JPH0383849A - Alumina dense sintered compact and its production - Google Patents

Alumina dense sintered compact and its production

Info

Publication number
JPH0383849A
JPH0383849A JP1220072A JP22007289A JPH0383849A JP H0383849 A JPH0383849 A JP H0383849A JP 1220072 A JP1220072 A JP 1220072A JP 22007289 A JP22007289 A JP 22007289A JP H0383849 A JPH0383849 A JP H0383849A
Authority
JP
Japan
Prior art keywords
alumina
weight
sintered compact
dense sintered
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1220072A
Other languages
Japanese (ja)
Inventor
Yasuo Kanbara
康雄 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIA CHEM SANGYO KK
Original Assignee
NICHIA CHEM SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIA CHEM SANGYO KK filed Critical NICHIA CHEM SANGYO KK
Priority to JP1220072A priority Critical patent/JPH0383849A/en
Publication of JPH0383849A publication Critical patent/JPH0383849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain an alumina dense sintered compact, excellent in corrosion resistance and suitable for melting metals, etc., by adding specific amount of MgF, La2O3, ZrO2 and Y2O3 as a flux to readily calcinable alumina powder and sintering the resultant mixture. CONSTITUTION:To readily calcinable alumina powder (preferably >=99.8% purity), are added 0.05-3.1wt.%, preferably 0.1-1.0wt.% MgF2, 0.05-3.0wt.%, preferably 0.1-1.0wt.% ZrO2, 0.005-0.05wt.%, preferably 0.01-0.03wt.% La2O3 and 0.005-0.05wt.%, preferably 0.01-0.03wt.% Y2O3. The resultant mixture is formed and then sintered at 1500-1700 deg.C to afford an alumina dense sintered compact used for melting metals, chemical reactors, special refractories, etc.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は金属溶解、化学反応容器、特殊耐化物等に用い
られるアルミナ焼結体に係り、特に耐食性に優れたアル
ミナ緻密焼結体及びその製造方法に間する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an alumina sintered body used for metal melting, chemical reaction vessels, special resistant materials, etc., and particularly relates to an alumina dense sintered body with excellent corrosion resistance and its Detailed manufacturing method.

[従来の技術及びその問題点コ 一般に金属溶解、化学反応容器等にはアルミナ坩堝が広
く用いられている。
[Prior art and its problems] Generally, alumina crucibles are widely used for metal melting, chemical reaction vessels, etc.

しかしながら、従来のアルミナ坩堝を使用して、例えば
チタン族金属またはその合金等を溶解する際、これら金
属は非常に強い酸化力を有することに加えて高融点(1
B4O−1700℃)であるため、坩堝の溶損が激しく
、溶損した坩堝成分及び酸素が溶解物中に混入して溶解
製品の純度を低下させ、また溶損された坩堝は数回の使
用で、溶損によるクラック、内面の剥がれ、変形等の現
象・が現れるという欠点がある。すなわちAI、Ni、
Pb、Ti等活性な金属、若しくはF、CI、Br等の
ハロゲン元素、若しくはLl、Na、に等のアルカリ金
属を含む素材を溶解、あるいは焼成する工程において従
来のアルミナ焼結体では、坩堝等の容器、板、ブロック
等どの様な形状であれ耐食性において不十分であった。
However, when using a conventional alumina crucible to melt, for example, titanium group metals or their alloys, these metals have very strong oxidizing power and high melting points (1
(B4O - 1700℃), the crucible is severely eroded, and the eroded crucible components and oxygen are mixed into the melt, reducing the purity of the melted product. However, it has the disadvantage that phenomena such as cracks, inner surface peeling, and deformation appear due to melting damage. That is, AI, Ni,
In the process of melting or firing materials containing active metals such as Pb and Ti, halogen elements such as F, CI, and Br, or alkali metals such as Ll, Na, etc., conventional alumina sintered bodies are used in crucibles, etc. Regardless of the shape of the container, plate, block, etc., corrosion resistance was insufficient.

そのため例えば金属溶解においてはアルミナ坩堝よりも
耐食性に優れたカルシア坩堝が用いられている。しかし
カルシア坩堝はアルミナ坩堝に比べて高価であるうえに
水分に弱く、保管が難しいという欠点がある。
Therefore, for example, in metal melting, calcia crucibles, which have better corrosion resistance than alumina crucibles, are used. However, calcia crucibles have the disadvantage that they are more expensive than alumina crucibles, are sensitive to moisture, and are difficult to store.

本発明は上記事情を鑑みてなされたもので、耐食性に優
れたアルミナ緻密焼結体及びその製造方法を提供するこ
とを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a dense alumina sintered body having excellent corrosion resistance and a method for manufacturing the same.

[問題点を解決するための手段及びその作用]本発明者
は耐食性に優れたアルミナ焼結体を製造するために、ア
ルミナ粉末にフラックスとして数々の元素を添加し、実
験を重ねた結果、MgF2、La2O3、Z r 02
、Y 20 gを適性に添加することによって緻密なア
ルミナ焼結体ができることを新たに見いだし本発明を處
すに至った。
[Means for solving the problems and their effects] In order to produce an alumina sintered body with excellent corrosion resistance, the present inventor added various elements as flux to alumina powder, and as a result of repeated experiments, found that MgF2 , La2O3, Z r 02
The present inventors have newly discovered that a dense alumina sintered body can be produced by appropriately adding 20 g of Y.

本発明の製造方法は純度99.9%以上の易焼結性アル
ミナ粉末を用意し、該アルミナ粉末にフラックスとして
M g F 2を0.05〜3. 1重量%、及びZr
O2を0.015〜3.0重量%、及びLa2O3を0
.005〜0.05重量%、及びY2O3を0.005
〜0.05重量%の範囲で添加することを特徴とする。
In the production method of the present invention, easily sinterable alumina powder with a purity of 99.9% or more is prepared, and 0.05 to 3.0% of M g F 2 is added as a flux to the alumina powder. 1% by weight, and Zr
0.015 to 3.0% by weight of O2 and 0% of La2O3
.. 005-0.05% by weight, and 0.005% Y2O3
It is characterized in that it is added in an amount of 0.05% by weight.

次に前記混合物を水と通常の割合で湿式混合した後、バ
インダーとしてPVAを対アルミナ粉末1.0重量%を
添加しスプレードライヤーにて造粒粉を作る。モして該
造粒粉を乾式プレス等の成形機を用いて成形した後15
00〜1700℃で2〜3時間焼結し目的とするアルミ
ナ緻密焼結体を得る。
Next, the mixture is wet-mixed with water in a normal ratio, and then PVA is added as a binder in an amount of 1.0% by weight based on the alumina powder, and a granulated powder is produced using a spray dryer. After molding the granulated powder using a molding machine such as a dry press, 15
Sintering is performed at 00 to 1700°C for 2 to 3 hours to obtain the desired dense alumina sintered body.

本発明の製造方法において用いる易焼結性アルミナ粉末
の純度は特に制限するものではないが、99.8%以上
のアルミナ純度を持っている方が好ましい。
Although the purity of the easily sinterable alumina powder used in the production method of the present invention is not particularly limited, it is preferable that the alumina purity is 99.8% or more.

またフラックスとしては上記4種類のフラックスの他に
Mg化合物としてMgCl2、Mg(N。
In addition to the above four types of fluxes, Mg compounds such as MgCl2 and Mg(N) are used as fluxes.

3)2、MgO等が使用できる。またZr化合物として
Z r C12、Z r B r2、Z r O(NO
3) 2等、La化合物としてL a (N O’s)
 3、LaCl3、La (OH)3等、Y化合物とし
てY(NO3)3、YCl3、Y(OH)3等が使用で
きるが、好ましくは上記4種類のフラックスを使用する
。添加するフラックスの量はM g F 2を0.05
〜3.1重量%、゛好ましくはO01〜1.  OfE
量%、及びZrO2を0.06〜3.0重量%、好まし
くは0. 1〜1.0重量%、及びLa2O3を0. 
005〜0゜05重量%、好ましくは0.01〜0.0
3重量%、及びY2O3を0.005〜0.05重量%
、好ましくは0.01〜0.03重量%の範囲で添加す
る。その理由はフラックスの量が上記範囲以下であると
緻密なアルミナ焼結体ができず、それ以上であると金属
等の溶解の際、フラックスが溶解し不純物となってしま
うからである。
3) 2. MgO etc. can be used. In addition, as Zr compounds, Z r C12, Z r B r2, Z r O (NO
3) La (N O's) as a 2nd La compound
3, LaCl3, La(OH)3, etc., Y(NO3)3, YCl3, Y(OH)3, etc. can be used as the Y compound, but preferably the above four types of fluxes are used. The amount of flux added is M g F 2 0.05
~3.1% by weight, preferably O01~1. OfE
% by weight, and ZrO2 from 0.06 to 3.0% by weight, preferably 0. 1 to 1.0% by weight, and 0.0% of La2O3.
0.05 to 0.05% by weight, preferably 0.01 to 0.0
3% by weight, and 0.005-0.05% by weight of Y2O3
, preferably in an amount of 0.01 to 0.03% by weight. The reason for this is that if the amount of flux is less than the above range, a dense alumina sintered body cannot be formed, and if it is more than that, the flux will dissolve and become impurities when metals, etc. are melted.

またバインダーとしてはPVA、  ポリエチレン、ポ
リスチレン、アクリル系樹脂等の熱可塑性樹脂を好まし
く用いることか′(きる。
As the binder, thermoplastic resins such as PVA, polyethylene, polystyrene, and acrylic resins are preferably used.

焼結する際の温度についても1300〜2900℃の温
度域で焼結可能であるが1500〜1700℃の温度域
で焼結する方がアルミナ焼結体により好ましい結果を与
えた。
As for the temperature during sintering, it is possible to sinter in the temperature range of 1300 to 2900°C, but sintering in the temperature range of 1500 to 1700°C gave more preferable results for the alumina sintered body.

[作用コ 従来のアルミナ焼結体では前述したように、アルミナ面
に接する金属、ガス、蒸気等により侵され頻繁に交換し
なければならなかったが、本発明のアルミナ焼結体は緻
密で溶解金属との接触面の凹凸が少ないため侵され難く
、従来のアルミナ焼結体に比べ数倍の使用回数に耐える
ことができる。
[Operations] As mentioned above, conventional alumina sintered bodies are attacked by metals, gases, steam, etc. that come into contact with the alumina surface and have to be replaced frequently, but the alumina sintered bodies of the present invention are dense and easily melted. Because there are few irregularities on the contact surface with metal, it is less susceptible to corrosion and can withstand several times the number of uses compared to conventional alumina sintered bodies.

以下実施例を示し、本発明を具体的に説明する。EXAMPLES The present invention will be specifically explained below with reference to Examples.

[実施例1コ 純度99.9%、中心粒径0. 5μmの易焼結性アル
ミナ粉末IKgにフラックスとしてMgF2を対アルミ
ナ粉末0.2重量%、ZrO2を同じ<0.2重量%、
l、a203を同じ<o、oiii量%、Y2O3を同
じ<0.01重量%添加し、バインダーとしてPVAを
同じ<1.0重量%添加して湿式混合を行いスラリー状
にした後、スプレードライヤーにて0. 5μmの造粒
粉を得た。
[Example 1 Purity 99.9%, center particle size 0. 5μm easily sinterable alumina powder IKg as a flux, MgF2 is 0.2% by weight relative to the alumina powder, ZrO2 is the same <0.2% by weight,
l, A203 in the same <o, oiii mass%, Y2O3 in the same <0.01% by weight, PVA as a binder in the same <1.0% by weight, wet mixed to form a slurry, and then dried in a spray dryer. At 0. Granulated powder of 5 μm was obtained.

次に金型200mm口を使用して面圧1t/cm2にて
乾式プレスを行い200mm口X15mmtの成形板を
作成した後、1650℃で3時間焼成することによって
密度3.98g/cm3のアルミナ緻密焼結板を得た。
Next, dry pressing was performed using a 200 mm mold opening at a surface pressure of 1 t/cm2 to create a 200 mm opening x 15 mm t molded plate, which was then baked at 1650°C for 3 hours to form a dense alumina material with a density of 3.98 g/cm3. A sintered plate was obtained.

なお上記焼結板の耐食性は以下のように評価した。The corrosion resistance of the sintered plate was evaluated as follows.

酸化第1鉛10gと水Jogを混合しペースト状に練り
上げ、その混合物を本発明のアルミナ緻密焼結板と市販
の同じ大きさと厚みを持つアルミナ焼結板の上にそれぞ
れへらを用いて均一に塗布した後1200℃で焼成した
。その操作を前記焼結板が割れるまで繰り返した。
Mix 10 g of leadous oxide and Jog of water, knead it into a paste, and spread the mixture uniformly on the alumina sintered plate of the present invention and a commercially available alumina sintered plate having the same size and thickness using a spatula. After coating, it was baked at 1200°C. This operation was repeated until the sintered plate cracked.

その結果、本発明のアルミナ緻密焼結板は10回の繰り
返し試験にも耐えたが、市販のアルミナ焼結板に至って
は、わずか3回目の試験で割れてしまった。この事より
本発明のアルミナ緻密焼結板は酸化第1鉛との反応性が
小さく、耐食性に優れたアルミナ焼結板である。
As a result, the alumina dense sintered plate of the present invention withstood 10 repeated tests, but the commercially available alumina sintered plate broke after only the third test. As a result, the dense alumina sintered plate of the present invention has low reactivity with first lead oxide and is excellent in corrosion resistance.

[実施例2コ 実施例1で製造した造粒粉で今度は100mmφX 1
00mmh X 5mm tのシリンダー坩堝金型で、
It/cm2のラバープレス成形を行った後1600℃
で2時間焼成を行いアルミナ坩堝を得た。
[Example 2] The granulated powder produced in Example 1 was made with a diameter of 100 mmφ
00mmh x 5mmt cylinder crucible mold,
1600℃ after rubber press molding of It/cm2
The mixture was fired for 2 hours to obtain an alumina crucible.

また上記坩堝は今度は以下のように評価した。Moreover, the above crucible was evaluated as follows.

KF、  及びNH4Clを10g1 アルミナ粉末2
00gを水50gと混合しペースト状に練り上げ、その
混合物を本発明のアルミナ坩堝と同一の厚みで、同程度
の大きさの市販のアルミナ坩堝にそれぞれ加え、120
0℃で2時間焼成した。その操作を前記アルミナ坩堝に
クラックが入るまで繰り返した。
KF, and NH4Cl 10g1 Alumina powder 2
00g was mixed with 50g of water and kneaded into a paste, and the mixture was added to commercially available alumina crucibles of the same thickness and size as the alumina crucible of the present invention.
It was baked at 0°C for 2 hours. This operation was repeated until a crack appeared in the alumina crucible.

その結果、本発明のアルミナ坩堝は実施例1と同じ<1
0回の繰り返し試験にも耐えたが、市販のそれはわずか
2回目の試験でクラックが入ってしまった。
As a result, the alumina crucible of the present invention has the same <1
It withstood 0 repeated tests, but the commercially available one cracked after only the second test.

[実施例3] 純度99.9%、中心粒径0.6μmの易焼結性アルミ
ナ粉末IKgにフラックスとしてMgCl2を対アルミ
ナ粉末0.2重量%、zrO2を同じ<0.2重量%、
La2O3を同じ<0.01重量%、Y2O3を同じ<
0.01重量%添加し、バインダーとしてPVAを同じ
<1.0重量%添加して湿式混合を行いスラリー状にし
た後、スプレードライヤーにて0. 6μmの造粒粉を
得た。
[Example 3] IKg of easily sinterable alumina powder with a purity of 99.9% and a center particle size of 0.6 μm was mixed with 0.2% by weight of MgCl2 and 0.2% by weight of zrO2 based on the alumina powder as a flux.
La2O3 is the same <0.01% by weight, Y2O3 is the same <
0.01% by weight was added, and the same <1.0% by weight of PVA was added as a binder, wet mixing was performed to form a slurry, and 0.01% by weight was added using a spray dryer. Granulated powder of 6 μm was obtained.

該造粒粉を用い、実施例2と同じ<100mmφX 1
00mmh X 5mm tのシリンダー坩堝金型で、
it/cm2のラバープレス成形を行った後1600℃
で2時間焼成を行いアルミナ坩堝を得た。
Using the granulated powder, the same as Example 2<100mmφX 1
00mmh x 5mmt cylinder crucible mold,
1600℃ after rubber press molding of it/cm2
The mixture was fired for 2 hours to obtain an alumina crucible.

該アルミナ坩堝を実施例2と同様の操作によって評価し
た結果、本発明のアルミナ坩堝は7回目の繰り返し試験
でクラックが入ったが、市販のそれは実施例2と同じく
2回目の試験でクラックが入ってしまった。
As a result of evaluating the alumina crucible by the same operation as in Example 2, it was found that the alumina crucible of the present invention cracked in the seventh repeated test, but the commercially available crucible cracked in the second test as in Example 2. It happened.

[発明の効果] 本発明のアルミナ緻密焼結体を用いることによって、た
とえば金属チタンの溶解に用いる坩堝では、従来では坩
堝を頻繁に交換しなければならなかったが数千回の連続
使舟にも耐えることが出来、また坩堝成分の溶損による
チタンの汚染も従来に比べて少なくすることができた。
[Effects of the invention] By using the alumina dense sintered body of the present invention, crucibles used for melting titanium metal, for example, can be used several thousand times in a row, whereas conventional crucibles had to be replaced frequently. Furthermore, contamination of titanium due to melting of crucible components was reduced compared to conventional methods.

Claims (2)

【特許請求の範囲】[Claims] (1)Mgが0.02〜1.2重量%、ZrO_2が0
.05〜3.0重量%、La_2O_3が0.005〜
0.05重量%及びY_2O_3が0.005〜0.0
5重量%の範囲で含有されることを特徴とするアルミナ
緻密焼結体。
(1) Mg is 0.02 to 1.2% by weight, ZrO_2 is 0
.. 05-3.0% by weight, La_2O_3 is 0.005-3.0% by weight
0.05% by weight and Y_2O_3 from 0.005 to 0.0
A dense sintered body of alumina, characterized in that the alumina content is in the range of 5% by weight.
(2)易焼結性アルミナ粉末にフラックスとしてMgF
_2を0.05〜3.1重量%、及びZrO_2を0.
05〜3.0重量%、及びLa_2O_3を0.005
〜0.05重量%、及びY_2O_3を0.005〜0
.05重量%の範囲で添加して成形した後、1500〜
1700℃の温度域で焼結することを特徴とするアルミ
ナ緻密焼結体の製造方法。
(2) MgF as a flux in easily sinterable alumina powder
0.05 to 3.1% by weight of _2 and 0.05% to 3.1% by weight of ZrO_2.
05-3.0% by weight, and 0.005% La_2O_3
~0.05% by weight, and Y_2O_3 from 0.005 to 0
.. After adding in the range of 0.05% by weight and molding, the
A method for producing a dense alumina sintered body, characterized by sintering in a temperature range of 1700°C.
JP1220072A 1989-08-26 1989-08-26 Alumina dense sintered compact and its production Pending JPH0383849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1220072A JPH0383849A (en) 1989-08-26 1989-08-26 Alumina dense sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1220072A JPH0383849A (en) 1989-08-26 1989-08-26 Alumina dense sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH0383849A true JPH0383849A (en) 1991-04-09

Family

ID=16745506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1220072A Pending JPH0383849A (en) 1989-08-26 1989-08-26 Alumina dense sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH0383849A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110021340A1 (en) * 2009-07-24 2011-01-27 Karl-Heinz Schofalvi Refractory
US20120227445A1 (en) * 2011-03-11 2012-09-13 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9216928B2 (en) 2011-04-13 2015-12-22 Saint-Gobain Ceramics & Plastics, Inc. Refractory object including beta alumina and processes of making and using the same
US9249043B2 (en) 2012-01-11 2016-02-02 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
CN110770877A (en) * 2017-06-13 2020-02-07 日本碍子株式会社 Component for semiconductor manufacturing apparatus
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110021340A1 (en) * 2009-07-24 2011-01-27 Karl-Heinz Schofalvi Refractory
US9714185B2 (en) 2011-03-11 2017-07-25 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US20120227445A1 (en) * 2011-03-11 2012-09-13 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
TWI474986B (en) * 2011-03-11 2015-03-01 Saint Gobain Ceramics Refractory object, glass overflow forming block, and process for glass object manufacture
US9073773B2 (en) * 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US20150274568A1 (en) * 2011-03-11 2015-10-01 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9796630B2 (en) 2011-03-30 2017-10-24 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9216928B2 (en) 2011-04-13 2015-12-22 Saint-Gobain Ceramics & Plastics, Inc. Refractory object including beta alumina and processes of making and using the same
US9249043B2 (en) 2012-01-11 2016-02-02 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US9902653B2 (en) 2012-01-11 2018-02-27 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US10590041B2 (en) 2012-01-11 2020-03-17 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making
CN110770877A (en) * 2017-06-13 2020-02-07 日本碍子株式会社 Component for semiconductor manufacturing apparatus
CN110770877B (en) * 2017-06-13 2024-06-18 日本碍子株式会社 Component for semiconductor manufacturing device

Similar Documents

Publication Publication Date Title
US3296002A (en) Refractory shapes
US4152166A (en) Zircon-containing compositions and ceramic bodies formed from such compositions
JPH0383849A (en) Alumina dense sintered compact and its production
US4895815A (en) Sintered form body
JPH0140791B2 (en)
US3244539A (en) Bonded alumina refractory
JP2006206338A (en) Highly corrosion-resistant refractory
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP5732680B2 (en) Brick and mortar and method for producing the same
US3248241A (en) Preparation of highly impervious refractories
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2863285B2 (en) Alumina container and method for producing the same
JPS591743B2 (en) Composition for injection molding or extrusion molding
US3244540A (en) High alumina refractory bodies
JPH01188459A (en) High purity magnesia sintered body and production thereof
JPS6059189B2 (en) Sintered refractory brick for ultra-dense glass furnace and its manufacturing method
CN110256077A (en) A kind of hot investment casting yttria-base ceramic core and preparation method thereof
RU2033987C1 (en) Charge for preparing of porous ceramic material
JPS5920630B2 (en) Manufacturing method of magnesia chromium fired firebrick
US3765914A (en) Siliceous bonded refractory
JP6792168B2 (en) Magnesia spinel fired bricks and their manufacturing methods
US3535134A (en) Direct bonded periclase chrome brick and method of making the same
JP2818113B2 (en) Firing jig
US2670301A (en) Refractory bodies and compositions and methods for making the same
JP2961389B2 (en) High strength magnesia sintered body and method for producing the same