JPH0383959A - Production of aromatic polycarbamate - Google Patents

Production of aromatic polycarbamate

Info

Publication number
JPH0383959A
JPH0383959A JP22249489A JP22249489A JPH0383959A JP H0383959 A JPH0383959 A JP H0383959A JP 22249489 A JP22249489 A JP 22249489A JP 22249489 A JP22249489 A JP 22249489A JP H0383959 A JPH0383959 A JP H0383959A
Authority
JP
Japan
Prior art keywords
reaction
aromatic
dinitrodiphenylmethane
diphenylmethane
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22249489A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Kumagai
熊谷 善敏
Kazuhito Kurachi
倉地 和仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22249489A priority Critical patent/JPH0383959A/en
Publication of JPH0383959A publication Critical patent/JPH0383959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce the subject compound useful as an intermediate for the production of polyurethane in high yield and efficiency by nitrating diphenylmethane and reacting the product with an OH-containing organic compound and CO in the presence of a catalyst. CONSTITUTION:The objective aromatic polycarbamate composed mainly of methylenediphenyldicarbamate can be produced by nitrating diphenylmethane with a nitration agent and reacting the resultant mixture composed mainly of dinitrodiphenylmethane with an OH-containing organic compound and CO in the presence of a catalyst. The dinitrodiphenylmethane used in the reaction is a compound of formula and produced in high yield by the nitration of diphenylmethane.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリウレタン原料である芳香族イソシアネート
の製造における中間体である、芳香族ポリカーバメート
、特にメチレンジフェニルジカーバメートの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing aromatic polycarbamate, particularly methylene diphenyl dicarbamate, which is an intermediate in the production of aromatic isocyanate, which is a raw material for polyurethane.

(従来の技術) 芳香族ポリイソシアネート、中でも2核体のメチレンジ
フェニルジイソシアネート(以下、MDIと略記)は、
ポリウレタンエラストマーおよび被覆材料製造の原料と
して有用な物質であり、この用途における使用量は、揮
発性が高く毒性の強いことが問題となっているトリレン
ジイソシアネ−1−(TDI)を現在では凌いでおり、
工業的規模での大量生産が行われている。
(Prior Art) Aromatic polyisocyanates, especially dinuclear methylene diphenyl diisocyanate (hereinafter abbreviated as MDI), are
It is a useful substance as a raw material for manufacturing polyurethane elastomers and coating materials, and the amount used for this purpose currently exceeds that of tolylene diisocyanate (TDI), which has been problematic due to its high volatility and strong toxicity. It's here,
Mass production is carried out on an industrial scale.

従来、芳香族イソシアネート類は一般に芳香族ニトロ化
合物を水素還元して芳香族アミンを得、これにホスゲン
を作用させてイソシアネートとすることにより工業的に
生産されてきた。しかし、この方法は工程が複雑な上、
有毒なホスゲンを使用すること、塩化水素が大量に副生
ずることなどの問題点があった。そこで、ホスゲンを使
用しない芳香族イソシアネート類の製造方法が20年来
盛んに研究されている。
Conventionally, aromatic isocyanates have generally been industrially produced by reducing an aromatic nitro compound with hydrogen to obtain an aromatic amine, which is then treated with phosgene to form an isocyanate. However, this method is complicated, and
Problems include the use of toxic phosgene and the production of large amounts of hydrogen chloride. Therefore, methods for producing aromatic isocyanates that do not use phosgene have been actively researched for the past 20 years.

ホスゲンを使用しない方法は、■直接法と、■カーバメ
ート経由法に大別される。
Methods that do not use phosgene are broadly divided into ∎direct method and ∎carbamate-mediated method.

第一の直接法は、不活性溶剤中で芳香族ニトロ化合物に
パラジウム系触媒の存在下で一酸化炭素を作用させ、芳
香族イソシアネート化合物を直接製造する方法であるが
、反応条件が過酷である、触媒の生産性が低い、副反応
が併発しやすいといった欠点がある。さらに、致命的な
ことに、この方法はMDIのような多核構造のポリイソ
シアネートの製造に適用することは困難である。
The first direct method involves reacting aromatic nitro compounds with carbon monoxide in the presence of a palladium-based catalyst in an inert solvent to directly produce aromatic isocyanate compounds, but the reaction conditions are harsh. However, there are drawbacks such as low catalyst productivity and the tendency for side reactions to occur together. Furthermore, fatally, it is difficult to apply this method to the production of polyisocyanates with a polynuclear structure such as MDI.

第二〇カーバメート経由法は、芳香族ニトロ化合物とア
ルコールとに白金族金属触媒またはセレン触媒の存在下
で一酸化炭素を作用させて、中間生成物の芳香族カーバ
メートを得、次いでこのカーバメートを熱分解して対応
する芳香族イソシアネートを得る方法である。
In the 20th carbamate method, an aromatic nitro compound and an alcohol are reacted with carbon monoxide in the presence of a platinum group metal catalyst or a selenium catalyst to obtain an intermediate aromatic carbamate, and then this carbamate is heated. This is a method to obtain the corresponding aromatic isocyanate by decomposition.

このようなカーバメート経由のポリイソシアネートの製
造において、中間生成物の芳香族カーバメートを得る方
法としては、例えば下記反応式(a)に示すように、フ
ェニルカーバメート(1)とホルムアルデヒドを発生す
る物質とを、硫酸などの酸触媒を用いて縮合してメチレ
ンジフェニルジカーバメート(■)(以下、MDUと略
記する)を製造する方法がある。このMDUを熱分解す
ると、下記反応式(ロ)に示すように、アルコールが脱
離して、対応するイソシアネートであるMDI (nl
)が生成する。
In the production of polyisocyanate via such carbamates, a method for obtaining aromatic carbamates as intermediate products is, for example, as shown in the following reaction formula (a), by combining phenyl carbamate (1) and a substance that generates formaldehyde. There is a method of producing methylene diphenyl dicarbamate (■) (hereinafter abbreviated as MDU) by condensation using an acid catalyst such as sulfuric acid. When this MDU is thermally decomposed, alcohol is eliminated and the corresponding isocyanate MDI (nl
) is generated.

(1) (II) (III) (R:炭素数1〜6の低級アルキル基)この方法に関し
ては、例えば、米国特許第2,946.768号、特開
昭55−81850号などを始めとして多数の提案がな
されている。しかし、これらの方法では、下記一般式(
IV)のような多核体が同時に生威し、望ましい生成物
であるMDUを高い収率で得ることは困難である。
(1) (II) (III) (R: lower alkyl group having 1 to 6 carbon atoms) This method is described in, for example, U.S. Pat. Many proposals have been made. However, in these methods, the following general formula (
It is difficult to simultaneously grow polynuclear bodies such as IV) and obtain the desired product MDU in high yield.

(m:1〜6の整数;Rは上記と同じ意味)(発明が解
決しようとする課III) 上述のように、従来の方法では芳香族イソシアネートで
あるMDIの中間体として有用なMDUを高い収率で得
ることは困難であった。
(m: an integer of 1 to 6; R has the same meaning as above) (Issue III to be solved by the invention) As described above, in the conventional method, MDU, which is an aromatic isocyanate and is useful as an intermediate for MDI, is It was difficult to obtain a good yield.

本発明は、以上の事情を背景としてなされたものであり
、その目的は、芳香族ポリカーバメート、特にMDUを
高収率で製造するための工業的に有利な方法を提供する
ことである。
The present invention was made against the background of the above circumstances, and its purpose is to provide an industrially advantageous method for producing aromatic polycarbamates, particularly MDU, in high yield.

(課題を解決するための手段〉 本発明者等は、下記一般式(V)のジニトロジフェニル
メタンがジフェニルメタンのニトロ化にまり高収率でし
かも容易に得られることを見出し、こうして得られたジ
ニトロジフェニルメタンを主成分として含有する混合物
から公知の還元的カルボニル化反応により、芳香族ポリ
カーバメート、特にMDUを高い収率で製造しうること
を見出し、本発明を完成した。
(Means for Solving the Problems) The present inventors have discovered that dinitrodiphenylmethane of the following general formula (V) can be easily obtained in high yield through nitration of diphenylmethane, and the dinitrodiphenylmethane thus obtained The present invention has been completed based on the discovery that aromatic polycarbamates, particularly MDU, can be produced in high yield by a known reductive carbonylation reaction from a mixture containing as a main component.

すなわち、本発明の要旨は、ジフェニルメタンをニトロ
化剤によりニトロ化し、得られたジニトロジフェニルメ
タンを主成分とする混合物を触媒の存在下で含水酸基有
機化合物および一酸化炭・素と反応させることを特徴と
する、MDUを主成分とする芳香族ポリカーバメートの
製造方法である。
That is, the gist of the present invention is characterized in that diphenylmethane is nitrated with a nitrating agent, and the resulting mixture containing dinitrodiphenylmethane as a main component is reacted with a hydrous acid group organic compound and carbon monoxide/element in the presence of a catalyst. This is a method for producing an aromatic polycarbamate containing MDU as a main component.

以下、本発明をさらに具体的に説明する。The present invention will be explained in more detail below.

本発明によれば、ジフェニルメタンをまずニトロ化する
According to the invention, diphenylmethane is first nitrated.

ニトロ化工程は、ジフェニルメタン〈融点26〜27°
C〉の溶融体にニトロ化剤を徐々に滴下することにより
、無溶媒の液相反応として行うことが好ましいが、その
他の反応方法も採用できる。
In the nitration step, diphenylmethane (melting point 26-27°
Although it is preferable to carry out the reaction in a solvent-free liquid phase by gradually dropping the nitrating agent into the melt of C>, other reaction methods can also be adopted.

ニトロ化剤としては、濃硝酸と濃硫酸を混合した混酸が
好ましいが、濃硝酸の代わりに発煙硝酸を用いても良い
、ニトロ化剤の使用量は、ジフェニルメタンに対してモ
ル比で1.0〜20.0倍程度である。
As the nitrating agent, a mixed acid of concentrated nitric acid and concentrated sulfuric acid is preferred, but fuming nitric acid may be used instead of concentrated nitric acid.The amount of the nitrating agent used is 1.0 molar ratio to diphenylmethane. ~20.0 times.

反応温度は20〜150°C1特に40〜80℃の範囲
が好ましい0反応温度が150°Cを越えると、トリニ
トロジフェニルメタン等の副生物の生成量が増大し、ジ
ニトロジフェニルメタンの収率が低下するうえに、反応
が急激に進行し、反応の制御が困難となる、20°C以
下だと反応が進行しにくく、反応時間が長くなり過ぎる
The reaction temperature is preferably in the range of 20 to 150°C, particularly 40 to 80°C. If the reaction temperature exceeds 150°C, the amount of by-products such as trinitrodiphenylmethane will increase, and the yield of dinitrodiphenylmethane will decrease. Moreover, the reaction progresses rapidly, making it difficult to control the reaction.If the temperature is below 20°C, the reaction will be difficult to proceed, and the reaction time will be too long.

反応時間は反応温度、ニトロ化剤の種類、滴下速度など
によって異なるが、通常は滴下終了後、反応混合物を約
10〜180分間攪拌することにより反応を終了させる
。ニトロ化は、上記のように通常は無溶媒で行なうが、
必要に応じてニトロ化剤に不活性な酢酸のような溶媒を
用いることもできる。
Although the reaction time varies depending on the reaction temperature, the type of nitrating agent, the rate of dropping, etc., the reaction is usually terminated by stirring the reaction mixture for about 10 to 180 minutes after finishing dropping. Nitration is usually carried out without solvent as mentioned above, but
If necessary, an inert solvent such as acetic acid may be used as the nitrating agent.

反応終了後、反応混合物を水洗して、過剰のニトロ化剤
を除去し、脱水・乾燥してニトロ化生成物を回収する。
After the reaction is completed, the reaction mixture is washed with water to remove excess nitrating agent, and the nitrated product is recovered by dehydration and drying.

好ましくは、反応混合物にニトロ化生成物を溶解する有
機溶剤を加えて生成物を有機相中に抽出し、分液して水
相のニトロ化剤を分離する0次いで、この生成物の有機
溶液を上記のように水洗し、乾燥後、溶媒を蒸発させる
と、目的とするニトロ化生成物が単離される。
Preferably, an organic solvent that dissolves the nitration product is added to the reaction mixture to extract the product into the organic phase, and the nitration agent is separated from the aqueous phase by separation. After washing with water as above, drying and evaporation of the solvent, the desired nitrated product is isolated.

ジフェニルメタンのニトロ化により、ジニトロジフェニ
ルメタンが高収率で生威し、ジニトロジフェニルメタン
を主成分とする混合物からなる反応生成物が得られる。
The nitration of diphenylmethane produces dinitrodiphenylmethane in high yield and provides a reaction product consisting of a mixture containing dinitrodiphenylmethane as the main component.

生成物中の2,2゛−ジニトロジフェニルメタン、2,
4°−ジニトロジフェニルメタン、4,4゛−ジニトロ
ジフェニルメタンの各異性体の含有量は反応条件により
異なるが、通常は大半が4.4°−異性体であり、2,
2゛−および2,4゛−異性体の生成量は少ない。
2,2′-dinitrodiphenylmethane in the product, 2,
The content of each isomer of 4°-dinitrodiphenylmethane and 4,4°-dinitrodiphenylmethane varies depending on the reaction conditions, but usually the majority is the 4.4°-isomer;
The amounts of the 2'- and 2,4'-isomers produced are small.

ニトロ化工程で得られたニトロ化生成物を、次いで、触
媒の存在下で含水酸基有機化合物および一酸化炭素と反
応させて、目的とするMDUを主成分とするポリカーバ
メート生成物を得る。この反応は、例えば、ニトロベン
ゼンにエタノールと一酸化炭素を反応させて前記一般式
(1)で示されるフェニルカーバメートを得るといった
従来の同種の反応と同様にして行うことができるが、次
に簡単に説明する。
The nitrated product obtained from the nitration step is then reacted with a hydrous acidic organic compound and carbon monoxide in the presence of a catalyst to obtain the desired MDU-based polycarbamate product. This reaction can be carried out in the same manner as a conventional similar reaction, for example, by reacting nitrobenzene with ethanol and carbon monoxide to obtain the phenyl carbamate represented by the general formula (1). explain.

含水酸基有機化合物としては、第一、第二、第三級の水
酸基を含む1価および多価アルコール類、ならびに1価
および多価フェノール類のいずれも使用可能である。す
なわち、得られる生成物は、前記の一般式(I[)にお
いて、Rが低級アルキル基のみならず、ヒドロキシアル
キル基、アリール基あるいはヒドロキシアリール基であ
るものも製造しうる。但し、芳香族ポリイソシアネート
の中間体として芳香族ポリカーバメートを製造する場合
には、その後のポリイソシアネートへの熱分解が容易と
なることから、含水酸基有機化合物としてはエタノール
またはメタノールが最も適している。
As the hydrated acid group organic compound, any of monohydric and polyhydric alcohols and monohydric and polyhydric phenols containing primary, secondary, and tertiary hydroxyl groups can be used. That is, the resulting products may be those in the general formula (I[) above, in which R is not only a lower alkyl group but also a hydroxyalkyl group, an aryl group, or a hydroxyaryl group. However, when producing aromatic polycarbamate as an intermediate for aromatic polyisocyanate, ethanol or methanol is most suitable as the hydrous acid group organic compound because subsequent thermal decomposition to polyisocyanate is easy. .

含水酸基有機化合物は、通常は溶媒を兼ねて使用するた
め、反応条件下で液体状のものを使用することが好まし
い。含水酸基有機化合物は、ニトロ基対して少なくとも
当量が反応に必要であるが、溶媒を兼ねる場合には大過
剰量で使用する。
Since the hydrous acid group organic compound is usually used also as a solvent, it is preferable to use one that is liquid under the reaction conditions. The hydrous acid group organic compound is required for the reaction in an amount equivalent to at least the nitro group, but if it also serves as a solvent, it is used in a large excess amount.

−酸化炭素は、反応を一酸化炭素加圧下で行うことによ
り反応系に大過剰に導入する。
- Carbon oxide is introduced in large excess into the reaction system by conducting the reaction under carbon monoxide pressure.

触媒としては、白金族金属からなる主触媒に助触媒や必
要に応じ配位子等を組合わせて用いる。
As the catalyst, a main catalyst made of a platinum group metal is used in combination with a co-catalyst and, if necessary, a ligand.

主触媒としては、パラジウム、ルテニウム、ロジウム、
白金、オスミウム、イリジウム等の白金族金属をそのま
ま、あるいは金属の塩または酸化物の形で使用できる。
Main catalysts include palladium, ruthenium, rhodium,
Platinum group metals such as platinum, osmium, and iridium can be used as they are or in the form of metal salts or oxides.

工業的には、パラジウム、ルテニウムが好ましい。助触
媒としては、周期律表■族およびTB−VB亜族から選
ばれた元素を含むルイス酸が使用できる。特に塩化第一
および第二鉄、塩化第一および第二錫、塩化第一および
第二銅等のハロゲン化物が好ましい、配位子としては、
ピリジン、キノリン、O−フェナントルリンおよびこれ
らの誘導体等の含窒素へテロ芳香族化合物が使用できる
Industrially, palladium and ruthenium are preferred. As a co-catalyst, a Lewis acid containing an element selected from Group I of the Periodic Table and subgroups TB-VB can be used. Among the ligands, halides such as ferrous and ferric chlorides, stannous and stannic chlorides, and cupric and cupric chlorides are particularly preferred.
Nitrogen-containing heteroaromatic compounds such as pyridine, quinoline, O-phenanthroline and derivatives thereof can be used.

反応は、回分、半連続、連続の何れの方法でも実施でき
る0反応条件は、反応温度130〜190°C1反応時
間0.5〜10時間程時間一般的であり、−酸化炭素の
初圧は50〜300 kg/dG程度が好ましい。
The reaction can be carried out batchwise, semi-continuously, or continuously.The reaction conditions are generally a reaction temperature of 130 to 190°C, a reaction time of 0.5 to 10 hours, and an initial pressure of carbon oxide of Approximately 50 to 300 kg/dG is preferable.

溶媒としては、含水酸基有機化合物が反応基質と溶媒を
兼ねて使用できるが、炭化水素系溶剤などの不活性溶剤
を併用することも可能である。
As the solvent, a hydrous acid group organic compound can be used as both the reaction substrate and the solvent, but it is also possible to use an inert solvent such as a hydrocarbon solvent in combination.

上記カルボニル化反応によって、ジニトロジフェニルメ
タンの各異性体から、対応するMDU異性体が90%を
超える高い収率で生成する0反応生成物の分離は、常法
により実施できる。例えば、反応混合物から白金族金属
触媒を分離し、次いで有機層から含水酸基化合物を蒸発
させると、ポリカーバメート生成物が固体として単離さ
れる。
The separation of the 0 reaction product in which the corresponding MDU isomer is produced in a high yield of over 90% from each isomer of dinitrodiphenylmethane by the above carbonylation reaction can be carried out by a conventional method. For example, separating the platinum group metal catalyst from the reaction mixture and then evaporating the hydrous acid group compound from the organic layer will isolate the polycarbamate product as a solid.

こうして得られた生成物は、通常はそのまま、あるいは
必要であれば精製もしくは異性体の単離工程を経て、熱
分解(一般には液相熱分解)によるポリイソシアネート
の製造に使用することができ、それにより高品質のMD
Iを主成分とする芳香族ポリイソシアネートが得られる
The product thus obtained can be used for the production of polyisocyanates by pyrolysis (generally liquid-phase pyrolysis), usually as is or, if necessary, after a purification or isomer isolation step; As a result, high quality MD
An aromatic polyisocyanate containing I as a main component is obtained.

(実施例) 以下、実施例により本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

裏益班上にトロ化反応) 還流式冷却管、温度計および滴下ロートを備えた30〇
−容のフラスコにジフェニルメタン10gを仕込み、5
0℃に加温した。撹拌を行いながら、滴下ロートで混酸
(70重量%硝酸/96重量%硫酸=8/11(wt/
wt) 35gを反応温度が50〜60℃の範囲になる
ように徐々に滴下した0滴下終了後、さらに30分、6
0℃で加熱撹拌を行っ・た0反応後、トルエン1001
dを加え、水層を分離し、有機層を水洗および乾燥した
後、このトルエン溶液を高速液体クロマトグラフィーで
分析した。その結果、未反応のジフェニルメタンは検出
されず、2.2°−ジニトロジフェニルメタン、2,4
°−ジニトロジフェニルメタン、4,4゛−ジニトロジ
フェニルメタンの各異性体の収率はそれぞれ?、6.1
0.3.68.8 a+o1%であった。副生物として
は、トリニトロジフェニルメタン、モノニトロジフェニ
ルメタンが検出された。
10 g of diphenylmethane was charged into a 300-capacity flask equipped with a reflux condenser, a thermometer, and a dropping funnel.
Warmed to 0°C. While stirring, add mixed acid (70 wt% nitric acid/96 wt% sulfuric acid = 8/11 (wt/
wt) 35g was gradually added dropwise so that the reaction temperature was in the range of 50 to 60°C.
After heating and stirring at 0°C, toluene 1001
d was added, the aqueous layer was separated, the organic layer was washed with water and dried, and the toluene solution was analyzed by high performance liquid chromatography. As a result, unreacted diphenylmethane was not detected, and 2.2°-dinitrodiphenylmethane, 2,4
What is the yield of each isomer of °-dinitrodiphenylmethane and 4,4゛-dinitrodiphenylmethane? , 6.1
It was 0.3.68.8 a+o1%. Trinitrodiphenylmethane and mononitrodiphenylmethane were detected as by-products.

M(カルボニル化反応) 実施例1で得たトルエン溶液からエバポレーターでトル
エンを回収し、固形物を得た。この固形物2.0g、エ
タノール15d、ピリジン0.6g、無水塩化第2鉄0
.6g、 5%パラジウム−炭素0.16gを60−容
のハステロイ合金製のt磁撹拌式オートクレーブに仕込
み、雰囲気を一酸化炭素で充分置換した後、初圧80k
g/cd−Gになるまで一酸化炭素を充填した。 50
0rpmで撹拌しながら昇温し、160°Cで3時間反
応させた0反応終了後、室温まで冷却し、窒素置換した
0反応液を高速液体クロマトグラフィーで分析したとこ
ろ、2.2’−MDU、2,4°−MDU、4.4’−
MDUの収率は、使用したトルエン溶液中に含まれてい
た各ジニトロジフェニルメタン異性体に対して、それぞ
れ92.92.91 mo1%であった。
M (Carbonylation reaction) Toluene was recovered from the toluene solution obtained in Example 1 using an evaporator to obtain a solid. 2.0 g of this solid, 15 d of ethanol, 0.6 g of pyridine, 0 of anhydrous ferric chloride
.. 6 g and 0.16 g of 5% palladium-carbon were charged into a 60-volume Hastelloy alloy T magnetically stirred autoclave, and after the atmosphere was sufficiently replaced with carbon monoxide, the initial pressure was set to 80 k.
Carbon monoxide was charged to g/cd-G. 50
The temperature was raised while stirring at 0 rpm, and the reaction was carried out at 160°C for 3 hours. After the completion of the 0 reaction, the 0 reaction solution was cooled to room temperature and replaced with nitrogen. When analyzed by high performance liquid chromatography, it was found that 2.2'-MDU , 2,4°-MDU, 4.4'-
The yield of MDU was 92.92.91 mo1%, based on each dinitrodiphenylmethane isomer contained in the toluene solution used.

また、反応液から触媒を濾別し、エタノールを除去した
ところ、得られた固形物中のMDU含有率は90w t
%であった。
In addition, when the catalyst was filtered from the reaction solution and ethanol was removed, the MDU content in the obtained solid was 90 wt.
%Met.

(発明の効果) 本発明方法によれば、ジフェニルメタンをニトロ化およ
びカルボニル化することにより、MDUを主成分とする
芳香族ポリカーバメートを高収率で効率よく得ることが
できる。前記した従来の芳香族ポリカーバメートの製造
法に比べて、多核体ポリカーバメートの生成がほとんど
なく、実質的に2核体の芳香族ポリカーバメート(MD
U)のみを製造できるので、高品質のポリイソシアネー
トの製造原料として有用なボリカーバメ”−)が得られ
る。
(Effects of the Invention) According to the method of the present invention, by nitrating and carbonylating diphenylmethane, an aromatic polycarbamate containing MDU as a main component can be efficiently obtained in high yield. Compared to the conventional aromatic polycarbamate manufacturing method described above, there is almost no production of polynuclear polycarbamate, and substantially dinuclear aromatic polycarbamate (MD
Since only U) can be produced, a polycarbonate "-) useful as a raw material for producing high-quality polyisocyanate can be obtained.

Claims (1)

【特許請求の範囲】[Claims] ジフェニルメタンをニトロ化剤によりニトロ化し、得ら
れたジニトロジフェニルメタンを主成分とする混合物を
触媒の存在下で含水酸基有機化合物および一酸化炭素と
反応させることを特徴とする、メチレンジフェニルジカ
ーバメートを主成分とする芳香族ポリカーバメートの製
造方法。
The main component is methylene diphenyl dicarbamate, which is characterized by nitrating diphenylmethane with a nitrating agent and reacting the obtained mixture mainly consisting of dinitrodiphenylmethane with a hydrous acid group organic compound and carbon monoxide in the presence of a catalyst. A method for producing an aromatic polycarbamate.
JP22249489A 1989-08-29 1989-08-29 Production of aromatic polycarbamate Pending JPH0383959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22249489A JPH0383959A (en) 1989-08-29 1989-08-29 Production of aromatic polycarbamate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22249489A JPH0383959A (en) 1989-08-29 1989-08-29 Production of aromatic polycarbamate

Publications (1)

Publication Number Publication Date
JPH0383959A true JPH0383959A (en) 1991-04-09

Family

ID=16783313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22249489A Pending JPH0383959A (en) 1989-08-29 1989-08-29 Production of aromatic polycarbamate

Country Status (1)

Country Link
JP (1) JPH0383959A (en)

Similar Documents

Publication Publication Date Title
US3734941A (en) Process for converting urethanes to isocyanates
EP2003104B1 (en) Reagent for organic synthesis and method of organic synthesis reaction with the reagent
JPS6317820B2 (en)
US4223145A (en) Process for the preparation of organic mono- and polyisocyanates
TW200301240A (en) Method for producing carbamates and method for producing isocyanates
JPH0114218B2 (en)
US4163019A (en) Production of 4,4'-alkylidene diphenyl diisocyanate
JPH0383959A (en) Production of aromatic polycarbamate
JPS6342616B2 (en)
JPS59112954A (en) Diisocyanate, diisocyanate mixture and manufacture
US4478757A (en) Process for the manufacture of aromatic isocyanates
US4879409A (en) Cycloaliphatic diisocyanates, optionally in the form of isomeric mixtures and a process for their preparation
JPH03127768A (en) Preparation of aromatic polycarbamate
TW201704202A (en) Two-step and one-pot processes for preparation of aliphatic diisocyanates
JPH03200756A (en) Production of isocyanate compound
EP0128382A1 (en) 1-Alkyl-2-isocyanatomethyl-isocyanato-cyclohexanes and/or 1-alkyl-4-isocyanato-methyl-isocyanato-cyclohexanes and the like diamines, processes for their preparation, and use
US4426515A (en) Process for the manufacture of polyurethanes by carbonylation of nitrated hydroxy-aromatic compounds
CN104250231B (en) For the synthesis of the benzotriazole ionic liquid of toluencediamine base alkyl formate
JPS60246355A (en) Triisocyanate and manufacture
US5130464A (en) Method of manufacturing aromatic urethanes
CA1248552A (en) 1-alkyl-2-aminomethyl-aminocyclohexane and/or 1-alkyl- 4-aminomethyl-aminocyclohexane
JP2880803B2 (en) Aromatic diisocyanate indane derivative and method for producing the same
JPH01135758A (en) Production of aromatic polycarbamate
JPH01203356A (en) Production of polyisocyanate
JP2997501B2 (en) Composition for urethane resin production