JPH038346B2 - - Google Patents

Info

Publication number
JPH038346B2
JPH038346B2 JP57166639A JP16663982A JPH038346B2 JP H038346 B2 JPH038346 B2 JP H038346B2 JP 57166639 A JP57166639 A JP 57166639A JP 16663982 A JP16663982 A JP 16663982A JP H038346 B2 JPH038346 B2 JP H038346B2
Authority
JP
Japan
Prior art keywords
weight
cobalt
reaction
saccharin
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57166639A
Other languages
Japanese (ja)
Other versions
JPS5955877A (en
Inventor
Sakie Hasegawa
Masaaki Suematsu
Kenji Nakaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP57166639A priority Critical patent/JPS5955877A/en
Publication of JPS5955877A publication Critical patent/JPS5955877A/en
Publication of JPH038346B2 publication Critical patent/JPH038346B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Thiazole And Isothizaole Compounds (AREA)

Description

【発明の詳細な説明】 本発明は食品添加物(砂糖代用甘味料)、医薬、
農薬中間体などとして有用なサツカリン(o−ス
ルホ安息香酸イミド)の製造法に関するものであ
る。
[Detailed Description of the Invention] The present invention is applicable to food additives (sugar substitute sweeteners), pharmaceuticals,
The present invention relates to a method for producing saccharin (o-sulfobenzoic acid imide), which is useful as an agricultural chemical intermediate.

従来、サツカリンはo−トルエンスルホンアミ
ドを硫酸中で重クロム酸により酸化する方法によ
つて製造されてきた(たとえば特公昭49−40232
号公報)が、副生する硫酸クロムを回収して再使
用するための大規模な電解装置が必要である上
に、多量の排酸やクロムを含有する排液を処理し
なければならず、工業的に好ましい方法ではなか
つた。
Conventionally, saccharin has been produced by a method of oxidizing o-toluenesulfonamide with dichromic acid in sulfuric acid (for example, Japanese Patent Publication No. 49-40232).
However, in addition to requiring a large-scale electrolyzer to recover and reuse the by-product chromium sulfate, it is also necessary to treat a large amount of waste acid and waste liquid containing chromium. This was not an industrially preferred method.

そこで本発明者らは、重クロム酸の代りに、回
収が不要で取扱いが容易な分子状酸素含有ガスを
酸化剤に用いて、o−トルエンスルホンアミドか
らサツカリンを製造する方法について鋭意検討
し、本発明に到達した。
Therefore, the present inventors have conducted intensive studies on a method for producing saccharin from o-toluenesulfonamide by using a molecular oxygen-containing gas, which does not require recovery and is easy to handle, as an oxidizing agent instead of dichromic acid. We have arrived at the present invention.

すなわち、本発明は、o−トルエンスルホンア
ミドを酢酸溶媒中でコバルト、マンガンおよび臭
素から構成される触媒の存在下に分子状酸素含有
ガスにより酸化してサツカリンを製造する際、ジ
ルコニウム化合物を反応系に存在させることを特
徴とするサツカリンの製造法である。
That is, the present invention provides a method for producing saccharin by oxidizing o-toluenesulfonamide in an acetic acid solvent with a molecular oxygen-containing gas in the presence of a catalyst composed of cobalt, manganese, and bromine. This is a method for producing saccharin, which is characterized in that it is made to exist in the presence of saccharin.

以下、本発明方法を具体的に説明する。 The method of the present invention will be specifically explained below.

本発明では、トルエンをクロルスルホン化し、
p体を分離して得たo−トルエンスルホクロリド
をアンモニアと反応させる方法などによつて得ら
れるo−トルエンスルホンアミドを原料に用い
る。そしてo−トルエンスルホンアミドに対して
2〜20重量倍程度の酢酸を溶媒として使用する。
この酢酸中には5重量%程度以下の水が存在して
も特に支障はないが、酢酸中の水分はなるべく少
ない方が好ましい。
In the present invention, toluene is chlorosulfonated,
O-toluenesulfonamide obtained by a method of reacting o-toluenesulfochloride obtained by separating the p-isomer with ammonia is used as a raw material. Then, acetic acid is used as a solvent in an amount of about 2 to 20 times the weight of o-toluenesulfonamide.
Although there is no particular problem even if water is present in the acetic acid in an amount of about 5% by weight or less, it is preferable that the water content in the acetic acid is as small as possible.

そして酸化触媒として、コバルト、マンガンお
よび臭素から構成される触媒系を使用し、さらに
ジルコニウム化合物を反応系に存在させる。そし
てこれらの触媒構成成分を下記に示す化合物の形
で加える。
A catalyst system composed of cobalt, manganese and bromine is used as an oxidation catalyst, and a zirconium compound is also present in the reaction system. These catalyst components are then added in the form of the compounds shown below.

すなわちコバルト化合物、マンガン化合物は、
酢酸に可溶性のものであれば使用可能であるが、
酢酸塩、炭酸塩、水酸化物、臭化物などが特に好
ましい。
In other words, cobalt compounds and manganese compounds are
If it is soluble in acetic acid, it can be used, but
Particularly preferred are acetates, carbonates, hydroxides, bromides, and the like.

臭素化合物としては、臭素、臭化水素、臭化ア
ンモニウム、アルカリ金属臭化物、臭化コバル
ト、臭化マンガンなどの無機臭素化合物およびテ
トラブロモエタン、ブロモ酢酸などの有機臭素化
合物が使用可能であるが、臭化コバルト、臭化マ
ンガン、臭化ナトリウムなどが特に好ましい。
As the bromine compound, inorganic bromine compounds such as bromine, hydrogen bromide, ammonium bromide, alkali metal bromides, cobalt bromide, and manganese bromide, and organic bromine compounds such as tetrabromoethane and bromoacetic acid can be used. Particularly preferred are cobalt bromide, manganese bromide, sodium bromide, and the like.

コバルト化合物の使用量はコバルト金属として
の使用量が溶媒酢酸に対して0.04〜2重量%の範
囲になるようにすることが好ましい。コバルト化
合物の使用量が0.04重量%未満では十分な反応速
度が得られず、また2重量%を越えると触媒と生
成物の分離に手間がかかり、触媒費も高くなる。
The amount of cobalt compound used is preferably such that the amount of cobalt metal used is in the range of 0.04 to 2% by weight based on the acetic acid solvent. If the amount of the cobalt compound used is less than 0.04% by weight, a sufficient reaction rate cannot be obtained, and if it exceeds 2% by weight, separation of the catalyst and the product becomes laborious and the cost of the catalyst increases.

マンガン化合物の使用量はマンガン金属として
の使用量がコバルト金属に対して0.01〜50重量%
の範囲、特に0.1〜10重量%の範囲が適当である。
マンガン化合物の使用量が0.01重量%未満の場合
は十分な触媒活性が得られず、一方、50重量%を
越えると触媒活性が低下傾向になるとともに生成
物からの分離の手間や触媒費の負担が増大する。
The amount of manganese compound used is 0.01 to 50% by weight of cobalt metal as manganese metal.
A range of 0.1 to 10% by weight is particularly suitable.
If the amount of manganese compound used is less than 0.01% by weight, sufficient catalytic activity will not be obtained, while if it exceeds 50% by weight, the catalytic activity will tend to decrease, and the burden of separation from the product and catalyst cost will increase. increases.

臭素化合物の使用量は、臭素原子としての使用
量がコバルト金属に対して0.01〜5重量倍の範
囲、特に0.05〜3重量倍の範囲が適当である。臭
素化合物の使用量が0.01重量倍未満の場合は十分
な触媒活性が得られず、また5重量倍を越える
と、臭素による生成物の汚染や触媒費の負担が著
しくなり、好ましくない。
The appropriate amount of the bromine compound to be used is 0.01 to 5 times the weight of cobalt metal, particularly 0.05 to 3 times the weight of cobalt metal. If the amount of the bromine compound used is less than 0.01 times by weight, sufficient catalytic activity cannot be obtained, and if it exceeds 5 times by weight, the contamination of the product by bromine and the burden of catalyst costs will become significant, which is not preferable.

本発明においては、触媒構成成分であるコバル
ト、マンガンおよび臭素に加えて、ジルコニウム
化合物を反応系に共存させることにより、反応速
度を一層増大させることができるようになつた。
In the present invention, it has become possible to further increase the reaction rate by coexisting a zirconium compound in the reaction system in addition to the catalyst components cobalt, manganese, and bromine.

このために使用するジルコニウム化合物として
は、臭素ジルコニウム、酢酸ジルコニル、酢酸ジ
ルコニウムなどの酢酸に可溶で反応を妨害する対
イオンを含まない+4価のジルコニウム化合物が
適当である。ジルコニウム化合物の使用量は、ジ
ルコニウム金属としての使用量が触媒構成成分と
して用いたコバルト金属に対して0.001〜2重量
倍の範囲、特に0.005〜1重量倍の範囲が適当で
ある。ジルコニウム化合物の使用量がこの範囲よ
りも少ない場合は十分な触媒活性が得られず、ま
たこの範囲よりも多い場合は生成物との分離に手
間がかかる。
As the zirconium compound used for this purpose, +4-valent zirconium compounds, such as zirconium bromide, zirconyl acetate, and zirconium acetate, which are soluble in acetic acid and do not contain counterions that interfere with the reaction, are suitable. The appropriate amount of the zirconium compound to be used is 0.001 to 2 times, particularly 0.005 to 1 times by weight, the amount of zirconium metal relative to the cobalt metal used as a catalyst component. When the amount of the zirconium compound used is less than this range, sufficient catalytic activity cannot be obtained, and when it is more than this range, separation from the product takes time.

酸化剤として使用する分子状酸素含有ガスとし
ては、純酸素や工業排ガスも使用可能であるが、
工業的には通常の空気が最適である。
Pure oxygen and industrial exhaust gas can also be used as the molecular oxygen-containing gas used as an oxidizing agent, but
For industrial purposes, normal air is optimal.

反応温度は80〜200℃、特に100〜160℃の範囲
が好ましい。反応圧力はこの温度において溶媒酢
酸を液相に保ち得るように設定するが、5〜30気
圧の範囲が適当である。そして反応器からの排ガ
スの酸素濃度が1〜8容量%の範囲になるように
分子状酸素含有ガス(通常は空気)の反応器への
吹き込み速度を調節することが安全対策面から望
ましい。
The reaction temperature is preferably in the range of 80 to 200°C, particularly 100 to 160°C. The reaction pressure is set so as to maintain the solvent acetic acid in a liquid phase at this temperature, and is suitably in the range of 5 to 30 atmospheres. From a safety standpoint, it is desirable to adjust the rate at which molecular oxygen-containing gas (usually air) is blown into the reactor so that the oxygen concentration of the exhaust gas from the reactor is in the range of 1 to 8% by volume.

本発明に用いる反応器としては、単なる気泡塔
型式のものよりも強制混合される型式のものが好
ましい。すなわち分子状酸素含有ガスと反応液と
の良好な気液混合を行ない、分子状酸素の反応液
への溶解を促進し、反応器内での反応物質相互の
接触を円滑に行なわせるために、反応器下部に多
数の細孔からなるガス吹込口を備え、回転撹拌羽
根による強制撹拌もしくは反応器外の循環ポンプ
による強制循環などが行なわれる反応器を使用す
ることが好ましい。
The reactor used in the present invention is preferably of a forced mixing type rather than a simple bubble column type. That is, in order to achieve good gas-liquid mixing of the molecular oxygen-containing gas and the reaction liquid, to promote dissolution of molecular oxygen into the reaction liquid, and to ensure smooth contact between the reactants in the reactor, It is preferable to use a reactor equipped with a gas inlet consisting of a large number of pores in the lower part of the reactor, and in which forced stirring by a rotating stirring blade or forced circulation by a circulation pump outside the reactor is performed.

反応器上部には還流冷却器を設けて、排ガスは
この還流冷却器を通つて排出されるようにし、排
ガスに含まれる溶媒酢酸などを凝縮させて反応系
に循環させる。
A reflux condenser is installed in the upper part of the reactor, and the exhaust gas is discharged through the reflux condenser, and the solvent acetic acid and the like contained in the exhaust gas are condensed and circulated to the reaction system.

反応方式としては、被酸化物、溶媒、触媒から
なる原料混合物の全量をあらかじめ反応器に仕込
み、反応を終えるまで反応生成物を取出さずに、
分子状酸素含有ガスを導入する回分方式、原料混
合物あるいは溶媒に溶かした被酸化物を反応器に
連続的に供給するが反応を終えるまで反応生成物
を取り出さない半連続方式、さらには原料混合物
を反応器に連続的に供給するとともに反応生成物
を連続的に取出す連続方式のいずれをも採用する
ことができる。
As for the reaction method, the entire amount of the raw material mixture consisting of the oxidized substance, solvent, and catalyst is charged into the reactor in advance, and the reaction product is not taken out until the reaction is completed.
A batch method in which a molecular oxygen-containing gas is introduced, a semi-continuous method in which a raw material mixture or the oxidized substance dissolved in a solvent is continuously supplied to the reactor but the reaction product is not taken out until the reaction is completed, and a semi-continuous method in which a raw material mixture is introduced. Any continuous method can be adopted in which the reaction product is continuously supplied to the reactor and the reaction product is continuously taken out.

前記した条件で原料がほぼ完全に消費されるま
で数時間程度酸化反応を行なうと、酢酸溶媒中に
目的物のサツカリン、主たる副生物としてサツカ
リンが加水分解して生成したo−スルホ安息香酸
モノアンモニウム、これが酸化触媒のコバルトイ
オンと造塩して生成したo−スルホ安息香酸モノ
アンモニウムコバルトおよび酸化中間体であるo
−ホルミルベンゼンスルホンアミドもしくはこれ
が分子内で脱水閉環したシツフ塩基と推定される
化合物が生成する。
When the oxidation reaction is carried out for several hours under the above-mentioned conditions until the raw material is almost completely consumed, the target substance sacculin and the main by-product are o-sulfobenzoic acid monoammonium produced by hydrolysis of sacculin. , this is monoammonium cobalt o-sulfobenzoate and an oxidation intermediate produced by salt formation with cobalt ions of the oxidation catalyst.
- Formylbenzenesulfonamide or a compound presumed to be a Schiff base resulting from intramolecular dehydration and ring closure is produced.

反応生成物と酢酸とを分離する方法としては反
応生成液をそのまま冷却するか濃縮後冷却して反
応生成物を晶析させ酢酸と固液分離する方法、あ
るいは反応生成液中の酢酸をほぼ完全に留去して
酸化触媒を含む反応生成物を残留物として取得す
る方法などが適している。
The reaction product and acetic acid can be separated by cooling the reaction product liquid as it is, by concentrating it and then cooling it, crystallizing the reaction product, and separating the acetic acid from solid-liquid, or by completely removing the acetic acid in the reaction product liquid. A suitable method is to obtain a reaction product containing an oxidation catalyst as a residue by distilling off the oxidation catalyst.

かくして酢酸を除去した反応生成物は、反応生
成物の1〜10重量倍程度の水で洗浄する、反応生
成物の10〜30重量倍程度の水を用いて再結晶す
る、あるいはアルカリ水溶液に溶解し不純物を除
去して酸折する、などの処理を行ない、金属触媒
や副生物をサツカリンから分離・除去する。そし
てサツカリンの純度や色調を一層向上させるため
に、これらの処理を併せて行なつたり、再結晶に
際して活性炭処理を併せて行なうことも好ましい
実施態様である。
The reaction product from which acetic acid has been removed is washed with water that is approximately 1 to 10 times the weight of the reaction product, recrystallized using water that is approximately 10 to 30 times the weight of the reaction product, or dissolved in an aqueous alkaline solution. The metal catalyst and by-products are separated and removed from saccharin through treatments such as removing impurities and acid-fractionation. In order to further improve the purity and color tone of saccharin, it is also a preferred embodiment to carry out these treatments together, or to carry out activated carbon treatment at the time of recrystallization.

また洗浄液や再結晶母液に溶存する金属触媒
を、炭酸ナトリウムなどを加えて炭酸塩として沈
殿させたり、サツカリンの共存下で濃縮・放置し
てサツカリン塩として沈殿させて回収し、酸化触
媒として循環使用することも可能である。
In addition, the metal catalyst dissolved in the washing solution or recrystallization mother liquor can be precipitated as a carbonate by adding sodium carbonate, or concentrated and left in the coexistence of saccharin to precipitate as a saccharin salt, which can then be recovered and recycled as an oxidation catalyst. It is also possible to do so.

反応生成液から反応生成物を晶析・分離した場
合の母液(酢酸溶液)は、溶解度分のサツカリ
ン、中間体、副生物、酸化触媒などを含有してい
るので、副生水を蒸留分離してから、そのままも
しくは適当な精製処理を施して反応系に循環させ
ることができる。
The mother liquor (acetic acid solution) obtained when the reaction product is crystallized and separated from the reaction product solution contains saccharin, intermediates, by-products, oxidation catalysts, etc., so that the by-product water is separated by distillation. After that, it can be recycled to the reaction system as it is or after an appropriate purification treatment.

以上詳述した本発明方法により、高価で取り扱
いがむずかしい重クロム酸の代りに、安価で取り
扱いが容易な分子状酸素含有ガスを酸化剤に用い
て、品質の良好なサツカリンを経済的に製造する
ことが可能になつた。
According to the method of the present invention detailed above, saccharin of good quality can be produced economically by using molecular oxygen-containing gas, which is inexpensive and easy to handle, as an oxidizing agent instead of dichromic acid, which is expensive and difficult to handle. It became possible.

以下実施例を挙げて本発明を具体的に説明す
る。
The present invention will be specifically explained below with reference to Examples.

実施例 1 還流冷却器と回転羽根撹拌機を備えたチタン製
耐圧反応器に、o−トルエンスルホンアミド40
部、酢酸400部、酢酸コバルト四水塩3.81部、酢
酸マンガン四水塩0.11部、臭化コバルト六水塩
1.67部、酢酸ジルコニル0.30部、(酢酸に対して
コバルト金属として0.3重量%、コバルト金属に
対してマンガン金属2重量%、コバルト金属に対
して臭素原子68重量%、コバルト金属に対してジ
ルコニウム金属10重量%)を仕込み、反応圧力18
気圧ゲージ、反応温度120℃において反応器下部
から排ガス中の酸素濃度が8%以下になるような
流速で吹き込んだ空気と2.5時間接触させた。
Example 1 O-Toluenesulfonamide 40
parts, 400 parts of acetic acid, 3.81 parts of cobalt acetate tetrahydrate, 0.11 parts of manganese acetate tetrahydrate, cobalt bromide hexahydrate
1.67 parts, 0.30 parts of zirconyl acetate, (0.3% by weight of cobalt metal to acetic acid, 2% by weight of manganese metal to cobalt metal, 68% by weight of bromine atoms to cobalt metal, 10% by weight of zirconium metal to cobalt metal) weight%) and the reaction pressure was 18
At a pressure gauge and a reaction temperature of 120°C, the reactor was brought into contact with air blown from the bottom of the reactor at a flow rate such that the oxygen concentration in the exhaust gas was 8% or less for 2.5 hours.

反応生成物を濃縮し、固液分離して得たケーク
(乾燥重量40.0部、乾燥物の組成はサツカリン
72.3重量%、o−スルホ安息香酸モノアンモニウ
ムコバルト20.7重量%、o−ホルミルベンゼンス
ルホンアミドもしくはこの脱水閉環物5.0重量%)
を室温で水50部で2回洗浄し、乾燥して23.3部の
白色結晶(サツカリン)を得た。このものの高速
液体クロマトグラフイーで求めた純度は99%以上
であつた。
A cake obtained by concentrating the reaction product and separating it into solid and liquid (dry weight 40.0 parts, composition of the dry product is saccharin)
72.3% by weight, monoammonium cobalt o-sulfobenzoate 20.7% by weight, o-formylbenzenesulfonamide or its dehydrated closed ring product 5.0% by weight)
was washed twice with 50 parts of water at room temperature and dried to obtain 23.3 parts of white crystals (saccharin). The purity of this product determined by high performance liquid chromatography was 99% or higher.

比較例 1 実施例1において酢酸ジルコニルを除いた条件
で反応温度12.℃で5時間空気と接触させた。
Comparative Example 1 Contact with air was carried out under the same conditions as in Example 1 except that zirconyl acetate was used at a reaction temperature of 12.degree. C. for 5 hours.

反応生成物を濃縮し、固液分離して得たケーク
20.4部の組成は、サツカリン62.3重量%、o−ス
ルホ安息香酸モノアンモニウム2.2重量%で残部
はo−ホルミルベンゼンスルホンアミドもしくは
この脱水閉環物などの中間体であつた。
Cake obtained by concentrating the reaction product and separating solid and liquid
The composition of 20.4 parts was 62.3% by weight of saccharin, 2.2% by weight of monoammonium o-sulfobenzoate, and the remainder was an intermediate such as o-formylbenzenesulfonamide or its dehydrated ring product.

Claims (1)

【特許請求の範囲】[Claims] 1 o−トルエンスルホンアミドを酢酸溶媒中で
コバルト、マンガンおよび臭素から構成される触
媒の存在下で分子状酸素含有ガスにより酸化して
サツカリンを製造する際、ジルコニウム化合物を
反応系に存在させることを特徴とするサツカリン
の製造法。
1. When producing saccharin by oxidizing o-toluenesulfonamide with a molecular oxygen-containing gas in the presence of a catalyst consisting of cobalt, manganese and bromine in an acetic acid solvent, it is necessary to include a zirconium compound in the reaction system. Characteristic manufacturing method of saccharin.
JP57166639A 1982-09-27 1982-09-27 Preparation of saccharin Granted JPS5955877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57166639A JPS5955877A (en) 1982-09-27 1982-09-27 Preparation of saccharin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57166639A JPS5955877A (en) 1982-09-27 1982-09-27 Preparation of saccharin

Publications (2)

Publication Number Publication Date
JPS5955877A JPS5955877A (en) 1984-03-31
JPH038346B2 true JPH038346B2 (en) 1991-02-05

Family

ID=15835002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57166639A Granted JPS5955877A (en) 1982-09-27 1982-09-27 Preparation of saccharin

Country Status (1)

Country Link
JP (1) JPS5955877A (en)

Also Published As

Publication number Publication date
JPS5955877A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
JPS6247864B2 (en)
CN106336388A (en) Synthetic method of benzofuran-2(3H)-one
JPH0259819B2 (en)
JPS5953441A (en) Preparation of aromatic carboxylic acid
US4772754A (en) Process for the isolation of p-hydroxybenzaldehyde
JPH038346B2 (en)
JPH08500360A (en) Method for producing phenyl terephthalic acid
WO2005110962A1 (en) Process for producing adipic acid
JPH038345B2 (en)
KR880000741B1 (en) Prepration method of saccharin
JPS6217989B2 (en)
JPS61106535A (en) Recovery of benzoic acid
JPS6019736A (en) Simultaneous production of p-t-butylbenzaldehyde and p-t-butylbenzoic acid
GB1577019A (en) Process for producing high quality terephthalic acid
JPS5879985A (en) Preparation of saccharin
JPH0531535B2 (en)
JPS5832843A (en) Preparation of p-chlorobenzoic acid
JPS5959677A (en) Preparation of saccharin
JPS5821650A (en) Preparation of m-nitrobenzoic acid
JPS58183645A (en) Preparation of m-nitrobenzoic acid
JPH06116231A (en) Purification of 4,4'-dichlorodiphenylsulfone
JPS6228946B2 (en)
JPS6115863A (en) Production of 2-chloro-4-nitrobenzoic acid
JP3232796B2 (en) Method for producing p-acetoxybenzoic acid
US5153339A (en) Process for separation of naphthoquinone and phthalic acid