JPH0383326A - Vapor growth process for organic metal - Google Patents

Vapor growth process for organic metal

Info

Publication number
JPH0383326A
JPH0383326A JP21861089A JP21861089A JPH0383326A JP H0383326 A JPH0383326 A JP H0383326A JP 21861089 A JP21861089 A JP 21861089A JP 21861089 A JP21861089 A JP 21861089A JP H0383326 A JPH0383326 A JP H0383326A
Authority
JP
Japan
Prior art keywords
group
temperature
organic
ingaasp
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21861089A
Other languages
Japanese (ja)
Other versions
JP2879224B2 (en
Inventor
Susumu Yamazaki
進 山崎
Takuya Fujii
卓也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21861089A priority Critical patent/JP2879224B2/en
Publication of JPH0383326A publication Critical patent/JPH0383326A/en
Application granted granted Critical
Publication of JP2879224B2 publication Critical patent/JP2879224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the group V composition of InGaAsP four element mixed crystal to be controlled with high precision even at low temperature by a method wherein organic group V element is used as group V material in order to grow InGaAsP by applying the vapor growth process of organic metal (MOVPE). CONSTITUTION:InGaAsP four element mixed crystal lattice matching with InP is grown using organic group V element as a group V material. As for the organic group V metallic material, TBP(CH3)3CPH2) and TBA(CH3)3CAsH2) are used. The dissolving efficiency of group V organic material starts to change notably at the temperature not exceeding 400 deg.C while the dissolving efficiency of AsH3 equals to that of PH3 at the temperature exceeding 400 deg.C. The controllability of solid composition of As and P at low temperature is equally excellent to that of group III element so that As and P may be effectively applied to the manufacture of high performance photosemiconductor device requiring of the low temperature growth of crystal.

Description

【発明の詳細な説明】 〔概要〕 1〔μm〕帯で用いる光通信用デバイスの構成材料とし
て重要なInPに格子整合するI ncaAsP四元混
晶を得るのに好適な有機金属気相成長方法に関し、 低温に於いてもI ncaAs P四元混晶の■族組戒
を精密に制御できるようにすることを目的とし、 V族原料として有機■族を用いInPに格子整合するI
 nGaAs P四元混晶を成長させるよう構成する。
[Detailed Description of the Invention] [Summary] Metal-organic vapor phase growth method suitable for obtaining IncaAsP quaternary mixed crystal that is lattice-matched to InP, which is important as a constituent material of optical communication devices used in the 1 [μm] band. With regard to InP, the purpose of this study is to precisely control the I-group composition of the IncaAs P quaternary mixed crystal even at low temperatures.
It is configured to grow an nGaAsP quaternary mixed crystal.

〔産業上の利用分野〕[Industrial application field]

本発明は、1〔μm〕帯で用いる光通信用デバイスの構
成材料として重要なInPに格子整合するI nGaA
s P四元混晶を得るのに好適な有機金属気相成長方法
に関する。
The present invention utilizes InGaA, which is lattice-matched to InP, which is important as a constituent material of optical communication devices used in the 1 [μm] band.
The present invention relates to an organometallic vapor phase growth method suitable for obtaining sP quaternary mixed crystals.

現在、光通信システムの高速化及び大容量化に付随して
光半導体素子の高性能化が要求されている。これに応え
る為、咳光半導体素子の構戒材料である結晶を成長させ
る技術として、例えば、厚さ、組成、キャリヤ濃度など
の制御性に優れている有機金属気相成長(metalo
rganicvapor  phase  eptta
xy:MOVPE)法の研究・開発が盛んである。
Currently, as optical communication systems increase in speed and capacity, there is a demand for higher performance of optical semiconductor devices. In order to meet this demand, we have developed techniques for growing crystals, which are the structural materials for optical semiconductor devices, such as metalorganic vapor phase epitaxy (metallo), which has excellent controllability in terms of thickness, composition, carrier concentration, etc.
rganic vapor phase eptta
Research and development of xy:MOVPE) method is active.

MOVPE法は、原理的には、気相で原料を供給するの
で、前記のような特徴を発揮できるのであるが、成長温
度、組成領域などの如何に依っては、制御性の悪いもの
になってしまう。
In principle, the MOVPE method can exhibit the above-mentioned characteristics because raw materials are supplied in the gas phase, but depending on the growth temperature, composition range, etc., the controllability becomes poor. I end up.

例えば、回折格子上に活性層を積層することで高性能化
を図っている分布帰還(distributed  f
eedback:DFB)型レーザ、或いは、活性層を
多重量子井戸構造にしたMQW(mult iquan
tum  we I I)型レーザなどを製造するには
、それを構成する結晶は低温で成長さセることが必要で
あるが、通常のMOVPE法で低温の成長を行った場合
、特に、InPに近い&ll戒領域で制御性が悪くなる
For example, distributed feedback (distributed feedback), which aims to improve performance by stacking an active layer on a diffraction grating,
eedback: DFB) type laser, or an MQW (multi quantum well) type laser with an active layer having a multiple quantum well structure.
In order to manufacture tum we I) type lasers, etc., it is necessary to grow the crystals that make up the laser at low temperatures. Controllability worsens in the vicinity of the precepts.

従って、低温に於いても制御性が良好なMOVPE法が
開発されなければならない。
Therefore, a MOVPE method with good controllability even at low temperatures must be developed.

〔従来の技術] 従来、MOVPE法を適用してI nGaAs Pの成
長を行う場合、■練原料として、■族元素を含む有機金
属、例えば、Inについては、トリメチルインジウム (TM I n :  (CH3) s  I n)、
或いは、 トリエチルインジウム (TEIn:  (Ct Hs )z  In)、Ga
については、 トリメチルガリウム (TMGa :  (CH3)3 Ga)、或いは、 トリエチルガリウム (TEGa :  (Cz Hs )2 Ga)などが
用いられ、また、■練原料として、水素化物、例えば、
Asについては、 アルシン(ASH3)、 Pについては、 ホスフィン(PH,) が用いられている。
[Prior art] Conventionally, when growing InGaAs P by applying the MOVPE method, organic metals containing group III elements, such as In, are used as a raw material for the growth of InGaAs P. ) s I n),
Or triethylindium (TEIn: (Ct Hs )z In), Ga
For example, trimethyl gallium (TMGa: (CH3) 3 Ga) or triethyl gallium (TEGa: (Cz Hs) 2 Ga) is used;
For As, arsine (ASH3) is used, and for P, phosphine (PH,) is used.

前記したような原料を用いた場合、MOVPE法では、
気相組成と固相Hl或との関係は次のように表現される
When using the raw materials as described above, in the MOVPE method,
The relationship between gas phase composition and solid phase Hl is expressed as follows.

ここで、X並びにyは固相組成であって、InGaAs
 PをI J−、Ga、AS+−y Pyと表現した場
合のX並びにyである。また、(Ga)。
Here, X and y are solid phase compositions, and InGaAs
These are X and y when P is expressed as I J-, Ga, AS+-y Py. Also, (Ga).

(In)、(P)、(As)はInP基板近傍の気相組
成であり、それぞれの導入原料ガス濃度を(TEGa)
(In), (P), and (As) are the gas phase compositions near the InP substrate, and the respective introduced raw material gas concentrations are (TEGa)
.

(TMIn)。(TMIn).

(PH,]。(PH,].

(A s Hl) としたとき (Ga ) x77、、 (TEGa )      
・・・(3)(I n) x77.11(TM I n
)      ・・・(4)〔P〕 =ηP(PHs)
          ・ ・ ・ ・(5)(As)=
77、、(AsHx  )       ・ ・ ・ 
・(6)のように表現される。勿論、この場合、Ga及
びInの原料としてTEGa及びTMInを用いる場合
を想定している。ここで、ηは各原料ガスの分解効率を
示している。MOVPE法を実施する際、実用上で制御
する量は、(TEGa)、(TM I n) 、  (
PHs ) 、  (As Hx )であることから、
前記式(3)乃至(6)を前記式(1)及び(2)に代
入して得られる関係式が現実的な気相及び固相の関係を
与える。即ち、 (0≦X≦0゜ 47) ・(8) 第2図は実際にTEGa、TMIn、Ash、。
When (A s Hl), (Ga) x77,, (TEGa)
...(3)(I n) x77.11(TM I n
) ... (4) [P] = ηP (PHs)
・ ・ ・ ・(5)(As)=
77,, (AsHx) ・ ・ ・
・It is expressed as in (6). Of course, in this case, it is assumed that TEGa and TMIn are used as the raw materials for Ga and In. Here, η indicates the decomposition efficiency of each source gas. When implementing the MOVPE method, the quantities to be practically controlled are (TEGa), (TM I n), (
Since PHs ) and (As Hx ),
The relational expressions obtained by substituting the above equations (3) to (6) into the above equations (1) and (2) give realistic relationships between the gas phase and the solid phase. That is, (0≦X≦0゜47) (8) Fig. 2 actually shows TEGa, TMIn, Ash, and so on.

PHsを用いたInGaAsPの成長に於いて、Xと(
TMIn)/(TEGa)、 yと(Ashs )/(PH1) の関係を求めた結果を表す線図であり、縦軸にはX或い
はyを、そして、横軸には(TMIn)/(TEGa)
或いは(AsHs )/ (PHs )をそれぞれ採っ
である。尚、成長温度は620(’C)である。
In the growth of InGaAsP using PHs, X and (
TMIn)/(TEGa), y and (Ashs)/(PH1). The vertical axis is X or y, and the horizontal axis is (TMIn)/(TEGa). )
Alternatively, (AsHs)/(PHs) are respectively taken. Note that the growth temperature is 620 ('C).

図に於いて、■族に対してはηl++/ηG、をフィッ
ティング・パラメータとするとη17/ηG、!=i1
とした場合で定量的説明が可能である。これは、■族の
原料である有機金属化合物が620(”C)で等価的に
略同じ分解効率をもっていることを示している。それに
対して■族はηAs/η、ξlOにしないと実験結果を
説明することができないことから、PHsの分解効率は
ASH3に比較して約1/10であることを示している
In the figure, for the ■ group, if ηl++/ηG is the fitting parameter, then η17/ηG! =i1
A quantitative explanation is possible if This shows that the organometallic compound that is the raw material for group II has approximately the same decomposition efficiency as 620 (''C).On the other hand, for group II, the experimental results show that ηAs/η and ξlO are not used. cannot be explained, indicating that the decomposition efficiency of PHs is about 1/10 compared to ASH3.

従って、V線側の組成制御は、620(’C)の温度で
あっても、特に、y>0.5の領域に於いては悪くなる
。即ち、(As H2)/ [PH3]の変化に対して
yの変動が大きく、供給量の僅かな変化で固相組成に大
きな変化が現れる。
Therefore, composition control on the V-line side is particularly poor in the region of y>0.5 even at a temperature of 620 ('C). That is, the variation in y is large with respect to the change in (As H2)/[PH3], and a small change in the supply amount causes a large change in the solid phase composition.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記したように、η□/η2、即ち、A s HsとP
H,との熱分解効率の差は620(’C)の温度に於い
て10であり、それよりも低温にすると更に大きくなり
、 Ea:活性化エネルギ に:ボルツマン定数 T:温度(K) なる式で表される関係で変化する。従って、更に低温に
なると、ASH3やPH,を原料にする限り、V族の固
相組成制御はより困難になる。
As mentioned above, η□/η2, that is, A s Hs and P
The difference in thermal decomposition efficiency with H, is 10 at a temperature of 620 ('C), and becomes even larger when the temperature is lower than that, Ea: activation energy: Boltzmann's constant T: temperature (K) It changes according to the relationship expressed by the formula. Therefore, as the temperature becomes lower, it becomes more difficult to control the solid phase composition of group V as long as ASH3 and PH are used as raw materials.

本発明は、低温に於いてもInGaAsP四元混晶のV
族組戒を精密に制御できるようにしまうとする。
The present invention shows that even at low temperatures, the V of InGaAsP quaternary mixed crystal
Suppose that it would be possible to precisely control the tribal precepts.

〔課題を解決するための手段〕[Means to solve the problem]

前記したような問題を解消するには、AsHlとPHI
Iとの分解効率の差が大きくなるような低温の領域に於
いて、■練原料として有機V族を用いると良い。
To solve the problems mentioned above, AsHl and PHI
In a low temperature region where the difference in decomposition efficiency with I is large, it is preferable to use an organic group V as the raw material.

従って、本発明に依るMOVPE法では、■練原料とし
て有機■族を用いInPに格子整合するInGaAsP
四元混晶を成長させるか、或いは、■練原料として有機
■族を用い、且つ、ηAs/ 77F =a−e x 
p (Ea/kTe )η□/ηPξ10 η□:ASH3の分解効率 ηP:PHzの分解効率 Ea:活性化エネルギ =1.0 (eV) k:ボルツマン定数 a:比例係数 =6.9XIO’ で与えられる温度Tc以下の温度でInPに格子整合す
るInGaAsP四元混晶を成長させるようにしている
Therefore, in the MOVPE method according to the present invention, InGaAsP, which is lattice-matched to InP, uses organic group III as the raw material.
Either growing a quaternary mixed crystal or using an organic group III as a raw material, and ηAs/ 77F = a-e x
p (Ea/kTe )η□/ηPξ10 η□: Decomposition efficiency of ASH3 ηP: Decomposition efficiency of PHZ Ea: Activation energy = 1.0 (eV) k: Boltzmann constant a: Proportional coefficient = 6.9XIO' InGaAsP quaternary mixed crystal, which is lattice-matched to InP, is grown at a temperature below the temperature Tc.

〔作用〕[Effect]

前記手段を採ることに依り、V練原料は低温に於いても
分解効率に差がなく、η□/η、ξ1とすることができ
るから、低温に於けるAs及びPの固相m或の制御性は
■族と同様に良好であり、結晶の低温成長が必要とされ
る高性能な光半導体装置の製造に適用して有効である。
By adopting the above method, there is no difference in the decomposition efficiency of the V-mixed raw material even at low temperatures, and η□/η, ξ1 can be achieved. The controllability is as good as that of group Ⅰ, and it is effective when applied to the production of high-performance optical semiconductor devices that require low-temperature growth of crystals.

〔実施例〕〔Example〕

InGaAsP四元混晶を成長させる場合の実施例につ
いて説明する。
An example in which an InGaAsP quaternary mixed crystal is grown will be described.

■練原料としては、従来と同様、TMIn及びTEGa
を用いる。
■ As the raw material, TMIn and TEGa are used as before.
Use.

有機■練原料としては、TBP(tertiarybu
tyl−phosphine: (CM。
As an organic kneading raw material, TBP (tertiarybu
tyl-phosphine: (CM.

)、CPH,)並びにTBA(tertiarybut
yl−arsine:  (CH3)* CASH3)
を用いる。
), CPH, ) and TBA (tertiarybut
yl-arsine: (CH3)* CASH3)
Use.

前記有機■練原料は、分解効率が大きく変動し始める温
度が400(”C)以下であり、それ以上の温度に於い
ては、η□′/η、′なる量で見る限りでは、η□′/
η、′ξ1と見做すことができる。向、η□′及びη、
′はTBA及びTBPの分解効率を表すものである。
The temperature at which the decomposition efficiency of the organic kneaded raw material begins to vary greatly is 400 ("C) or lower, and at temperatures above that, as far as the amount η□'/η,' is concerned, η□ ′/
η, ′ξ1. direction, η□′ and η,
' represents the decomposition efficiency of TBA and TBP.

第1図は前記した各原料を用い、温度を500〔°C〕
としてInGaAsP四元混晶を成長させた場合の固相
組tcy及び原料気相比(TBA)/(TBP)の関係
を表す線図であり、縦軸にはyを、また、横軸には(T
BA)/ (TBP)をそれぞれ採っである。
Figure 1 uses the above-mentioned raw materials and the temperature is 500 [°C].
This is a diagram showing the relationship between the solid phase set tcy and the raw material vapor phase ratio (TBA)/(TBP) when growing an InGaAsP quaternary mixed crystal, with y on the vertical axis and y on the horizontal axis. (T
BA)/(TBP) respectively.

ここで、 なる式に依ってη□′/η、′を計算すると、第1図の
実験結果はη□′/η、′″=、1で説明可能である。
Here, if η□'/η,' is calculated according to the formula, the experimental results shown in FIG. 1 can be explained by η□'/η,'''=,1.

これは、例えば500(”C)程度の低温であっても、
有機V族を■練原料とすることで、V族固相&ll或を
■族組成と同等の制御性をもって成長できることを示し
ている。
This means that even at a low temperature of, for example, 500 ("C),
It has been shown that by using organic group V as the raw material for mixing (1), it is possible to grow a group V solid phase with the same controllability as the group (2) composition.

〔発明の効果〕〔Effect of the invention〕

本発明に依る有機金属気相成長方法に於いては、■練原
料として有機V族を用い1nPに格子整合するI nG
aAs P四元混晶を成長さセている。
In the organometallic vapor phase growth method according to the present invention,
AAs P quaternary mixed crystal is grown.

前記構成を採ることに依り、V練原料は低温に於いても
分解効率に差がなく、η□/η、!=ilとすることが
できるから、低温に於けるAs及びPの固相組成の制御
性は■族と同様に良好であり、結晶の低温成長が必要と
される高性能な光半導体装置の製造に通用して有効であ
る。
By adopting the above structure, there is no difference in decomposition efficiency of the V-mixed raw material even at low temperatures, and η□/η,! = il, the controllability of the solid phase composition of As and P at low temperatures is as good as that of group II, and this makes it possible to manufacture high-performance optical semiconductor devices that require low-temperature growth of crystals. It is applicable and effective.

【図面の簡単な説明】 第1図は本発明一実施例に依ってInGaAsP四元混
晶を成長させた場合に於ける固相組成y並びに原料気相
比[TBA)/ [TBP]の関係を説明する為の線図
、第2図は従来技術に依ってInGaAsP四元混晶を
成長させた場合に於ける面相組成X或いは固相組成yと
原料気相比[TMIn]/(TEGa〕或いは原料気相
比(AsH2) / (P H3)の関係を説明する為
の線図である。
[Brief Description of the Drawings] Figure 1 shows the relationship between the solid phase composition y and the raw material vapor phase ratio [TBA]/[TBP] when InGaAsP quaternary mixed crystal is grown according to an embodiment of the present invention. Figure 2 is a diagram to explain the phase composition X or solid phase composition y and the raw material vapor phase ratio [TMIn]/(TEGa) when InGaAsP quaternary mixed crystal is grown using the conventional technique. Alternatively, it is a diagram for explaining the relationship between raw material gas phase ratio (AsH2)/(PH3).

Claims (2)

【特許請求の範囲】[Claims] (1)V族原料として有機V族を用いInPに格子整合
するInGaAsP四元混晶を成長させる有機金属気相
成長方法。
(1) An organometallic vapor phase growth method in which an organic group V material is used as a group V source material to grow an InGaAsP quaternary mixed crystal that is lattice-matched to InP.
(2)V族原料として有機V族を用い、且つ、η_A_
s/η_P=a・exp(−Ea/kTc)η_A_s
/η_P≒10 η_A_s:A_SH_3の分解効率 η_P:PH_3の分解効率 Ea:活性化エネルギ =1.0〔eV〕 k:ボルツマン定数 a:比例係数 =6.9×10^4 で与えられる温度T_C以下の温度でInPに格子整合
するInGaAsP四元混晶を成長させる有機金属気相
成長方法。
(2) Using organic group V as the group V raw material, and η_A_
s/η_P=a・exp(-Ea/kTc)η_A_s
/η_P≒10 η_A_s: Decomposition efficiency of A_SH_3 η_P: Decomposition efficiency of PH_3 Ea: Activation energy = 1.0 [eV] k: Boltzmann constant a: Proportionality coefficient = 6.9 x 10^4 Below the temperature T_C A metal organic vapor phase growth method for growing an InGaAsP quaternary mixed crystal lattice-matched to InP at a temperature of .
JP21861089A 1989-08-28 1989-08-28 Metalorganic vapor phase epitaxy Expired - Fee Related JP2879224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21861089A JP2879224B2 (en) 1989-08-28 1989-08-28 Metalorganic vapor phase epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21861089A JP2879224B2 (en) 1989-08-28 1989-08-28 Metalorganic vapor phase epitaxy

Publications (2)

Publication Number Publication Date
JPH0383326A true JPH0383326A (en) 1991-04-09
JP2879224B2 JP2879224B2 (en) 1999-04-05

Family

ID=16722653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21861089A Expired - Fee Related JP2879224B2 (en) 1989-08-28 1989-08-28 Metalorganic vapor phase epitaxy

Country Status (1)

Country Link
JP (1) JP2879224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250437A (en) * 1995-03-15 1996-09-27 Nec Corp Metal organic vapor growth method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250437A (en) * 1995-03-15 1996-09-27 Nec Corp Metal organic vapor growth method

Also Published As

Publication number Publication date
JP2879224B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
JPS63240012A (en) Iii-v compound semiconductor and formation thereof
EP1842268B1 (en) Iii/v semiconductor
JPH0383326A (en) Vapor growth process for organic metal
JP3386302B2 (en) N-type doping method for compound semiconductor, chemical beam deposition method using the same, compound semiconductor crystal formed by these crystal growth methods, and electronic device and optical device constituted by this compound semiconductor crystal
JP3223575B2 (en) Compound semiconductor and manufacturing method thereof
JPH0431396A (en) Growth of semiconductor crystal
JP3406504B2 (en) Semiconductor manufacturing method
JPS6332916A (en) Ga0.5in0.5p crystal growth
JP2841799B2 (en) (III)-Vapor phase growth method of group V compound semiconductor
JP2687862B2 (en) Method of forming compound semiconductor thin film
JPH0212814A (en) Crystal growth method of compound semiconductor
JPS63227007A (en) Vapor growth method
Flemish et al. Altering the Composition of InGaAsP Grown by the Hydride Technique by Introducing HCl Downstream
JP2625377B2 (en) Method for selectively growing compound semiconductor and method for selectively burying compound semiconductor
JP2953955B2 (en) Method for selectively growing compound semiconductor and method for selectively burying compound semiconductor
JPS58194329A (en) Liquid phase epitaxial growth of 3-5 mixed crystal semiconductor
Mullin Single crystal growth II: epitaxial growth
JP2000133599A (en) Crystal growth method and manufacture of semiconductor laser using the same
JPH0483332A (en) Growth method of compound semiconductor crystal
JPH0462834A (en) Manufacture of thin semiconductor film
JPS62104120A (en) Method for growth of compound semiconductor
JPH1167667A (en) Method for vapor phase growth of iii-v compound semiconductor crystal layer
JPH053440B2 (en)
JPH02141498A (en) Method for growing ingap crystal
JPS6148917A (en) Forming method of selective pope-hetero structure of group iii-v compound semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees