JPH038290A - Electrode control method for arc furnace - Google Patents

Electrode control method for arc furnace

Info

Publication number
JPH038290A
JPH038290A JP14146689A JP14146689A JPH038290A JP H038290 A JPH038290 A JP H038290A JP 14146689 A JP14146689 A JP 14146689A JP 14146689 A JP14146689 A JP 14146689A JP H038290 A JPH038290 A JP H038290A
Authority
JP
Japan
Prior art keywords
electrode
melting
melted
lowering
lowered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14146689A
Other languages
Japanese (ja)
Other versions
JP2903544B2 (en
Inventor
Takaaki Noda
野田 孝昭
Kikuma Izumi
和泉 喜久磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP14146689A priority Critical patent/JP2903544B2/en
Publication of JPH038290A publication Critical patent/JPH038290A/en
Application granted granted Critical
Publication of JP2903544B2 publication Critical patent/JP2903544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)
  • Discharge Heating (AREA)

Abstract

PURPOSE:To improve fusion efficiency by directly position-controlling an electrode, repeating the holding and lowering of the electrode so as to avoid frequent lifting/lowering motion, and melting an insertion material at the preset arc length. CONSTITUTION:An insertion material S is inserted into a furnace body 6, an electrode 3 is lowered to start an arc, then it is held at the fixed height position for the preset period, and part of the insertion material S is melted. The electrode 3 is lowered by the height corresponding to the fusion quantity of the insertion material S during the hold time, and the holding and lowering of the electrode 3 are repeated thereafter to melt the insertion material S. A power detector 20 detects that the near flat bath stage is attained via the fed power quantity and lowers the lower end of the electrode 3 to the position apart from the solution level by the preset distance. The detector 20 again detects that the flat bath stage is attained and lowers the electrode 3 to the vicinity of the solution level to refine a solution. The electrode 3 is properly lowered in sequence in response to the fusion quantity, the insertion material S is melted at the preset arc length, thus no hunting occurs, and fusion efficiency is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は製鋼用原料のスクラップ等の装入材の溶解を
おこなうアーク炉において可動電極の昇降を制御する制
御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a control method for controlling the elevation and descent of a movable electrode in an arc furnace for melting charging materials such as raw material scrap for steelmaking.

〔従来の技術〕[Conventional technology]

一般に電極のアーク熱により装入材の溶解をおこなうア
ーク炉においては、アーク熱を損失少なく装入材に吸収
させれば溶解効率は高くなり、たとえば炉内にスクラッ
プが充満している溶解初期〜中期はロングアーク長で溶
解し、スクラップが溶鋼に変化して炉壁が露出する度合
が多い溶解終期にはショートアーク長で溶解すれば、溶
解効率は向上する。ところが従来の電極制御は、アーク
放電中の電流あるいはインピーダンスを一定に維持する
電流制御あるいはインピーダンス制御によっていたため
、電極の位置は直接制御されず、炉内の装入材溶解進行
に伴って電極は絶えず昇降を繰返すとともに、装入材の
崩壊や装入材との接触により、あるいは「スクラップ−
溶鋼−炉底電極」と通電される場合と「溶鋼−炉底電極
」と通電される場合の抵抗の差異等により、74極のハ
ンチング現象を生じ、溶解効率を著しく悪化させる現象
が頻発していた。
In general, in arc furnaces, where the charge material is melted using the arc heat of the electrodes, the melting efficiency can be increased if the arc heat is absorbed into the charge material with less loss. Melting efficiency can be improved by melting with a long arc length in the middle stage and melting with a short arc length in the final stage of melting, when scrap changes to molten steel and the furnace wall is often exposed. However, conventional electrode control has been based on current control or impedance control that maintains the current or impedance constant during arc discharge, so the position of the electrode is not directly controlled, and the electrode moves as the charge material melts in the furnace. In addition to constantly repeating the lifting and lowering, the material may disintegrate or come into contact with the material, or "scrap" may occur.
Due to the difference in resistance between when electricity is applied between the molten steel and the furnace bottom electrode and when the current is applied between the molten steel and the furnace bottom electrode, a hunting phenomenon of the 74 poles occurs, which frequently causes a significant deterioration of melting efficiency. Ta.

〔発明が解決しようとする課題) この発明は上記従来の問題点を解決するもので、N!f
1の過敏な運動を抑制し、溶解効率の向上をはかること
ができるアーク炉における電極制御方法を提供しようと
するものである。
[Problem to be solved by the invention] This invention solves the above-mentioned conventional problems, and N! f
An object of the present invention is to provide an electrode control method in an arc furnace that can suppress the sensitive movement of No. 1 and improve melting efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

しかしてこの発明の電極制御方法は、昇降駆動される1
i極のアーク熱により装入材の溶解をおこなうアーク炉
において、炉体内に装入材を装入し、該装入材に向けて
電極を下降させて発弧後、該電極を一定高さ位置に所定
時間保持して装入材の一部を溶解させ、次いで該保持時
間中の装入材溶解量に相当する高さ分だけ電極を下降さ
せ、以下上記の電極の保持と下降を繰返して、溶解初期
〜1溶V1期における装入材の溶解をおこない、投入電
力めによりニアフラットバス期に達したことを検出して
、電極の下端を瀉血から所定量ff1llllれた位置
まで下降させて溶解をおこない、投入電力aによりフラ
ットバス朋に達したことを検出して、電極をさらに瀉血
に接近する位置まで下降させて溶湯の精錬をおこなうこ
とを特徴とするアーク炉における電極制御方法である。
However, in the electrode control method of the present invention, the 1st electrode is driven up and down.
In an arc furnace in which the charge material is melted by the arc heat of the i-electrode, the charge material is charged into the furnace body, the electrode is lowered toward the charge material, and after ignition, the electrode is held at a certain height. The electrode is held in position for a predetermined period of time to melt a portion of the charge material, and then the electrode is lowered by a height corresponding to the amount of charge material dissolved during the holding time, and the above-mentioned holding and lowering of the electrode is then repeated. Then, the charged material is melted in the initial stage of melting to 1 melting V1 stage, and when the near flat bath stage is detected by the input power, the lower end of the electrode is lowered to a position a predetermined amount ff1llll from the bloodletting point. A method for controlling an electrode in an arc furnace, characterized in that the electrode is further lowered to a position approaching the phlebotomy point to refine the molten metal. be.

〔作用〕[Effect]

この発明の電極制御方法においては、電極の一定位置へ
の保持と該保持時間中の装入材溶解量に相当する高さ分
だけのTi極の下降を繰返して溶解初期〜主溶解期の装
入材の溶解をおこなうので、電極は従来のように電流や
インピーダンスを介さずに直接位置制御され、溶解量に
従って適正な位置に順次下降し、過敏なハンチングや昇
降運動を生じることなく所望のアーク艮により溶解をお
こなうことができる。またニアフラットバス期およびフ
ラットバス期においても、ハンチングを生じることなく
所望の類アーク長で炉壁への熱損失少なく溶解、精錬が
おこなわれる。
In the electrode control method of the present invention, the Ti electrode is repeatedly held at a constant position and lowered by a height corresponding to the amount of charge material melted during the holding time, and the Ti electrode is loaded from the initial melting stage to the main melting stage. Since the incoming material is melted, the position of the electrode is directly controlled without using current or impedance as in conventional methods, and the electrode is lowered to the appropriate position in sequence according to the amount of melting, creating the desired arc without excessive hunting or vertical movement. Dissolution can be carried out using a phlegm. Also, in the near-flat bath period and flat bath period, melting and refining can be carried out at the desired arc length without hunting and with little heat loss to the furnace wall.

〔実施例〕〔Example〕

以下第1図乃至第8図によってこの発明の一実施例を説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 8.

第1図において、1は炉電源に接続した炉用変圧器、2
はこの変圧器の二次側に接続されたサイリスタ整流器で
、その出力側には電極(可動電橋)3と炉底1fffi
4が接続されている。5は整流器保護用のりアクドル、
6は炉体、7は炉蓋、8は電極3を把持する電極ホルダ
ー9をそなえた電極支持体、10はこの電極支持体を昇
降駆動する電動ウィンチ式の駆動機で、ワイヤ巻取用の
巻rf411を電動8112に連結して成る。13はこ
の電動機12の回転軸に接続したパルスジェネレータで
、基準位置14から電極ホルダー9の下端までの高さH
に比例したパルスをホルダー位置信号として発するもの
である。また15は炉体6の上部側方にビームを′Fi
極3に向けて配置したレーザー光式の電極下端検出器で
、前記基準位置14から高さhの位置に設けてあり、ス
クラップ装入時などに電極3を引上げる際に、該電極の
下端が電極下端検出器15の前方を通過した時検出信号
を発して、そのときのホルダ位置H(パルスジェネレー
タ13による計測filりから前記高ざhを差引くこと
により、電極3の首下長さjを計測するためのものであ
る。一方20は炉への投入電力量(積重電力量)を検出
する電力検出器、21はアーク電流検出器、22は後述
の制御手順により電極昇降指令および電流指令を発する
電極制御装置である。、23は位相制御装置で、前記電
流指令に応じた点弧角信号(位相制御信号)をサイリス
タ整流器2に出力するものである。また24は昇降制@
装置で、前記電極昇降指令に応じて電動機を駆動して電
極3を所定量昇降させるものである。
In Figure 1, 1 is a furnace transformer connected to the furnace power supply, 2
is a thyristor rectifier connected to the secondary side of this transformer, and the electrode (movable electric bridge) 3 and the furnace bottom 1fffi are connected to the output side of the thyristor rectifier.
4 are connected. 5 is a glue handle for protecting the rectifier,
6 is a furnace body, 7 is a furnace lid, 8 is an electrode support provided with an electrode holder 9 that holds the electrode 3, and 10 is an electric winch type drive machine that drives the electrode support up and down, and is used for winding wire. The winding rf411 is connected to the electric motor 8112. 13 is a pulse generator connected to the rotating shaft of this electric motor 12, and the height H from the reference position 14 to the lower end of the electrode holder 9 is
It emits a pulse proportional to , as a holder position signal. In addition, 15 is a beam 'Fi' on the upper side of the furnace body 6.
This is a laser beam type electrode lower end detector placed toward the pole 3, and is provided at a height h from the reference position 14. When pulling up the electrode 3 during scrap loading, etc. When the electrode passes in front of the electrode lower end detector 15, a detection signal is emitted, and the length under the neck of the electrode 3 is determined by subtracting the height h from the holder position H (measured by the pulse generator 13) at that time. On the other hand, 20 is a power detector that detects the amount of electric power input to the furnace (accumulated electric energy), 21 is an arc current detector, and 22 is used to issue electrode lifting commands and commands according to the control procedure described later. 23 is a phase control device that outputs a firing angle signal (phase control signal) according to the current command to the thyristor rectifier 2. 24 is a lift control @
The device drives an electric motor in response to the electrode lifting/lowering command to lift/lower the electrode 3 by a predetermined amount.

次に上記構成から成る容It20TONの直流アーク炉
〈但し炉体6の内径=3080m、炉体6の上下寸法は
第7図参照)における電極3のtNIII]電極制御方
法て第2図〜第6図のフローチャートおよび電極I11
御状況を示す第7図により説明する。
Next, Figures 2 to 6 show the electrode control method of the electrode 3 in the DC arc furnace having the above configuration and having a capacity of 20 TON (inner diameter of the furnace body 6 = 3080 m, see Figure 7 for vertical dimensions of the furnace body 6). Flow chart and electrode I11 in the figure
This will be explained with reference to FIG. 7, which shows the current situation.

先ず第2図は電極制御の全体を示し、出鋼ずみの炉体6
内に装入材であるスクラップを装入するに先立って、炉
M7および電極3を上昇させ側方へ旋回移動させる際に
、ステップ25において、電極下端検出器15とパルス
ジェネレータ13により電極3の首下良さ1を計測し、
Ti極上下端炉体6の上端面6aに一致した状態を電極
3の位置計測の零点位置り。とじて、この位置し。から
移動する電極3の下端迄の距離を電極位置としてパルス
ジェネレータ13の出力信号により計測できるように、
電極制御装置22内の電極位置計測回路をリセットする
。次いでステップ26においてスクラップ(g人材)S
を炉体6内に該炉体の上端面6aに達するまで装入し、
炉蓋被着後電極3を下降させて通電発弧させ、詳細ステ
ップを後述するステップ30.40.60によりそれぞ
れ溶解初期、主溶解期、およびニアフラットバス期の電
極制御をおこなってスクラップを溶解し、ステップ70
において当該チャージのスクラップ装入予定総重口から
連装の有無を判別し、連装をおこなう場合はステップ2
5に戻して連装と溶解をおこない、連装がなくなった時
点でステップ80によりフラットバス期の電極制御をJ
3こない、精錬終了後に出鋼をJ3こなって当該チャー
ジの溶解を終了し、同様にして次回チャージ分の溶解を
おこなう。
First, Figure 2 shows the overall electrode control, and shows the furnace body 6 after tapping.
When the furnace M7 and the electrode 3 are raised and rotated laterally before charging the scrap material into the furnace, in step 25, the electrode lower end detector 15 and the pulse generator 13 detect the position of the electrode 3. Measure the lower neck quality 1,
The zero point position of the position measurement of the electrode 3 corresponds to the upper end surface 6a of the Ti extreme upper and lower end furnace body 6. Finally, this position. The distance from the moving electrode 3 to the lower end of the electrode 3 can be measured using the output signal of the pulse generator 13 as the electrode position.
The electrode position measuring circuit in the electrode control device 22 is reset. Then, in step 26, scrap (g human resources) S
is charged into the furnace body 6 until it reaches the upper end surface 6a of the furnace body,
After the furnace cover is deposited, the electrode 3 is lowered to energize and fire, and the electrodes are controlled during the initial melting stage, main melting stage, and near flat bath stage, respectively, in steps 30, 40, and 60, detailed steps of which will be described later, to melt the scrap. and step 70
In step 2, determine whether or not double loading is to be carried out based on the total scheduled scrap loading of the charge, and if double loading is to be carried out, proceed to step 2.
Return to step 5 and perform continuous loading and melting, and when the continuous loading is gone, step 80 will change the electrode control during the flat bath period to J.
3, after the refining is completed, the steel is tapped for J3 to complete the melting of the charge, and the next charge will be melted in the same manner.

次に各溶解期における電極制■を詳述プると、先ずステ
ップ30の詳細は第3図に示す通りであり、前述のよう
に電極3を下降させて発弧したら、ステップ31におい
てこの発弧位置(この実施例では零点位ffL。とほぼ
一致する)を操業基準位置として、該位置に電極3を保
持(停止)する。
Next, to explain in detail the electrode system (2) in each dissolution stage, first, the details of step 30 are as shown in Fig. 3, and when the electrode 3 is lowered and fired as described above, the firing is performed in step 31. The arc position (approximately coincident with the zero point position ffL in this embodiment) is set as the operation reference position, and the electrode 3 is held (stopped) at this position.

この状態で炉蓋保護のため設定(タップ)電圧300V
、設定電流15=30kAでスフ’=z’/7Sの溶解
をおこなう。(第8図(a)参照) 溶解中における電
流の変動に対しては、ステップ32により監視し、特に
大巾に電流が減少し設定電圧I、の30%以下となった
場合は、スクラップの崩壊などがあったとして、ステッ
プ33によりその減少継続時間tが所定の設定時間t。
In this state, the tap voltage is set to 300V to protect the furnace lid.
, Suff'=z'/7S is melted at a set current of 15=30 kA. (See Figure 8(a)) Changes in the current during melting are monitored in step 32, and if the current decreases significantly and falls below 30% of the set voltage I, remove the scrap. Assuming that there is a collapse, etc., the decrease continuation time t is set to a predetermined set time t in step 33.

(たとえば2秒間)以上続くか否かを判定し、長時間継
続する場合はステップ34において電極制御!I]装置
22は電極3を10ag下降させる下降指令を出し、電
極3を下降させる。また7−り電流が設定N流I、の1
10%以上となる場合は、スクラップ変動により電極−
スクラップ間距離が過小になったとして、ステップ35
において位相制御装置23によりサイリスタ整流器2の
点弧角を11即して、アーク電流を設定電流■8に維持
する。溶解が進行すると、第8図(b)に示すようにス
クラップSの一部は溶鋼Mとなり、アーク長が増加する
が、ステップ36において電力検出器20により検出し
た投入電力口(積算ff1)Plが設定消費電力量P 
+ 3 =500 kwh以上となったら、溶解初期段
階を終了したとして、次の主溶解期へ進む。なお上記P
 1 s−500kwhの消費電力のは、炉体6内に充
填されたスクラップSの約200厘深さ分のスクラップ
II(直径3080厘、高さ200履の短円柱状空間内
のスクラップ口)を溶解するのに要する投入電力口であ
る。
(for example, 2 seconds) or not, and if it continues for a long time, control the electrodes in step 34! I] The device 22 issues a lowering command to lower the electrode 3 by 10ag, and lowers the electrode 3. In addition, the 7-current is set to N current I, which is 1
If it is 10% or more, the electrode -
Assuming that the distance between scraps has become too small, step 35
Then, the phase control device 23 sets the firing angle of the thyristor rectifier 2 to 11 to maintain the arc current at the set current 8. As the melting progresses, a part of the scrap S becomes molten steel M as shown in FIG. 8(b), and the arc length increases. is the set power consumption P
+ 3 = 500 kwh or more, the initial dissolution stage is considered to have ended and the process proceeds to the next main dissolution stage. In addition, the above P
The power consumption of 1 s-500 kWh is the scrap II (scrap opening in a short cylindrical space with a diameter of 3080 mm and a height of 200 mm) for a depth of approximately 200 mm of the scrap S filled in the furnace body 6. This is the power input port required for melting.

次に第4図に示す主溶解期においては、先ずステップ4
1により、操業基準位置から前記スクラップ溶解量に相
当する高さ200m分だけ電極3を下降させて該下降位
置に保持し、設定(タップ)電圧460V%設定電流1
.−30kAr、スクラップSの溶解をおこなう。(第
8図(C)参照) 溶解中のアーク電流変動に対しては
前記ステップ32〜35と同様なステップ42〜45に
より修正制御をおこない、ステップ46において投入電
力口P が設定消費電力量Pa、= 500 kwhと
なったら、主溶解期開始後の投入電力量Paの総計が主
溶解期におけるスクラップ溶解用設定消費電力I P 
23−1000 kwh未満であること(ステップ47
)、電極下端位置が炉体の上端面6aすなわち位t?J
L。から1600m+の位置よりもさらに下側(炉底側
)にないこと(ステップ48)、および電極下端位置が
炉体の上端面6aから1400履の位置よりもさらに下
側にないこと(ステップ49)をそれぞれ確認後、ステ
ップ50により電極3を、消費電力量Pasにより溶解
されるスクラップ量に相当する高さ200amだけ下降
させてその位置に保持し、ステップ42に戻して溶解を
おこなうことを繰返す。なおステップ48において電極
下端が1600ae+より下方に達していることが検出
されたら、電極3は前記1600Mの位置まで上昇させ
(ステップ51)、またステップ49において電極下端
が前記1400amより下方に達していることが検出さ
れたら、電極3の下降量は200厘以下として前記16
00履の位置まで下降させ(ステップ52〉、それぞれ
溶解を続行する。ステップ47において各電極位置にお
ける投入電力滑P、の総計が設定消費電力量P2s以上
となったら、主溶解期は終了したので、次のニアフラッ
トバス期のii制御に移行する。
Next, in the main dissolution period shown in Figure 4, first step 4
1, the electrode 3 is lowered from the operation reference position by a height of 200 m corresponding to the amount of scrap melted and held at the lowered position, and the set (tap) voltage is 460 V% and the set current is 1.
.. -30kAr, melting the scrap S. (Refer to FIG. 8(C)) Correct control is performed in steps 42 to 45 similar to steps 32 to 35 above to deal with fluctuations in the arc current during melting, and in step 46, the input power port P is changed to the set power consumption Pa. , = 500 kwh, the total amount of input power Pa after the start of the main melting period is the set power consumption I P for scrap melting in the main melting period.
23-1000 kwh (step 47
), the lower end position of the electrode is at the upper end surface 6a of the furnace body, i.e., at the position t? J
L. (step 48), and the lower end of the electrode is not further below the position 1400 m+ from the upper end surface 6a of the furnace body (step 49). After confirming each of the above, in step 50, the electrode 3 is lowered by a height of 200 am corresponding to the amount of scrap to be melted according to the power consumption Pas, held at that position, and then returned to step 42 to repeat the melting process. If it is detected in step 48 that the lower end of the electrode has reached below 1600 ae+, the electrode 3 is raised to the 1600 m position (step 51), and in step 49 the lower end of the electrode has reached below 1400 am. If this is detected, the amount of descent of the electrode 3 is set to 200 li or less and the above 16
00 position (step 52), and continue melting. In step 47, when the total of input power slip P at each electrode position becomes equal to or greater than the set power consumption P2s, the main melting period has ended. , transition to ii control for the next near-flat bus period.

ニアフラットバス期においては、第5図に示すように、
ステップ61により電極3を電極下端が炉体の上端面6
aから1600amの位置に達するまで下降させて保持
し、設定(タップ)電圧400V、設定Ti流f、−3
5kAt’、残存するスクラップSの溶解をおこなう。
During the near-flat bass period, as shown in Figure 5,
In step 61, the electrode 3 is connected so that the lower end of the electrode is the upper end surface 6 of the furnace body.
Lower and hold until it reaches a position of 1600 am from a, set (tap) voltage 400 V, set Ti current f, -3
5 kAt', the remaining scrap S is melted.

(第8図(d)参照) 溶解中のアーク電流変動に対し
ては、ステップ62および63によりアーク電流が設定
電流I、の110%以上となったときのみ、サイリスタ
点弧角IIJIIIにより設定電流に維持する。ステッ
プ64において没入定力間P3が設定消費電力計P 3
s =1000 kwhに達したら、残存スクラップは
すべて溶解したとして、次のスクラップ連装判定のステ
ップ70(第2図参照)に移行する。
(See Figure 8(d)) Regarding arc current fluctuations during melting, only when the arc current becomes 110% or more of the set current I in steps 62 and 63, the set current is adjusted by the thyristor firing angle IIJIII. maintain it. In step 64, the immersion constant force P3 is set to the power consumption meter P3.
When s = 1000 kwh is reached, it is assumed that all the remaining scraps have been melted, and the process moves to the next step 70 (see FIG. 2) for determining the number of consecutive scraps.

フラットバス期においては、第6図に示すようにステッ
プ71により電極3をさらに下降させて電極下端を上端
面6aから1650ayの位置に保持し、溶鋼面(シル
レベル)から約60履という短いアーク長とし、炉壁保
護のために設定電圧260■、設定電流1.−40に△
で精錬をおこなう。(第8図(e)参照) アーク電流
の変動に対しては、前記ステップ62〜63と同様なス
テップ72〜73により修正1(1111をおこない、
ステップ74において投入雷力艮P4が精錬用の設定消
費電力量P 4s= 2000hwh以上となったら、
精錬を終了し出鋼をおこなって1チヤ一ジ分の溶解工程
を終了する。
In the flat bath stage, as shown in Fig. 6, the electrode 3 is further lowered in step 71 to hold the lower end of the electrode at a position 1650 ay from the upper end surface 6a, and a short arc length of about 60 ay from the molten steel surface (sill level) is achieved. In order to protect the furnace wall, the set voltage is 260■, and the set current is 1. -40△
Perform refining with. (See FIG. 8(e)) For fluctuations in arc current, correction 1 (1111) is performed in steps 72 to 73 similar to steps 62 to 63 above.
In step 74, when the input power P4 becomes the set power consumption for refining P4s=2000hwh or more,
After finishing the refining, the steel is tapped and the melting process for one layer is completed.

この発明は上記実施例に限定されるものではなく、たと
えば上記実施例では溶解初期において電極を発弧位置に
保持したが、発弧位置より少量上側の位Mなどを操業基
準位置としてもよく、また操業基準位置は零点位置し。
The present invention is not limited to the above embodiments; for example, in the above embodiments, the electrode was held at the arcing position at the initial stage of melting, but a position M slightly above the arcing position may be set as the operating reference position. Also, the operating reference position is the zero point.

と一致させなくてもよい。また溶解初期あるいはニアフ
ラットバス期における電極保持位置は溶解進行に合せて
2段階に分けて下降させるようにしてもよい。また溶解
初期終了時(主溶解期開始時)の電極下降機と、主溶解
期途中の電極下!iI醗とは異なる値を採用してもよく
、この場合は設定消費電力ff1P1.とPaSも上記
下降量の差異に応じて異なる電力量とすればよい。また
電極の首下長さ1の計測や電極下端位置の計測は、−F
記実施例以外の方法によっておこなってもよい。なお首
下長さjの計測と共に電極全長の計測をおこない、電極
の継ぎ足しや掴み替えもステップ25でおこなうように
すれば、さらに好ましい。
It doesn't have to match. Further, the electrode holding position at the initial stage of dissolution or during the near-flat bath period may be lowered in two stages according to the progress of dissolution. Also, the electrode lowering machine at the end of the initial melting period (at the start of the main melting period) and the electrode lowering machine during the main melting period! A value different from the iI value may be adopted, and in this case, the set power consumption ff1P1. and PaS may also be set to different amounts of power depending on the difference in the amount of decrease. In addition, the measurement of the length 1 below the neck of the electrode and the measurement of the lower end position of the electrode are -F
Methods other than those described in the embodiments may be used. It is further preferable that the total length of the electrode is measured together with the measurement of the length j below the neck, and that the addition or replacement of the electrode is also performed in step 25.

以上は直流アーク炉について説明したが、この発明は交
流アーク炉にも適用できるものである。
Although the above description has been made regarding a DC arc furnace, the present invention can also be applied to an AC arc furnace.

(発明の効果ン 以上説明したようにこの発明によれば、電極は直接位置
制御され、ハンチングや頻繁な昇降運動を生じることな
く所望のアーク長で溶解、精錬をおこなうことかでき、
溶解効率の向上をはかることができる。
(Effects of the Invention) As explained above, according to the present invention, the position of the electrode is directly controlled, and melting and refining can be performed at a desired arc length without hunting or frequent vertical movement.
It is possible to improve dissolution efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示し、第1図は直流アーク
炉の機器接続図、第2図は全工程のフローチャート、第
3図乃至第6図は各溶解段階のフローチャート、第7図
は電極υ制御状況を示す線図、第8図は同じく炉内状況
説明図である。 2・・・サイリスタ整流器、3・・・電極、6・・・炉
体、8・・・M極支持体、10・・・駆vJ機、13・
・・パルスジエネレ〜り、15・・・電極下端検出器、
20・・・′4力検出器、21・・・アーク電流検出器
、22・・・電極υ1m装置、23・・・位相制tll
装置、24・・・昇降制御装置。
The drawings show an embodiment of the present invention, in which Fig. 1 is an equipment connection diagram of a DC arc furnace, Fig. 2 is a flowchart of the entire process, Figs. 3 to 6 are flowcharts of each melting stage, and Fig. 7 is a flowchart of each melting stage. The diagram showing the electrode υ control situation, FIG. 8, is also an explanatory diagram of the situation inside the furnace. 2... Thyristor rectifier, 3... Electrode, 6... Furnace body, 8... M pole support, 10... VJ machine, 13...
... Pulse energy, 15... Electrode lower end detector,
20...'4 force detector, 21... arc current detector, 22... electrode υ1m device, 23... phase control tll
Device, 24... Lifting control device.

Claims (1)

【特許請求の範囲】[Claims] 1、昇降駆動される電極のアーク熱により装入材の溶解
をおこなうアーク炉において、炉体内に装入材を装入し
、該装入材に向けて電極を下降させて発弧後、該電極を
一定高さ位置に所定時間保持して装入材の一部を溶解さ
せ、次いで該保持時間中の装入材溶解量に相当する高さ
分だけ電極を下降させ、以下上記の電極の保持と下降を
繰返して、溶解初期〜主溶解期における装入材の溶解を
おこない、投入電力量によりニアフラットバス期に達し
たことを検出して、電極の下端を湯面から所定距離離れ
た位置まで下降させて溶解をおこない、投入電力量によ
りフラットバス期に達したことを検出して、電極をさら
に湯面に接近する位置まで下降させて溶湯の精錬をおこ
なうことを特徴とするアーク炉における電極制御方法。
1. In an arc furnace in which the charge is melted by the arc heat of an electrode that is driven up and down, the charge is charged into the furnace body, the electrode is lowered toward the charge, and after ignition, the charge is melted. The electrode is held at a constant height position for a predetermined period of time to melt a portion of the charge material, and then the electrode is lowered by a height corresponding to the amount of charge material dissolved during the holding time, and the above electrode is By repeating holding and lowering, the charge material is melted from the initial melting stage to the main melting stage, and when it is detected that the near flat bath stage has been reached based on the input power, the lower end of the electrode is moved a predetermined distance from the molten metal surface. An arc furnace characterized by lowering the electrode to a position where it melts, detecting that the flat bath stage has been reached based on the input electric power, and then lowering the electrode further to a position where it approaches the surface of the molten metal to refine the molten metal. Electrode control method.
JP14146689A 1989-06-03 1989-06-03 Electrode control method in arc furnace Expired - Fee Related JP2903544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14146689A JP2903544B2 (en) 1989-06-03 1989-06-03 Electrode control method in arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14146689A JP2903544B2 (en) 1989-06-03 1989-06-03 Electrode control method in arc furnace

Publications (2)

Publication Number Publication Date
JPH038290A true JPH038290A (en) 1991-01-16
JP2903544B2 JP2903544B2 (en) 1999-06-07

Family

ID=15292540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14146689A Expired - Fee Related JP2903544B2 (en) 1989-06-03 1989-06-03 Electrode control method in arc furnace

Country Status (1)

Country Link
JP (1) JP2903544B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020018709A (en) * 2000-09-04 2002-03-09 이구택 Holder used control positon of electrode in electricity furnace and Method controlling down distance of electrode used the same
JP2012220071A (en) * 2011-04-07 2012-11-12 Toshiba Mitsubishi-Electric Industrial System Corp Electrode lifting device of ac arc furnace
WO2015101714A1 (en) * 2013-12-30 2015-07-09 Outotec (Finland) Oy Method and arrangement for measurement of electrode paste in an electrode column of an electric arc furnace
WO2017182902A1 (en) * 2016-04-21 2017-10-26 Glencore Operation South Africa (Proprietary) Limited An arc smelting system and method of monitoring the length of an electrode in said system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101991014B1 (en) * 2018-07-03 2019-06-19 주식회사 포스코 Structure for preventing electrode oxidation of electric furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020018709A (en) * 2000-09-04 2002-03-09 이구택 Holder used control positon of electrode in electricity furnace and Method controlling down distance of electrode used the same
JP2012220071A (en) * 2011-04-07 2012-11-12 Toshiba Mitsubishi-Electric Industrial System Corp Electrode lifting device of ac arc furnace
WO2015101714A1 (en) * 2013-12-30 2015-07-09 Outotec (Finland) Oy Method and arrangement for measurement of electrode paste in an electrode column of an electric arc furnace
EA032665B1 (en) * 2013-12-30 2019-06-28 Оутотек (Финлэнд) Ой Method and arrangement for measurement of electrode paste in an electrode column of an electric arc furnace
US10401090B2 (en) 2013-12-30 2019-09-03 Outotec (Finland) Oy Method and arrangement for measurement of electrode paste in an electrode column of an electric arc furnace
WO2017182902A1 (en) * 2016-04-21 2017-10-26 Glencore Operation South Africa (Proprietary) Limited An arc smelting system and method of monitoring the length of an electrode in said system
EA036461B1 (en) * 2016-04-21 2020-11-12 Гленкор Оперейшнс Саут Африка (Пропрайетери) Лимитед Arc smelting system and method of monitoring the length of an electrode in said system

Also Published As

Publication number Publication date
JP2903544B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
JPH038290A (en) Electrode control method for arc furnace
US5539768A (en) Electric arc furnace electrode consumption analyzer
US6614832B1 (en) Method of determining electrode length and bath level in an electric arc furnace
JP2910051B2 (en) Electrode length adjustment method and electrode length measurement device in arc furnace
JP2979816B2 (en) Method for switching speed of arc furnace electrode lifting device
JPH10237531A (en) Method and instrument for detecting furnace hearth level of dc arc furnace
US4161618A (en) DC arc furnace operation indicating system
JPH0869877A (en) Electrode control method of vacuum arc melting device
JP6910741B2 (en) Electrode lifting device for arc furnace
JP3145802B2 (en) Method for detecting electrode length of arc furnace
JP3341609B2 (en) DC arc melting furnace and its operation method
JP3116491B2 (en) Arc furnace input power control device
JPH08165510A (en) Level detector for molten steel in dc arc furnace
JP2022125858A (en) Metal melting device
JP2548551Y2 (en) Ignition control device for DC arc furnace
JP2008196722A (en) Melting completion determining method for arc furnace
JP2665296B2 (en) DC arc furnace voltage controller
JPH0254892A (en) Voltage control method of dc arc furnace
RU2150643C1 (en) Method of determination of stages of charge melting in electric arc steel melting furnace
JPS622609B2 (en)
JPH02110286A (en) Measuring of length of electrode for ac arc furnace
JPH0261489A (en) Control of electric power for dc arc furnace
JPH0636470Y2 (en) Automatic oxygen ignition device for arc furnace for steelmaking
JP2629545B2 (en) Method and apparatus for measuring slag surface and electrode position in incineration ash melting furnace
CN116046103A (en) Device and method for judging molten metal liquid level position through voltage

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees