JPH0382779A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPH0382779A
JPH0382779A JP21736789A JP21736789A JPH0382779A JP H0382779 A JPH0382779 A JP H0382779A JP 21736789 A JP21736789 A JP 21736789A JP 21736789 A JP21736789 A JP 21736789A JP H0382779 A JPH0382779 A JP H0382779A
Authority
JP
Japan
Prior art keywords
tube
discharge tube
quartz
outside
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21736789A
Other languages
Japanese (ja)
Inventor
Yutaka Kakehi
掛樋 豊
Junichi Kobayashi
淳一 小林
Tsunehiko Tsubone
恒彦 坪根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21736789A priority Critical patent/JPH0382779A/en
Publication of JPH0382779A publication Critical patent/JPH0382779A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep good transparency of a quartz discharge tube and to treat a large-sized material with plasma by forming a discharge space in the discharge tube and evacuating the outside of the tube. CONSTITUTION:A microwave generated from a magnetron 9 is introduced into an evacuated treating chamber 1 through waveguides 6 and 8 to produce high- density plasma in the discharge tube 2 by the magnetic field of a coil 10. A bias power is impressed on a sample holder 3 from a high-frequency power source 4. Consequently, a wafer 5 on the holder 3 is efficiently executed an etching or the like. In this plasma treating device, a vacuum space 11 is formed outside the tube 2 in which a discharge space is formed. In this case, the waveguides 6 and 8 are arranged outside the tube 2, and the vacuum space 11 is preferably isolated by a quartz sheet 7 having a smaller diameter than the tube 2. The difference in the pressure between the inside and outside of the tube 2 is practically eliminated by this constitution, the thickness of the tube can be reduced to a necessary extent, and good transparency of the tube is kept even if the thickness of the wafer 5 is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ処理!J装置に係り、特に、エツチン
グ、スパッタ成膜、CVD等のプラズマを生じさせて試
料を処理するMlに好適なプラズマ処理装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is plasma processing! The present invention relates to a J apparatus, and in particular to a plasma processing apparatus suitable for Ml, which generates plasma for etching, sputtering, CVD, etc. to process a sample.

〔従来の技術〕[Conventional technology]

従来のプラズマ処理装置としては、例えば、日立評論 
Vol、71.45(1989−5)第33頁から第3
8頁、川崎他者「ドライエツチング装置」に論じられた
装置がある。この装置では放電室を横絞する部材に石英
ベルジャを用いている。このような装置では石英ベルジ
ャの透明性を利用してプラズマの発光を採光し、プラズ
マのモニタを可能としている。
As for conventional plasma processing equipment, for example, Hitachi Hyoron
Vol, 71.45 (1989-5), pages 33 to 3
There is an apparatus discussed in "Dry etching apparatus" by Kawasaki et al., page 8. In this device, a quartz belljar is used as a member for laterally restricting the discharge chamber. In such a device, the transparency of the quartz belljar is used to collect light emitted from the plasma, making it possible to monitor the plasma.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は被処理物の大径化による放電空間の大型
化の点について配慮されておらず、例えば、被処理物で
あるウェハが10インチという大口径ウェハに対応した
大口径放電管を製作すると、耐圧強度上厚さが要求され
、石英では透明度が低下してモニタに影響を及ぼすとい
う問題点があった。
The above-mentioned conventional technology does not take into consideration the issue of increasing the size of the discharge space due to the increase in the diameter of the object to be processed. This requires a high thickness in terms of pressure resistance, and quartz has the problem of lowering its transparency and affecting the monitor.

本発明の目的は、被処理物が大きくなっても、石英放電
管の透明度を良好に保つことのできるプラズマ処理装置
を提供することにある。
An object of the present invention is to provide a plasma processing apparatus that can maintain good transparency of a quartz discharge tube even when the object to be processed becomes large.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、内部に放電空間を形成する
石英放電管の外側を真空領域にしたものである。
In order to achieve the above object, the outside of a quartz discharge tube that forms a discharge space inside is made into a vacuum region.

〔作  用〕[For production]

石英放電管の外側に真空領域を形成することにより、石
英放電管には従来のように大気圧がかからないため、そ
の厚さを加工に必要な程度までに薄くできるので、透明
度を従来と同様に保って、大口径被処理物に対応した石
英放電管とすることができる。
By forming a vacuum region on the outside of the quartz discharge tube, atmospheric pressure is not applied to the quartz discharge tube as in conventional methods, and the thickness can be reduced to the extent necessary for processing, making it possible to maintain the same transparency as before. Therefore, the quartz discharge tube can be made suitable for large-diameter objects.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を9M1図により説明する。 An embodiment of the present invention will be described below with reference to FIG. 9M1.

第1図はプラズマ処理装置である、この場合、マイクロ
波エプチング装置を示す。マイクロ波工、テング処理は
、処理室1の上部に石英製の放電管2を設けて、内部に
真空処理室を形成し、図示を省略したガス源からエツチ
ングガスを導入可能になっているとともに、図示を省略
した真空排気装置により減圧可能になっている。処理室
l内には電極である試料台3が設けられ、試料台3には
高周波電源4がつながっている。被処理物であるウェハ
5は試料台3上に配置される。放電管2の外側には導波
管6が設けられ、さらに外側には磁場発生用のコイル1
0が設けである。導波管6の上端開口部には、石英板7
を介して導波管8が接続してあり、導波管8の端部には
マグネトロン9が設けである。
FIG. 1 shows a plasma processing apparatus, in this case a microwave etch apparatus. For microwave processing and etching processing, a quartz discharge tube 2 is provided at the top of a processing chamber 1 to form a vacuum processing chamber inside, and etching gas can be introduced from a gas source (not shown). , the pressure can be reduced by a vacuum evacuation device (not shown). A sample stage 3 serving as an electrode is provided in the processing chamber 1, and a high frequency power source 4 is connected to the sample stage 3. A wafer 5, which is an object to be processed, is placed on a sample stage 3. A waveguide 6 is provided on the outside of the discharge tube 2, and a coil 1 for generating a magnetic field is provided on the outside.
0 is the default. A quartz plate 7 is provided at the upper end opening of the waveguide 6.
A waveguide 8 is connected thereto, and a magnetron 9 is provided at the end of the waveguide 8.

また、導波管6と石英板7と放電管2とで形成された放
電管2の外側の空間は、この場合、図示を省略している
が、処理室1内を減圧排気する真空排気装置によって兼
用して真空排気して、真空空間Uが形成されている。ま
た、点検時等で処理室1内を大気圧に復帰させるときに
は、放電管2の外側空間も同時に大気圧に復帰させられ
るように、リークガスを供給可能にしである。これによ
り、放電管2内外の圧力差が極端に異ならないようにし
である。
In addition, although the space outside the discharge tube 2 formed by the waveguide 6, the quartz plate 7, and the discharge tube 2 is not shown in this case, an evacuation device that depressurizes and evacuates the inside of the processing chamber 1 is provided. A vacuum space U is formed by evacuating the space. Furthermore, when the inside of the processing chamber 1 is returned to atmospheric pressure during inspection or the like, leak gas can be supplied so that the space outside the discharge tube 2 is also returned to atmospheric pressure at the same time. This prevents the pressure difference between the inside and outside of the discharge tube 2 from becoming extremely different.

このように構成された装置では、マグネトロン9から発
したマイクロ波は導波管8を通り、石英板7を介して導
波管6内を通り、放電管2内に供給される。このマイク
ロ波とコイル10によって放電管2内に生じた磁界とに
より、放電管2内に高密度のプラズマが作られ、試料台
3に高周波電力を印加することにより、ウェハ5に適切
なバイアス電圧が与えられて、プラズマ中のイオンがウ
ェハ5に引き込まれて反応性イオンエツチングが行なわ
れる。
In the device configured in this manner, the microwaves emitted from the magnetron 9 pass through the waveguide 8 , pass through the quartz plate 7 , the inside of the waveguide 6 , and are supplied into the discharge tube 2 . This microwave and the magnetic field generated in the discharge tube 2 by the coil 10 create high-density plasma in the discharge tube 2, and by applying high frequency power to the sample stage 3, an appropriate bias voltage is applied to the wafer 5. is applied, ions in the plasma are drawn into the wafer 5, and reactive ion etching is performed.

このとき、放電管2の外側には真空室・間Uが形成され
ているので、放電管2には外側から大気圧がかからない
ので、つ、ハが、例えば、6インチから8インチへさら
に10インチへと大きくなって、放電管2の内径が大き
くなっても、石英の厚さを厚くせずにすみ、薄い放電管
とすることができ、透明度を悪くすることがない。これ
により、放電管2の外側に採光部を設けても、プラズマ
の発光を充分に採光することができ、プラズマのモニタ
が従来通り行なえる。
At this time, since a vacuum chamber/space U is formed on the outside of the discharge tube 2, atmospheric pressure is not applied to the discharge tube 2 from the outside. Even if the inner diameter of the discharge tube 2 increases to 1 inch, there is no need to increase the thickness of the quartz, the discharge tube can be made thin, and the transparency will not deteriorate. As a result, even if a lighting section is provided outside the discharge tube 2, the light emitted from the plasma can be sufficiently illuminated, and the plasma can be monitored as before.

また、石英板7には大気圧がかかるが、圧力のかかる面
積は放電管2に比べ小さい面積なので、力としては小さ
く、薄い石英板で良い。したがって、プラズマのモニタ
において、プラズマの発光の採光は石英板7の外側、す
なわち、大気側からでも可能である。
Further, atmospheric pressure is applied to the quartz plate 7, but since the area to which the pressure is applied is smaller than that of the discharge tube 2, the force is small and a thin quartz plate may be used. Therefore, in plasma monitoring, it is possible to collect light from the plasma even from the outside of the quartz plate 7, that is, from the atmosphere side.

以上、本−実施例によれば、放電管2の外側に真空領域
を形成しているので、ウェハが大きくなって、放電管が
大きくなっても、放電管の厚さを厚くする必要がなく、
石英製放電管の透明度を保つことができる。
As described above, according to this embodiment, the vacuum region is formed outside the discharge tube 2, so even if the wafer becomes larger and the discharge tube becomes larger, there is no need to increase the thickness of the discharge tube. ,
The transparency of the quartz discharge tube can be maintained.

なお、本実施例では、マイクロ波エブチング装置に適用
した場合について説明したが、石英放電管を用いた他の
ニーly−ング装置、スパータ装置。
In this embodiment, the case where the application is applied to a microwave ebutting apparatus has been described, but other kneeling apparatuses and sparter apparatuses using a quartz discharge tube are also applicable.

CVD装置等にも適用できることはいうまでもない。Needless to say, it can also be applied to CVD equipment and the like.

〔発明の効果〕〔Effect of the invention〕

4 本発明によれば、被処理物が大きくなっても、石英放電
管の透明度を良好に保つことができるという効果がある
4. According to the present invention, even if the object to be treated becomes large, the transparency of the quartz discharge tube can be maintained at a good level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプラズマ処理装置の一実施例であるマ
イクロ波エツチング装置を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a microwave etching apparatus which is an embodiment of the plasma processing apparatus of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 1.内部に放電空間を形成する石英放電管を用いたプラ
ズマ処理装置において、前配石英放電管の外側を真空領
域としたことを特徴とするプラズマ処理装置。
1. A plasma processing apparatus using a quartz discharge tube forming a discharge space inside, characterized in that the outside of the front quartz discharge tube is a vacuum region.
2.請求項1記載のプラズマ処理装置において、前記放
電はマイクロ波によるもので、前配マイクロ波導入のた
めの導波管を前配石英放電管の外側に配置し、前配導波
管と前配石英放電管との間に前配真空領域を形成し、前
配導波管の前記マイクロ波導入部に石英板を設けて、前
配真空領域を隔離したプラズマ処理装置。
2. 2. The plasma processing apparatus according to claim 1, wherein the discharge is caused by microwaves, and a waveguide for introducing the microwave is disposed outside the front quartz discharge tube, and the front waveguide and the front wave guide are arranged outside the front quartz discharge tube. A plasma processing apparatus in which a front vacuum region is formed between a quartz discharge tube and a quartz plate is provided at the microwave introducing portion of the front waveguide to isolate the front vacuum region.
3.請求項2記載のプラズマ処理装置において、前配石
英板の直径を前配石英放電管の直径より小さくしたプラ
ズマ処理装置。
3. 3. The plasma processing apparatus according to claim 2, wherein the diameter of the front quartz plate is smaller than the diameter of the front quartz discharge tube.
JP21736789A 1989-08-25 1989-08-25 Plasma treating device Pending JPH0382779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21736789A JPH0382779A (en) 1989-08-25 1989-08-25 Plasma treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21736789A JPH0382779A (en) 1989-08-25 1989-08-25 Plasma treating device

Publications (1)

Publication Number Publication Date
JPH0382779A true JPH0382779A (en) 1991-04-08

Family

ID=16703067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21736789A Pending JPH0382779A (en) 1989-08-25 1989-08-25 Plasma treating device

Country Status (1)

Country Link
JP (1) JPH0382779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174378A (en) * 2010-03-19 2010-08-12 Shincron:Kk Method for depositing thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174378A (en) * 2010-03-19 2010-08-12 Shincron:Kk Method for depositing thin film

Similar Documents

Publication Publication Date Title
JPH06283470A (en) Plasma processing device
KR900014639A (en) Microwave Plasma Etching Method and Apparatus
JPH0382779A (en) Plasma treating device
JP2951797B2 (en) Plasma generator
KR100272143B1 (en) Dry cleaning method
JPH08241797A (en) Plasma treatment device
JPS59121747A (en) Method of ion milling
JP2515885B2 (en) Plasma processing device
JPH0286127A (en) Plasma treatment apparatus
JPH03123022A (en) Plasma film forming device
JPH0734253A (en) Microwave plasma treating device
JPH0536640A (en) Semiconductor manufacturing equipment
JP2001358131A (en) Method and apparatus for plasma processing
JPH02297929A (en) Microwave plasma processor
JPH11111496A (en) Plasma treatment apparatus
JPH0436484A (en) Plasma etching device
JPH0778803A (en) Microwave plasma processing equipment
JPS63104333A (en) Dry etching method
JPH0285379A (en) Detection of end point of etching and device
JPH06349595A (en) Plasma processing device
JPS6364247A (en) Plasma device
JPH0582477A (en) Plasma processor
JPS5822381A (en) Method and apparatus for plasma etching
JPS62281424A (en) Plasma treatment device
JPH05266993A (en) Microwave plasma generating device