JPH0382352A - Press fixing device for armature coil and compression amount measuring method - Google Patents

Press fixing device for armature coil and compression amount measuring method

Info

Publication number
JPH0382352A
JPH0382352A JP1217764A JP21776489A JPH0382352A JP H0382352 A JPH0382352 A JP H0382352A JP 1217764 A JP1217764 A JP 1217764A JP 21776489 A JP21776489 A JP 21776489A JP H0382352 A JPH0382352 A JP H0382352A
Authority
JP
Japan
Prior art keywords
wedge
deflection
spring
leaf spring
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1217764A
Other languages
Japanese (ja)
Inventor
Masayuki Isurugi
石動 雅行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1217764A priority Critical patent/JPH0382352A/en
Publication of JPH0382352A publication Critical patent/JPH0382352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

PURPOSE:To facilitate measurement by replacing a deflection amount of a corrugated leaf spring with the other measuring amount. CONSTITUTION:In two streaks of upper and lower armature coils 2 housed in a slot 1a of an iron core 1, a spacer piece 3 is interposed mutually between the coils, and spacer pieces 4a, 4b are interposed on the side surface of the coil, while a corrugated leaf spring 16 is interposed, in a manner with its both sides interposed by wedge lower liners 14a, 14b, between 15 and the coil 2. The corrugated leaf spring 16, when the wedge 15 is driven into a wedge groove 1b of the slot 1a, is given a predetermined deflection, and a spring system is constituted such that both ends in the width direction of the wedge 15 are attached to the core and supported at two points and resiliently supported with a predetermined spring constant for the coil 2. By providing the non-linear characteristic in the characteristic of the spring 16, when a deflection amount is set to a value close to the maximum deflection value, deterioration of the deflection amount due to the aging of the dimension in the insulation coating or the like of the coil 2 is accurately obtained by measuring the natural frequency of the wedge 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電機子コイルを鉄心のスロット内に弾性を保
持して固定する押圧固定装置、および押圧力の経年変化
を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressing fixing device for elastically fixing an armature coil in a slot of an iron core, and a method for measuring changes in pressing force over time.

〔従来の技術〕[Conventional technology]

電機子コイルの固定装置としては第8図に示すようなも
のが知られている。すなわち、鉄心2例えば固定子鉄心
1はスロット1aを備え、スロッ)Ia内には2段重ね
の電機子コイル2が間隔片3” t 3’b z 4a
 s 4d等を介在させた状態で挿入される。またスロ
ッ)1aの開口部側には波形板ばね6とくさび5が設け
られ、くさび5を押し込む際波形板ばね6の波を所定の
たわみ量3で押しつぶす押圧力Pが加えられることによ
シ、電機子コイル2はスロッ)Iaの底部に向けて弾性
を保持した状態で押圧固定される。
A known armature coil fixing device is shown in FIG. That is, the iron core 2, for example, the stator iron core 1, is provided with a slot 1a, and within the slot Ia, the armature coil 2 stacked in two stages is provided with a spacer piece 3'' t 3'b z 4a.
It is inserted with s 4d etc. interposed. Furthermore, a waveform leaf spring 6 and a wedge 5 are provided on the opening side of the slot 1a, and when the wedge 5 is pushed in, a pressing force P is applied to crush the waves of the waveform leaf spring 6 by a predetermined deflection amount 3. , the armature coil 2 is pressed and fixed toward the bottom of the slot Ia while maintaining elasticity.

このように構成された固定装置において、回転電機が運
転中に発生する熱エネルギーによって電機子コイル2や
鉄心1の温度が上昇するので、有機物を含む電機子コイ
ル2の絶縁被覆や絶縁材からなる間隔片の寸法が収縮す
るいわゆる寸法の経年変化が発生し、これに伴なって波
形板ばね6の復元力が低下する。また、復元力の低下に
よって電機子コイルに加わる押圧力Pが所定レベル以下
に低下すると、1転中に作用する電磁力によって電機子
コイル2がスロットIa内で振動し、絶縁被覆が摩耗す
るなどの絶縁損傷が生ずるために、押圧力の経年変化を
たわみ量を定期的に測定することによって監視し、波形
板ばねの押圧力Pが所定レベル以下になった時点で補修
を行うことが求められる。
In the fixing device configured in this way, the temperature of the armature coil 2 and iron core 1 rises due to thermal energy generated during operation of the rotating electrical machine, so the insulating coating of the armature coil 2 containing organic matter and the insulating material A so-called dimensional change occurs in which the dimension of the spacer piece shrinks over time, and the restoring force of the wave leaf spring 6 decreases accordingly. Furthermore, if the pressing force P applied to the armature coil decreases below a predetermined level due to a decrease in restoring force, the armature coil 2 will vibrate within the slot Ia due to the electromagnetic force that acts during one rotation, causing the insulation coating to wear out, etc. Because insulation damage occurs, it is necessary to monitor changes in the pressing force over time by regularly measuring the amount of deflection, and to carry out repairs when the pressing force P of the corrugated leaf spring falls below a predetermined level. .

第9図は波形板ばねの圧縮変形量の測定を可能にした従
来の固定装置を示す要部の断面図である(実公昭57−
40583号公報参照)0図において、〈さび5には波
形板ばね6の波のピッチm間に複数個の寸法測定孔7が
設けられておシ、この寸法測定孔7に寸法測定用のゲー
ジを挿入することによって波形板ばね6のたわみ残量を
測定できるよう構成されている。
FIG. 9 is a cross-sectional view of the main parts of a conventional fixing device that made it possible to measure the amount of compressive deformation of a wave-shaped leaf spring (1983-
(Refer to Publication No. 40583) In Fig. 0, a plurality of dimension measurement holes 7 are provided in the rust 5 between the wave pitch m of the waveform plate spring 6, and a dimension measurement gauge is installed in the dimension measurement holes 7. The structure is such that the remaining amount of deflection of the waveform leaf spring 6 can be measured by inserting the waveform leaf spring 6.

第10図は従来の装置にかけるたわみ残量の測定原理を
示すばね特性線図であシ、最初たわみ量δ1 に押圧さ
れて押圧力P、  を発生した板ばねは、絶縁材の寸法
収縮によってたわみ量がδ重、δ3と低下し、これに伴
なって押圧力もP、 、 P、と低下する。したがって
、P3を必要な押圧力の下限値とすれば、最大たわみ量
Dmからたわみ量δを差し引いたたわみ残量(])m−
δ)を定期的に測定することによって押圧力の下限値P
、に筐で押圧力Pが低下したか否かを知ることができる
Figure 10 is a spring characteristic diagram showing the principle of measuring the remaining amount of deflection applied to a conventional device. The amount of deflection decreases to δ force, δ3, and along with this, the pressing force also decreases to P, , P. Therefore, if P3 is the lower limit of the required pressing force, then the remaining amount of deflection (]) m-
δ) by periodically measuring the lower limit of the pressing force P.
, it is possible to know whether the pressing force P has decreased on the casing.

第11図は異なる従来の測定方法を示す説明図であう、
油圧シリンダ8で押圧治A9を介してくさび5に押圧荷
重を加えて波形板ばね6に最大たわみ量D■(板ばねの
波を完全に押しつぶした状態のたわみ量)を与え、荷重
を加える前と後の寸法変化をダイアルゲージ10で測定
することによシ、たわみ量δ訃よび押圧力Pを求める方
法が知られている。
FIG. 11 is an explanatory diagram showing a different conventional measurement method.
Apply a pressing load to the wedge 5 via the pressing jig A9 with the hydraulic cylinder 8 to give the waveform leaf spring 6 the maximum amount of deflection D■ (the amount of deflection when the waves of the leaf spring are completely crushed), and before applying the load. A method is known in which the deflection amount δ and the pressing force P are determined by measuring the dimensional changes after the dimensional change with the dial gauge 10.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

くさびに寸法測定孔を備えた従来の固定装置では、波形
ばねの波の底に寸法測定ゲージを挿入してたわみ量りを
測定する必要があるため、波のピッチm間にかなシの数
の測定孔を設ける必要があシ、かつくさびの長さ方向の
複数個所に測定孔列を設ける必要がある。このため、寸
法測定孔の加工費がかさむとともに、測定孔列の部分で
くさびの機械的強度が低下することになう、必要な機械
強度を確保するためにくさびの強化が必要になるという
問題を生ずる。また、寸法測定孔にゲージを挿入するた
めには回転子を抜き取る必要があシ、測定作業が大がか
シ、かつ多数個所で寸法測定を行うために作業時間が長
くなるという問題があムさらに、第9図に示すように波
形板ばね特性の線形部分を利用しているために、寸法の
経年変化による押圧力の低下が少い反面、寸法変化が少
いために高い寸法測定種度を得難いという問題もある。
With conventional fixing devices equipped with dimension measurement holes in the wedge, it is necessary to insert a dimension measurement gauge into the bottom of the wave of the wave spring to measure the deflection, so it is difficult to measure the number of kana between the wave pitch m. It is necessary to provide holes, and it is necessary to provide rows of measurement holes at multiple locations along the length of the wedge. For this reason, the processing cost of the dimension measurement holes increases, and the mechanical strength of the wedge decreases in the area of the measurement hole row, which requires reinforcement of the wedge to ensure the necessary mechanical strength. will occur. In addition, it is necessary to remove the rotor in order to insert the gauge into the dimension measurement hole, and there are problems in that the measurement work is large-scale and the work time is long because dimensions are to be measured at multiple locations. Furthermore, as shown in Figure 9, since the linear part of the waveform leaf spring characteristics is used, there is little decline in the pressing force due to changes in dimensions over time, but at the same time, the small change in dimensions allows for a high degree of dimensional measurement. There is also the problem that it is difficult to obtain.

一方、残留たわみ量を押圧荷重を加えて測定する従来の
方法では、くさびに測定孔を設ける必要がないのでくさ
びの機械的強度の低下が問題にならず、かつ各スロット
1回の測定で平均的なたわみ量が得られるという利点が
ある。しかしなが払固定子鉄心の内径が大きくなるに従
って油圧シリンダとその支持構造物が大型化するため、
測定準備作業が複雑かつ長時間化するという問題がある
On the other hand, with the conventional method of measuring the amount of residual deflection by applying a pressing load, there is no need to provide a measurement hole in the wedge, so there is no problem with a decrease in the mechanical strength of the wedge. This has the advantage that a certain amount of deflection can be obtained. However, as the inner diameter of the brushed stator core becomes larger, the hydraulic cylinder and its supporting structure become larger.
There is a problem that measurement preparation work is complicated and takes a long time.

この発明は、波形板ばねのたわみ量を他の測定量に置き
かえることによって測定を容易化するとともに、この測
定に見合って波形板はねのばね特性を改善することにあ
る。
The present invention aims to facilitate measurement by replacing the amount of deflection of a waveform leaf spring with another measured quantity, and to improve the spring characteristics of the waveform leaf spring commensurate with this measurement.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、鉄心の
スロット内に挿入された電機子コイルおよびスロットの
開口部側に打ち込まれたくさびと、前記電機子コイルと
くさびとの間に滑り材を介して介装されて電機子コイル
を前記スロット底部に向けて押圧する波形板ばねとを備
えたものにおいて、前記波形板ばねが非線形のばね特性
を有するばね材からなり、かつそのばね特性の非線形領
域に押圧されてなるものとし、かっばね特性の非線形領
域に押圧された波形板ばねの圧縮量の経時変化をくさび
の固有振動数を測定することによって求めることとする
In order to solve the above problems, according to the present invention, an armature coil inserted into a slot of an iron core, a wedge driven into the opening side of the slot, and a sliding material between the armature coil and the wedge. a waveform leaf spring interposed therebetween to press the armature coil toward the bottom of the slot, wherein the waveform leaf spring is made of a spring material having non-linear spring characteristics; It is assumed that the wedge is pressed in a non-linear region, and the change over time in the amount of compression of a wave-shaped leaf spring pressed in the non-linear region of the wedge spring characteristics is determined by measuring the natural frequency of the wedge.

〔作用〕[Effect]

上記手段において、波形板ばねのばね特性に非線形特性
を持たせ、かつくさびの打ち込みによって波形板ばねに
加える初期のたわみ量を非線形特性領域の上限近傍にて
かくことにより、寸法の経年変化によって非線形領域内
でたわみ量が大きく変化する。筐た、波形板ばねのたわ
み量が変化すると、波形板ばねによって鉄心に押圧支持
されたくさびの固有振動数が変化する。そこでくさびに
小形の振動センサを取シ付けた状態でくさびに機械的衝
撃力を加えれば、くさびの固有振動数を電気信号に変換
して容易に検出することができ、これをあらかじめ求め
ておいた特性データと比較することによシ波形板ばねの
たわみ量および押圧力の経年変化を精度よく求めること
ができる。なおこの発明によれば、くさびに寸法測定孔
を設ける必要もなく、かつ振動センサとして半導体ゲー
ジや半導体ピックアップ等の小形センナを用いれば、固
定子側のくさびと回転子との間に振動セ/すを挿入する
ことも可能であり1m機子コイルの固定装置として求め
られる機能を損うことなく寸法の経年変化を容易に測定
することができる。
In the above means, the spring characteristics of the waveform leaf spring are made to have nonlinear characteristics, and the initial amount of deflection applied to the waveform leaf spring by driving a wedge is placed near the upper limit of the nonlinear characteristic region, so that the spring characteristics of the waveform leaf spring become nonlinear due to aging of dimensions. The amount of deflection varies greatly within the area. When the amount of deflection of the waveform leaf spring in the housing changes, the natural frequency of the wedge, which is pressed and supported by the waveform leaf spring against the iron core, changes. Therefore, by attaching a small vibration sensor to the wedge and applying a mechanical impact force to the wedge, the natural frequency of the wedge can be converted into an electrical signal and easily detected. By comparing with the characteristic data obtained, it is possible to accurately determine the amount of deflection and the aging change in the pressing force of the wave-shaped leaf spring. According to this invention, there is no need to provide dimension measurement holes in the wedge, and if a small sensor such as a semiconductor gauge or a semiconductor pickup is used as a vibration sensor, a vibration sensor can be formed between the wedge on the stator side and the rotor. It is also possible to insert a 1 m armature coil fixing device, and it is possible to easily measure changes in dimensions over time without impairing the function required as a fixing device for a 1 m armature coil.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の実施例になる電機子コイルの固定装
置を示す断面図、第2図は第1図におけるA−A部分の
拡大断面図である0図にかいて、鉄心1のスロット1a
に収納された上下2条の電機子コイル2は、コイル相互
間に間隔片3.コイル側面に間隔片4a$4bが介装さ
れるとともに、くさび15とコイル2との間に波形板は
ね16がその両側がくさび下ライナー14a、14bK
挾筐れた形で介装される。波形板ばね16はくさび15
をスロッ)15Lのくさび溝1bに打ち込む際、所定の
たわみδが与えられ、第3図に機械系の等価回路として
示すように、質量mなるくさび15の幅方向の両端が鉄
心に当接して2点支持され、コイル2に対してばね定数
にで弾性支持されたばね系が構成される。
FIG. 1 is a sectional view showing an armature coil fixing device according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of the A-A section in FIG. 1a
The upper and lower two armature coils 2 are housed in the upper and lower armature coils 2, with a spacer piece 3 between the coils. Spacing pieces 4a and 4b are interposed on the sides of the coil, and a corrugated plate spring 16 is installed between the wedge 15 and the coil 2, and the lower wedge liners 14a and 14bK are placed on both sides of the corrugated plate spring 16.
It is inserted in a sandwiched manner. The corrugated leaf spring 16 is a wedge 15
When driving the wedge 15L into the wedge groove 1b, a predetermined deflection δ is applied, and as shown in the equivalent circuit of the mechanical system in Fig. 3, both ends of the wedge 15 with a mass m in the width direction abut against the iron core. A spring system is constructed which is supported at two points and elastically supported by the coil 2 at a spring constant.

第4図は波形板ばねのばね特性の一例を示す特性線図、
第5rI!Jは第4図で用いた波形板ばねの寸法図であ
る。第5図にかいて、波形板はね16はばね鋼の厚みt
が0.9trrm、波のピッチmおよび波の曲率半径R
がそれぞれ3a鴎、無荷重状態にかける波の高さ(最大
たわみ量)D−が1.8鴫に形成され、そのはね特性は
第4図に示すように押圧力P(N/mj)の増加に対し
て゛たわみ量δが飽和傾向を示す非線形特性を有する。
Figure 4 is a characteristic diagram showing an example of the spring characteristics of a waveform leaf spring.
5th rI! J is a dimensional drawing of the corrugated leaf spring used in FIG. 4. In FIG. 5, the corrugated plate 16 has a spring steel thickness t.
is 0.9trrm, the wave pitch m and the wave radius of curvature R
The wave height (maximum deflection amount) D- in the unloaded state is 3a and 1.8a, respectively, and the splash characteristics are determined by the pressing force P (N/mj) as shown in Figure 4. It has a nonlinear characteristic in which the amount of deflection δ tends to saturate as the amount of deflection δ increases.

第6図は波形板ばねのばね定数−たわみ量特性線図であ
シ、第4図の曲線の傾きから求めたものである。第4図
会よび第5図の特性を有する波形板はね16の許容たわ
み量の範囲りを1mmから1.8mまでの非線形領域と
した場合、許容たわみ量の範8Dでに一δ曲線が大きく
湾曲し、たわみ量δの変化に対応してはね定数に=ΔP
/Δδが大きく変化する。また、第3図に示すばね系で
示されるくさび15の固有振動数ωnはくさびの質量を
mとした場合次式で示すようにはね定数にの平方根に比
例して変化する。
FIG. 6 is a spring constant-deflection characteristic diagram of a waveform leaf spring, which was obtained from the slope of the curve in FIG. If the range of allowable deflection of the corrugated plate spring 16 having the characteristics shown in Figs. 4 and 5 is set as a nonlinear region from 1 mm to 1.8 m, the 1 δ curve will be in the range 8D of allowable deflection. It is greatly curved, and the repulsion constant changes depending on the change in the amount of deflection δ = ΔP
/Δδ changes significantly. Further, the natural frequency ωn of the wedge 15 shown in the spring system shown in FIG. 3 changes in proportion to the square root of the spring constant as shown by the following equation, where m is the mass of the wedge.

ωn = V777(rad /see )    =
・(1)実施例では波形板ばね16のばね特性に非線形
特性を持たせであるので、くさび15の打ち込みによっ
て波形板はねに最初に与えるたわみ量を許容たわみ量領
域りの上限近傍、すなわち最大たわみ量Dmに近い値に
しておけば、電機子コイル2の絶縁被覆等の寸法の後年
変化によるたわみ量δの低下を、くさびの固有振動数を
測定することによって精度よく求めることができる。
ωn = V777 (rad /see) =
(1) In the embodiment, since the spring characteristics of the corrugated leaf spring 16 are made to have non-linear characteristics, the amount of deflection initially given to the corrugated leaf spring by driving the wedge 15 is near the upper limit of the allowable deflection amount region, i.e. If the value is set close to the maximum deflection Dm, the decrease in the deflection δ due to later changes in the dimensions of the insulation coating of the armature coil 2 can be accurately determined by measuring the natural frequency of the wedge. .

第7図は実施例にかけるくさびの固有振動数り測定方法
を示す説明図であシ、くさび150表面に振動センサ2
1を固定してぐさび15に機械的衝撃を加えると、くさ
び15は(1)式によって決まる固有振動数で振動する
ので、これを振動センサ21で電気信号に変換し、測定
器22例えば記録計に記録する。tた、半導体ゲージや
半導体ピックアップなどの小形な振動センサを用いれば
、固定子側のくさび15と回転子との間の隙間に振動セ
ンサ21を押し込んでくさびの表面に押圧固定すること
も可能であシ、回転電機を分解することなく固有振動数
を測定できるとともに、測定データが記録計に記録され
るので測定作業を大幅に簡単化できる。
FIG. 7 is an explanatory diagram showing a method for measuring the natural frequency of a wedge to be applied in an embodiment.
1 is fixed and a mechanical shock is applied to the wedge 15, the wedge 15 vibrates at a natural frequency determined by equation (1), so the vibration sensor 21 converts this into an electrical signal, and the measuring device 22, for example, records the vibration. Record it on the meter. In addition, if a small vibration sensor such as a semiconductor gauge or a semiconductor pickup is used, the vibration sensor 21 can be pushed into the gap between the wedge 15 on the stator side and the rotor and fixed to the surface of the wedge. In addition to being able to measure the natural frequency of a rotating electric machine without disassembling it, the measurement data is recorded on a recorder, which greatly simplifies the measurement process.

なお、得られたくさびの固有振動数ωnを波形板はねの
たわみ量δまたは押圧力Pに換算する方法としては、回
・転電機の制作時点で例えばくさび下ライナ4または間
隔片3の厚みを変化させるなどの方法によシ、波形板ば
ねのたわみ量δと固有振動数ωnとの関係を求め、得ら
れた校正曲線と各時点での固有振動数の測定データとを
照合してたわみ量δの変化を求めるようにすれば、波形
板ばねのたわみ量δによるコイルの押圧力管理を正確か
つ容易に行うことができる。
In addition, as a method of converting the obtained natural frequency ωn of the wedge into the deflection amount δ of the corrugated plate spring or the pressing force P, the thickness of the wedge lower liner 4 or the spacing piece 3, for example, at the time of manufacturing the rotary electric machine. The relationship between the amount of deflection δ and the natural frequency ωn of the waveform leaf spring is determined by a method such as changing the amount of deflection, and the deflection is calculated by comparing the obtained calibration curve with the measurement data of the natural frequency at each point. By determining the change in the amount δ, it is possible to accurately and easily manage the pressing force of the coil based on the amount δ of deflection of the waveform leaf spring.

なか、この発明の電機子コイルの固定装置および圧縮量
の測定方法は、固定子側2回転子側いずれにも適用する
ことができる。また、波形板ばねのばね特性はその材質
や寸法諸元によシ変化するものであシ、第4図および第
5図に示した波形板ばねにとられれることなくその使用
条件に適合した波形板ばねを用いてよく、シたがってそ
のばね特性の非直線性も任意に選択してよい。
The armature coil fixing device and compression amount measuring method of the present invention can be applied to either the stator side or the two rotor sides. In addition, the spring characteristics of a corrugated leaf spring vary depending on its material and dimensions, and it is not limited to the waveform leaf springs shown in Figures 4 and 5, and is compatible with its usage conditions. A corrugated leaf spring may be used and the non-linearity of its spring characteristics may therefore be chosen arbitrarily.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、非線形のばね特性を有する波
形板ばねを用い、くさびの打ち込みによって波形板はね
に非線形領域の上限に近い初期たわみを与えるとともに
、非線形領域の許容たわみ量の範囲で後年変化によって
生ずるたわみ量の低下をくさびの固有振動数を測定する
ことによって求めるよう構成した。その結果、波形板は
ねに非線形特性を持たせたことにより1径年変化によっ
て生ずるたわみ量の変化、またばばね定数の変化を線形
領域を利用した従来の固定装置のそれに比べて格段に大
きくすることができ、したがってばね定数の平方根に比
例して変化するくさびの固有振動数を利用してたわみ量
を精度よく測定することができる。
As described above, this invention uses a corrugated leaf spring having non-linear spring characteristics, gives the corrugated leaf spring an initial deflection close to the upper limit of the non-linear region by driving a wedge, and at the same time gives the corrugated leaf spring an initial deflection close to the upper limit of the non-linear region. The system was designed to calculate the decrease in deflection caused by changes in later years by measuring the natural frequency of the wedge. As a result, by imparting nonlinear characteristics to the corrugated plate spring, changes in the amount of deflection that occur over one year, as well as changes in the spring constant, are significantly greater than those of conventional fixing devices that utilize a linear region. Therefore, the amount of deflection can be accurately measured using the natural frequency of the wedge, which changes in proportion to the square root of the spring constant.

會た、小型な振動センナを用いてくさびの固有振動を検
出し記録計に記録するので、くさびに寸法測定孔を設け
ることによるくさびの機械的強度の低下や加工費がかさ
むなどの問題点を排除できまたくさびに押圧荷重を加え
てたわみ残量を測定する従来方法のような大がかうな装
置も必要としないので、寸法の後年変化の測定および管
理を従来方法に比べて大幅に容易化できる利点が得られ
る。
In addition, since the natural vibration of the wedge is detected using a small vibration sensor and recorded on a recorder, problems such as a reduction in the mechanical strength of the wedge and increased processing costs caused by providing a dimension measurement hole in the wedge can be avoided. Also, it does not require large-scale equipment unlike the conventional method of applying a pressing load to the wedge and measuring the remaining deflection, making it much easier to measure and manage changes in dimensions over time than with the conventional method. You can get the advantage of being able to

さらに、振動センサの小型化によう、固定子と回転子の
隙間に振動センサを挿入してくさび表面に振動センナを
圧着することも容易にできるので、寸法の後年変化を測
定するために回転電機を分解しないですむことになシ、
電機子コイルの固定状態の管理を一層簡単化できる利点
が得られる。
Furthermore, in order to miniaturize the vibration sensor, it is easy to insert the vibration sensor into the gap between the stator and rotor and crimp the vibration sensor to the wedge surface, so it is possible to easily rotate the vibration sensor to measure later changes in dimensions. It will save you from having to disassemble the electrical equipment.
This provides the advantage of further simplifying the management of the fixed state of the armature coil.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例である電機子コイルの固定装
置を示す断面図、第2図は第1図のA −A部分の拡大
断面図、第3図は実施例にかけるばね系の等価回路図、
第4図は実施例における波形板ばねの一例を示すはね特
性線図、第5図は実施例における波形板はねの一例を示
す寸法諸元図、第6図は実施例にpける波形板ばねのば
ね定数対たわみt特性の一例を示す特性線図、第7図は
実施例にかけるくさびの固有振動数の測定方法を示す説
明図、第8図は従来の固定装置を示す断面図、第9図は
波形板ばねのたわみ量の測定を可能にした従来の固定装
置の要部の断面図、第10図は第9図の装置におけるた
わみ量の測定原理を示すばね特性線図、第11図は異な
る従来のたわみ量測定方法の説明図である。 1・・・鉄心、la・・・スロット、2・・・電機子コ
イル3.3a、3b・・・間隔片、5,15−<さび、
6゜16・・・波形板ばね、21・・・振動センサ、2
2・・・測定器、δ・・・たわみ、Dm・・・最大たわ
み、D・・・たわみの許容範囲、P・・・押圧力、k・
・・ばね定数。 第1妬 第4図 押圧力 (N/mynす 第5図 第6121 漉涜月及ば゛ねの(わみ量S 第 目 第a図 第9図
Fig. 1 is a sectional view showing an armature coil fixing device according to an embodiment of the present invention, Fig. 2 is an enlarged sectional view of the section A-A in Fig. 1, and Fig. 3 is a sectional view of a spring system applied to the embodiment. equivalent circuit diagram,
Fig. 4 is a spring characteristic diagram showing an example of the waveform leaf spring in the example, Fig. 5 is a dimensional specification diagram showing an example of the waveform leaf spring in the example, and Fig. 6 is the waveform in the example. A characteristic diagram showing an example of the spring constant vs. deflection t characteristic of a leaf spring, Fig. 7 is an explanatory diagram showing a method for measuring the natural frequency of a wedge applied to an embodiment, and Fig. 8 is a sectional view showing a conventional fixing device. , FIG. 9 is a sectional view of the main parts of a conventional fixing device that makes it possible to measure the amount of deflection of a wave-shaped leaf spring, and FIG. 10 is a spring characteristic diagram showing the principle of measuring the amount of deflection in the device of FIG. 9. FIG. 11 is an explanatory diagram of a different conventional method for measuring the amount of deflection. 1... Iron core, la... slot, 2... armature coil 3.3a, 3b... spacing piece, 5, 15-<rust,
6゜16... Waveform plate spring, 21... Vibration sensor, 2
2...Measuring instrument, δ...Deflection, Dm...Maximum deflection, D...Allowable range of deflection, P...Pushing force, k.
...Spring constant. 1. Figure 4. Pressure force (N/myn). Figure 5. 6121.

Claims (1)

【特許請求の範囲】 1)鉄心のスロット内に挿入された電機子コイルおよび
スロットの開口部側に打ち込まれたくさびと、前記電機
子コイルとくさびとの間に滑り材を介して介装されて電
機子コイルを前記スロット底部に向けて押圧する波形板
ばねとを備えたものにおいて、前記波形板ばねが非線形
のばね特性を有するばね材からなり、かつそのばね特性
の非線形領域に押圧されてなることを特徴とする電機子
コイルの押圧固定装置。 2)ばね特性の非線形領域に押圧された波形板ばねの圧
縮量の経時変化をくさびの固有振動数を測定することに
よって求めることを特徴とする請求項1記載の電機子コ
イルの押圧固定装置の圧縮量測定方法。
[Claims] 1) An armature coil inserted into a slot of an iron core, a wedge driven into the opening side of the slot, and a sliding material interposed between the armature coil and the wedge. and a waveform leaf spring that presses the armature coil toward the bottom of the slot, wherein the waveform leaf spring is made of a spring material having nonlinear spring characteristics, and is pressed into a nonlinear region of the spring characteristics. An armature coil press fixing device characterized by: 2) The armature coil pressing and fixing device according to claim 1, wherein the change over time in the amount of compression of the waveform leaf spring pressed into a nonlinear region of spring characteristics is determined by measuring the natural frequency of the wedge. How to measure compression amount.
JP1217764A 1989-08-24 1989-08-24 Press fixing device for armature coil and compression amount measuring method Pending JPH0382352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1217764A JPH0382352A (en) 1989-08-24 1989-08-24 Press fixing device for armature coil and compression amount measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217764A JPH0382352A (en) 1989-08-24 1989-08-24 Press fixing device for armature coil and compression amount measuring method

Publications (1)

Publication Number Publication Date
JPH0382352A true JPH0382352A (en) 1991-04-08

Family

ID=16709369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217764A Pending JPH0382352A (en) 1989-08-24 1989-08-24 Press fixing device for armature coil and compression amount measuring method

Country Status (1)

Country Link
JP (1) JPH0382352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105471151A (en) * 2014-08-28 2016-04-06 通用电气公司 Planar-ended ripple spring and hardened stator bar armor
DE112019007965T5 (en) 2019-12-13 2022-09-29 Mitsubishi Electric Corporation ROTATING ELECTRICAL MACHINE TESTING DEVICE, ROTATING ELECTRICAL MACHINE, AND ROTATING ELECTRICAL MACHINE TESTING METHOD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105471151A (en) * 2014-08-28 2016-04-06 通用电气公司 Planar-ended ripple spring and hardened stator bar armor
CN105471151B (en) * 2014-08-28 2019-04-09 通用电气公司 The ripple spring and hardening stator bar mask of end plane
DE112019007965T5 (en) 2019-12-13 2022-09-29 Mitsubishi Electric Corporation ROTATING ELECTRICAL MACHINE TESTING DEVICE, ROTATING ELECTRICAL MACHINE, AND ROTATING ELECTRICAL MACHINE TESTING METHOD

Similar Documents

Publication Publication Date Title
Chaudhry et al. Monitoring the integrity of composite patch structural repair via piezoelectric actuators/sensors
US7741854B2 (en) Method of in slot tightness measuring of stator coil
US4314481A (en) Piezeolectric strain transducer
CN103471702A (en) Fiber grating vibrating sensor with temperature insensitivity, tunable damping and high precision
Yuan et al. Nonlinear characteristic of a circular composite plate energy harvester: experiments and simulations
EP1279006A1 (en) Sensor apparatus with two resonant transducers and a single conductor
CN108663111B (en) Fiber bragg grating acceleration sensor with diaphragm and diamond-shaped combined structure and measuring method
JP5040008B2 (en) Pressure sensor
JP2020094938A (en) Method and device for diagnosing internal transformer abnormality and degradation, and transformer manufacturing and selling method
JPH0382352A (en) Press fixing device for armature coil and compression amount measuring method
JP4095445B2 (en) Sensor system that combines bearing load detection and bearing normality monitoring
US8370086B2 (en) System and method for determining wedge tightness
JP2014505887A (en) Vibration sensor
US3939703A (en) Apparatus for measuring engine cylinder pressures
CN104729938A (en) Electromechanical impedance method-based portable hardness detection structure and detection method thereof
CN100514063C (en) Method for testing real stress of self-compensating concrete structure and concrete real stress gauge
CN112014594A (en) Sensitivity-enhanced FBG acceleration sensor based on flexible hinge and measurement method
CN204556417U (en) A kind of portable hardness determination structure based on dynamo-electric impedance method and sclerometer thereof
Li et al. A temperature-independent force transducer using one optical fiber with multiple Bragg gratings
JPH0449834A (en) Armature coil fixing apparatus
CN103562731B (en) Acceleration transducer
US4936149A (en) Internal strain measuring system
KR100363681B1 (en) A Apparatus of adhering strain gage
Lo et al. Athermal fibre Bragg grating strain gauge with metal coating in measurement of thermal expansion coefficient
Zaitsev et al. Fiber Bragg grating-based monitoring system for large generator core clamping fault diagnosis