった。一方、メツシ
ュ状の織物とゴム板とを交互に積層したものは、ゴム板
の厚みが5〜20■に設定され、織物の厚みに比べて大
きく、高過重下での横変形が大きい場合にゴム板の座屈
が生じるので、大きい横変形の生じる免震用には使用す
ることができず・そのため横変形のない建物、!梁等の
防振用としてのみ使用されていた。
(Problem to be solved by the invention) However, a structure in which iron plates and rubber plates are stacked alternately,
By reducing the thickness of the individual plates and increasing the number of stacked plates, it is possible to reduce the lateral rigidity and improve the M resistance function, but on the other hand, the number of lamination steps increases and it is difficult to bond the steel plate and the rubber plate. Therefore, the adhesion process is difficult, and air tends to remain between the steel plate and the rubber plate, resulting in poor adhesion.
There was a problem of uneven performance. On the other hand, in the case where mesh-like fabrics and rubber plates are alternately laminated, the thickness of the rubber plates is set to 5 to 20 cm, which is larger than the thickness of the fabric, and when the lateral deformation is large under high load. Because buckling of the rubber plate occurs, it cannot be used for seismic isolation where large lateral deformations occur.Therefore, buildings without lateral deformation! It was used only for vibration isolation of beams, etc.

この発明は、繊維コードからなるすだれ織を使用するこ
とにより、免震機能に優れ、かつ製造が容易な免震用支
持体を提供するものである。
The present invention provides a seismic isolation support that has an excellent seismic isolation function and is easy to manufacture by using a blind weave made of fiber cords.

(課題を解決するための手段) 上記の課題を解決するため、この発明では、ゴムを主体
とする弾性柱状体の上下両面に金属板等の硬質フランジ
を固定した免震用支持体において、上記の弾性柱状体に
繊維コードをたて糸とするすだれ織が上下の硬質フラン
ジと平行に、かつ多層に配置され、上下に隣接するすだ
れ織間に介在するゴム層の厚みが2.0mm以下に、ま
たすだれ織を含む層における繊維コードの占有面積が上
記の層の全面積に対して30%以上に、また弾性柱状体
における繊維コードの占有堆積が上記弾性柱状体の全体
積に対して10〜70%にそれぞれ設定される。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides the above-mentioned seismic isolation support in which hard flanges such as metal plates are fixed to the upper and lower surfaces of an elastic columnar body mainly made of rubber. A blind weave having fiber cords as warp threads is arranged on the elastic columnar body in parallel with the upper and lower hard flanges in multiple layers, and the thickness of the rubber layer interposed between the upper and lower adjacent blind weaves is 2.0 mm or less, and The area occupied by the fiber cords in the layer containing the blind weave is 30% or more of the total area of the layer, and the occupied accumulation of the fiber cords in the elastic columnar body is 10 to 70% of the total area of the elastic columnar body. % respectively.

上記の弾性柱状体を構成するゴムは、天然ゴム、スチレ
ンブタジェンゴム、ブタジェンゴム、ニトリルゴム、ブ
チルゴム、ハロゲン化ブチルゴム、クロロブレンゴム、
ポリウレタン、エチレンプロピレンデイエンゴム、イソ
プレンゴム、可塑化塩ビゴム、ノーソレフクス、エチレ
ン酢ビゴム、シリコンゴム、塩素化ポリエチレンゴム等
のゴムであり、これらのゴムの加硫後の硬度は、JIS
−Aゴム硬度の30〜70度が好ましい。
The rubbers constituting the above-mentioned elastic columns include natural rubber, styrene-butadiene rubber, butadiene rubber, nitrile rubber, butyl rubber, halogenated butyl rubber, chloroprene rubber,
These rubbers include polyurethane, ethylene propylene diene rubber, isoprene rubber, plasticized vinyl chloride rubber, Nosolefx, ethylene vinyl acetate rubber, silicone rubber, and chlorinated polyethylene rubber.The hardness of these rubbers after vulcanization is determined by JIS.
-A rubber hardness of 30 to 70 degrees is preferred.

上記のゴム中に配置されるすだれ織は、ナイロン、ポリ
エステル、ポリプロピレン、ポリエチレン、ポリ塩化ビ
ニル等の合成繊維、レーヨン等の再生繊維、およびガラ
ス繊維、炭素繊維等の無機繊維からなる繊維コードを密
に配列してたて糸とし、このたて糸に比べて非常に細い
よこ糸を粗く打込んで得られる織物であり(第2図参照
)、実質的に上記たて糸コードのみの配列からなるシー
トある。このすだれ織において、コードの太さは300
〜6000デニールが好ましく、また隣接するコード間
の間隙は、この間隙を含むすだれ織の全面積に対してコ
ードの占有面積が30%以上になるように設定される。
The blind weave arranged in the above rubber is a dense fiber cord made of synthetic fibers such as nylon, polyester, polypropylene, polyethylene, and polyvinyl chloride, recycled fibers such as rayon, and inorganic fibers such as glass fiber and carbon fiber. It is a fabric obtained by coarsely inserting weft threads, which are much thinner than the warp threads, into the warp threads (see Figure 2), and is a sheet consisting essentially of only the above-mentioned warp thread cords. In this bamboo weave, the thickness of the cord is 300
~6000 denier is preferred, and the gap between adjacent cords is set so that the area occupied by the cords is 30% or more of the total area of the blind weave including this gap.

この発明の弾性柱状体は、上記のすだれ織に前記のゴム
をトッピングし、得られたトッピングコードのみを多数
枚積層し、しかるのち加硫接着により一体化して製造さ
れる。このトッピングコードの積層に際しては、均一性
を高めるためコードの方向を所望の角度ずつ、例えば9
0度ずつ、または45度ずつ順にずらせて積層すること
ができる。
The elastic columnar body of the present invention is manufactured by topping the above-mentioned blind weave with the above-mentioned rubber, laminating only a large number of the obtained topping cords, and then integrating them by vulcanization adhesion. When stacking this topping cord, in order to improve uniformity, the direction of the cord is changed at a desired angle, for example, 9
The layers can be stacked by being sequentially shifted by 0 degrees or by 45 degrees.

また、上記のトッピングコードと前記のゴムからなる板
またはシートとを交互に積層し、これらを加硫接着によ
り一体化することもできる。ただし、上記のゴム板また
はゴムシートの厚み、すなわち上・記すだれ織間に形成
されるゴム層の厚みは2.0mm以下、好ましくは1.
0mm以下に設定される。また、上記の弾性柱状体にお
けるコードの占有体積は、弾性柱状体の全体積の10%
以上、好ましくは20〜70%に設定される。
It is also possible to alternately laminate the above-mentioned topping cord and the above-mentioned rubber plates or sheets and integrate them by vulcanization adhesion. However, the thickness of the above-mentioned rubber plate or rubber sheet, that is, the thickness of the rubber layer formed between the above-mentioned blind weaves, is 2.0 mm or less, preferably 1.0 mm or less.
It is set to 0 mm or less. In addition, the volume occupied by the cord in the above elastic columnar body is 10% of the total volume of the elastic columnar body.
Above, it is preferably set to 20 to 70%.

上記の弾性柱状体の上下両端に重ねられる硬質フランジ
は、鉄、アルミニウム、銅、ステンレス鋼等の金属、ポ
リスチレン、ポリエチレン、ポリプロピレン、ABS、
ポリ塩化ビニル、ポリメタクリル酸メチル、ポリカーボ
ネート、ポリアセタール、ナイロン等の熱可塑性樹脂、
フェノール樹脂、ユリア樹脂、不飽和ポリエステル樹脂
、エポキシ樹脂等の熱硬化性樹脂、その他セラミックス
、FRP、木材等からなる板であり、その好ましい厚み
は、1〜5閣であり、その硬度はJIS−Aゴム硬度で
95度以上が好ましい、なお、この硬質7ランジは、上
記弾性柱状体の上下両面に重ねて接着剤で固着すること
ができ、また上記トッピングコード等の加硫時にその上
下両面に重ねて同時に加硫接着することができる。
The hard flanges stacked on both the upper and lower ends of the elastic columnar body are made of metal such as iron, aluminum, copper, stainless steel, polystyrene, polyethylene, polypropylene, ABS, etc.
Thermoplastic resins such as polyvinyl chloride, polymethyl methacrylate, polycarbonate, polyacetal, and nylon,
It is a board made of thermosetting resin such as phenol resin, urea resin, unsaturated polyester resin, and epoxy resin, other ceramics, FRP, wood, etc. Its preferable thickness is 1 to 5 mm, and its hardness is JIS- Preferably, the A rubber hardness is 95 degrees or more. This hard 7 lunge can be stacked on both the upper and lower surfaces of the elastic columnar body and fixed with an adhesive, and can also be bonded to both the upper and lower surfaces when the topping cord, etc. is vulcanized. They can be stacked and vulcanized and bonded at the same time.

(作用) 上記の免震用支持体を任意の構造体とその基礎との間に
介在させ、構造体を支持させると、免震用支持体の弾性
柱状体が縦振動および横振動の双方を吸収する。そして
、弾性柱状体にすだれ織が両端の硬質フランジと平行に
、かつ多層に配置されることにより、縦剛性が鉄板とゴ
ム板の積層体と同程度に向上して高荷重に耐えることが
できると共に、横剛性が低下して大きい横振動を吸収す
ることかできる、しかも、すだれ織が従来のメツシュ状
織物に比べて厚みが薄くなり、すなわち上記すだれ織の
たて糸太さとメツシュ状織物のたて糸・よこ糸の太さと
が等しい場合にすだれ織の厚みがメツシュ状織物の厚み
の約1/3になるので、上下に隣接するすだれ織相互の
間隔を狭くして上記すだれ織間のゴム層の厚みを薄くす
ることができ、そのため横剛性を小さくしたままで縦剛
性を一層大きくすることができ、しかも高加重下の座屈
を防止することができる。
(Function) When the above seismic isolation support is interposed between any structure and its foundation to support the structure, the elastic columns of the seismic isolation support will absorb both longitudinal and lateral vibrations. Absorb. By arranging the blind weave on the elastic columnar body parallel to the hard flanges at both ends and in multiple layers, the vertical rigidity is improved to the same level as a laminate of steel plates and rubber plates, making it possible to withstand high loads. At the same time, the lateral rigidity is reduced, making it possible to absorb large lateral vibrations.Moreover, the thickness of the blind weave is thinner than that of conventional mesh-like fabrics. When the thickness of the wefts is equal, the thickness of the blind weave is about 1/3 of the thickness of the mesh-like fabric, so the distance between the vertically adjacent blind weaves is narrowed to reduce the thickness of the rubber layer between the blind weaves. It can be made thinner, and therefore the longitudinal stiffness can be further increased while the lateral stiffness is kept small, and buckling under high loads can be prevented.

なお、免震用支持体は、構造物を支持するため、縦剛性
が大きく、横剛性が小さく、横剛性と縦剛性との比がで
き、るだけ小さいことが好ましいとされるが、この発明
の免震用支持体は、上下に隣接するすだれ織間のゴム層
の厚みを2.0mm以下に、またすだれ織を含む層にお
ける繊維コードの占有面積を上記層の全面積に対し30
%以上に、また弾性柱状体における繊維コードの占有体
積を全体積に対して10〜70%にそれぞれ設定したの
で、特に優れた免震性能が得られる。これに対し、上記
ゴム層の厚みが2.0閣よりも大きい場合は、ゴム層が
厚すぎるために縦剛性が低下して横剛性と縦剛性との比
が過大になり、またすだれ織を含む層における繊維コー
ドの占有面積率が30%未満の場合および弾性柱状体に
おける繊維コードの占有体積率が10%未満の場合は、
いずれも縦剛性が低下して横剛性と縦剛性との比が過大
になり、また上記の占有体積率が70%を超えると、繊
維形状を非円形にする等の必要が生じ製造が困難になる
In addition, in order to support the structure, the seismic isolation support body is said to preferably have high vertical rigidity and low horizontal rigidity, and the ratio of the horizontal rigidity to the vertical rigidity is as small as possible. The seismic isolation support has a thickness of 2.0 mm or less for the rubber layer between the vertically adjacent blind weaves, and an area occupied by the fiber cords in the layer containing the blind weave of 30 mm relative to the total area of the above layers.
% or more, and since the volume occupied by the fiber cord in the elastic columnar body is set to 10 to 70% of the total volume, particularly excellent seismic isolation performance can be obtained. On the other hand, if the thickness of the rubber layer is greater than 2.0 mm, the rubber layer is too thick and the longitudinal stiffness decreases, resulting in an excessive ratio of lateral stiffness to longitudinal stiffness, and the blind weave becomes too thick. When the occupied area ratio of the fiber cords in the containing layer is less than 30% and when the occupied volume ratio of the fiber cords in the elastic columnar body is less than 10%,
In either case, the longitudinal stiffness decreases and the ratio of lateral stiffness to longitudinal stiffness becomes excessive, and if the above-mentioned occupied volume ratio exceeds 70%, it becomes necessary to make the fiber shape non-circular, making manufacturing difficult. Become.

(実施例) ポリエステルフィラメント糸1500デニールを2本引
揃え加熱して直径0.65鵬のポリエステルコードを得
、第2図に示すように、このポリエステルコードlを2
2本/インチの密度で配列し、20番手の綿糸2を打込
んですだれ織3を製織し、このすだれ織3に天然ゴム(
JIS−Aゴム硬度40度)をトッピングして厚み0.
65−のトッピングコードとし、このトッピングコード
4(第1図参照)と上記のゴムからなる種々の厚みのシ
ート5とを交互に積層し、加硫して外径90■、内径2
0mm1高さ90amの管状の弾性柱状体を成形し、そ
の上下両端に厚み10閣の鉄板からなる硬質フランジ6
.6を固着して、実施例1〜4および比較例1〜2の免
震用支持体を製造した。また、厚み1.2閣の鉄板19
枚および厚み3.0閣のゴム板(JIS−Aゴム硬度4
0度)20枚を交互に積層し上記と同じサイズの比較例
3の免震用支持体を製造した。これらの免震用支持体の
縦剛性および横剛性を測定し、その横剛性と縦剛性の比
を比較した。その結果を下記第1表に示す、なお、表中
のに1は横剛性を、またKゎは縦剛性をそれぞれ示す。
(Example) Two polyester filament yarns of 1,500 denier were brought together and heated to obtain a polyester cord with a diameter of 0.65 mm.As shown in FIG.
Arranged at a density of 2 threads/inch, 20 count cotton threads 2 are inserted to weave a blind weave 3, and natural rubber (
Topped with JIS-A rubber hardness 40 degrees) to a thickness of 0.
The topping cord 4 (see Fig. 1) and the sheets 5 of various thicknesses made of the above-mentioned rubber are alternately laminated and vulcanized to obtain a topping cord of 90 mm in outer diameter and 2 mm in inner diameter.
A tubular elastic columnar body of 0 mm 1 height 90 am is formed, and a hard flange 6 made of an iron plate with a thickness of 10 mm is attached to the upper and lower ends of the columnar body.
.. 6 was fixed to produce seismic isolation supports of Examples 1 to 4 and Comparative Examples 1 and 2. In addition, the iron plate 19 with a thickness of 1.2 mm
rubber plate with a thickness of 3.0 mm (JIS-A rubber hardness 4
A seismic isolation support of Comparative Example 3 having the same size as above was manufactured by alternately stacking 20 pieces (0 degrees). The longitudinal and lateral rigidities of these seismic isolation supports were measured, and the ratios of the lateral and longitudinal rigidities were compared. The results are shown in Table 1 below. In the table, 1 indicates lateral stiffness, and K indicates longitudinal stiffness.

(以下、空白) 第1表 上記の表で明らかなように、ゴム層の厚みを2閣以下、
好ましくはl■以下にすることにより、鉄板とゴム板と
を交互に積層した比較例3の免震用支持体と同程度の性
能が得られる。
(Hereinafter, blank) Table 1 As is clear from the table above, the thickness of the rubber layer should be 2 mm or less.
Preferably, by setting the thickness to less than l■, performance comparable to that of the seismic isolation support of Comparative Example 3 in which iron plates and rubber plates are alternately laminated can be obtained.

次に、第3図に示すように、ナイロンフィラメントから
なる直径0.6閣のコード11をたて・よこに20本/
インチの密度で配列して厚み1.5閣のメツシュ織物1
2を製織し、これに前記実施例と同じゴムをトッピング
して厚み1.5 waのトッピングコード13 (第4
図参照)とし、前記実施例と同様にゴム板14と交互に
積層して比較例4〜6の免震用支持体を製造し、その横
剛性と縦剛性の比を測定した。その結果を第2表に示す
Next, as shown in FIG.
Mesh fabric 1 with a thickness of 1.5 inches arranged at a density of inches
2 was woven and topped with the same rubber as in the previous example to obtain a topping cord 13 (fourth cord) with a thickness of 1.5 wa.
(see figure) and laminated alternately with rubber plates 14 in the same manner as in the above-mentioned Examples to produce seismic isolation supports of Comparative Examples 4 to 6, and the ratio of the lateral stiffness to the longitudinal stiffness was measured. The results are shown in Table 2.

第2表 上記の表で明らかなように、メツシュ織物を使用した場
合は、上下に隣接するメツシュ織物を密接させてその間
のゴム層の厚みをゼロにしても横剛性と縦剛性の比が大
きくなり、免震用支持体として好ましくない。
Table 2 As is clear from the above table, when mesh fabrics are used, the ratio of lateral stiffness to longitudinal stiffness is large even if the upper and lower adjacent mesh fabrics are placed close together and the thickness of the rubber layer between them is zero. Therefore, it is not preferable as a support for seismic isolation.

更に、前記実施例1〜4の免震用支持体において、すだ
れ織3のコードlの配列密度を種々に変更し、すなわち
すだれ織3を含む層におけるコード2の占有面積を種々
に変更して比較例7および実施例5〜7の免震用支持体
を製造し、横剛性と縦剛性の比を比較した。ただし、ゴ
ム層の厚みは全てゼロに設定した。
Furthermore, in the seismic isolation supports of Examples 1 to 4, the arrangement density of the cords 1 of the blind weave 3 was variously changed, that is, the area occupied by the cords 2 in the layer containing the blind weave 3 was variously changed. Seismic isolation supports of Comparative Example 7 and Examples 5 to 7 were manufactured, and the ratios of lateral stiffness and longitudinal stiffness were compared. However, the thickness of the rubber layer was all set to zero.

その結果を第3表に示す。The results are shown in Table 3.

上記の表で明らかなように、コード占有率を30%以上
に設定することにより、鉄板を使用した比較例3の免震
用支持体と同程度以上の性能が得られることが確認され
た。
As is clear from the table above, it was confirmed that by setting the cord occupancy rate to 30% or more, performance comparable to or higher than that of the seismic isolation support of Comparative Example 3 using iron plates could be obtained.

(発明の効果) この発明は、ゴムを主体とする弾性柱状体の上下両面に
金属板等の硬質フランジを固定した免震用支持体におい
て、上記の弾性柱状体に繊維コードをたて糸とするすだ
れ織を上下の硬質フランジと平行に、かつ多層に配置し
たものであるから、従来のメツシュ織物とゴム板とを積
層したものに比べてゴム層の厚みを小さくすることが可
能になり、高荷重下における座屈の発生を無くして従来
の鉄板とゴム板とを交互に積層した免震用支持体と同程
度の免震性能が得られ、かつ積層後の加硫処理によって
すだれ織が弾性柱状体に一体化されるので、上記の鉄板
を使用したものに比べて製造が容易である。
(Effects of the Invention) This invention provides a seismic isolation support in which hard flanges such as metal plates are fixed to the upper and lower surfaces of an elastic columnar body mainly made of rubber. Since the fabric is arranged parallel to the upper and lower rigid flanges in multiple layers, it is possible to reduce the thickness of the rubber layer compared to the conventional laminated mesh fabric and rubber plate, which allows it to withstand high loads. By eliminating the occurrence of buckling at the bottom, the same level of seismic isolation performance as a conventional seismic isolation support made of alternately laminated steel plates and rubber plates can be obtained, and the vulcanization process after lamination makes the blind weave into an elastic columnar shape. Since it is integrated into the body, it is easier to manufacture than the above-mentioned iron plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の縦断面図、第2図はすだれ
織の斜視図、第3図は従来のメツシュ織物の断面図、第
4図は上記メツシュ織物を使用した免震用支持体の断面
図である。 l:コード、2:よこ糸、3:すだれ織、4:トッピン
グコード、5:ゴム層、6:硬質フランジ。
Fig. 1 is a longitudinal sectional view of an embodiment of the present invention, Fig. 2 is a perspective view of a blind weave, Fig. 3 is a sectional view of a conventional mesh fabric, and Fig. 4 is a seismic isolation support using the above mesh fabric. It is a cross-sectional view of the body. l: Cord, 2: Weft, 3: Blind weave, 4: Topping cord, 5: Rubber layer, 6: Hard flange.

Claims (1)

【特許請求の範囲】 〔1〕ゴムを主体とする弾性柱状体の上下両面に金属板
等の硬質フランジを固定した免震用支持体において、上
記の弾性柱状体に繊維コードをたて糸とするすだれ織が
上下の硬質フランジと平行に、かつ多層に配置されてお
り、上下に隣接するすだれ織間に介在するゴム層の厚み
が2.0mm以下、すだれ織を含む層における繊維コー
ドの占有面積が上記の層の全面積に対して30%以上、
弾性柱状体における繊維コードの占有体積が上記弾性柱
状体の全体積に対して10〜70%であることを特徴と
する免震用支持体。
[Scope of Claims] [1] In a seismic isolation support in which hard flanges such as metal plates are fixed to the upper and lower surfaces of an elastic columnar body mainly made of rubber, a blind having a fiber cord as a warp on the elastic columnar body is provided. The weave is arranged parallel to the upper and lower hard flanges in multiple layers, the thickness of the rubber layer interposed between the upper and lower adjacent blind weaves is 2.0 mm or less, and the area occupied by the fiber cord in the layer containing the blind weave is 30% or more of the total area of the above layer,
A support for seismic isolation, characterized in that the volume occupied by the fiber cords in the elastic columnar body is 10 to 70% of the total volume of the elastic columnar body.
JP21782589A 1989-08-24 1989-08-24 Seismic isolation support Expired - Lifetime JP2794462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21782589A JP2794462B2 (en) 1989-08-24 1989-08-24 Seismic isolation support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21782589A JP2794462B2 (en) 1989-08-24 1989-08-24 Seismic isolation support

Publications (2)

Publication Number Publication Date
JPH0384231A true JPH0384231A (en) 1991-04-09
JP2794462B2 JP2794462B2 (en) 1998-09-03

Family

ID=16710337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21782589A Expired - Lifetime JP2794462B2 (en) 1989-08-24 1989-08-24 Seismic isolation support

Country Status (1)

Country Link
JP (1) JP2794462B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536144U (en) * 1991-10-17 1993-05-18 東洋ゴム工業株式会社 Anti-vibration rubber laminate
JP2006258132A (en) * 2005-03-15 2006-09-28 Yokohama Rubber Co Ltd:The Rubber support
GB2447625A (en) * 2007-03-23 2008-09-24 Bighead Bonding Fasteners Ltd Fastener comprising male and female components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205493B1 (en) 2012-06-25 2012-11-27 황상노 Rubber conposition for structure strut

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536144U (en) * 1991-10-17 1993-05-18 東洋ゴム工業株式会社 Anti-vibration rubber laminate
JP2006258132A (en) * 2005-03-15 2006-09-28 Yokohama Rubber Co Ltd:The Rubber support
GB2447625A (en) * 2007-03-23 2008-09-24 Bighead Bonding Fasteners Ltd Fastener comprising male and female components

Also Published As

Publication number Publication date
JP2794462B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
EP2774753B1 (en) Multilayer structure
EP0247069B1 (en) Warp knit weft insertion fabric and plastic sheet reinforced therewith
US3048198A (en) Methods of making structural panels having diagonal reinforcing ribs and products thereof
JPH02173044A (en) Fiber-reinforced plastics and reinforcing material therefor
KR102307989B1 (en) Fiber reinforced composite material having a hollow section and method for manufacturing the same
JPH0384231A (en) Vibration exempting supporter
JP2021075811A (en) Fiber-reinforced composite material sandwich core and manufacturing method of fiber-reinforced composite material sandwich core
JPH01316530A (en) Member for supporting vibration isolation
JPH0384232A (en) Vibration exempting supporter
JP6301589B2 (en) Laminated structure
JPH078898Y2 (en) Washer for fastening
JPH03153934A (en) Support for quake proof
JPH0319835A (en) Manufacture of vibration proofing supporter
JP2768482B2 (en) Non woven mat
JPH068971Y2 (en) Helmet
JP6721430B2 (en) Sheet
JPH04175526A (en) Vibrationproof supporting body
CN211396065U (en) Light energy-saving wallboard produced by adopting slag fines
CN212928611U (en) Shock pad
CN216761125U (en) Flame-retardant low-moisture-absorption liquid crystal polyarylate honeycomb core material
JP2000065140A (en) Base isolation material
JPH0464745A (en) Vibration suppressing type support structure
KR102417615B1 (en) Artificial turf structure
CN219523303U (en) Flame-retardant high-strength laminated composite fabric
CN215457038U (en) Elastic body pillow core and pillow