JPH0381972A - Manufacture of solid electrolyte for fuel cell - Google Patents

Manufacture of solid electrolyte for fuel cell

Info

Publication number
JPH0381972A
JPH0381972A JP1218077A JP21807789A JPH0381972A JP H0381972 A JPH0381972 A JP H0381972A JP 1218077 A JP1218077 A JP 1218077A JP 21807789 A JP21807789 A JP 21807789A JP H0381972 A JPH0381972 A JP H0381972A
Authority
JP
Japan
Prior art keywords
slip
mold
solid electrolyte
layer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1218077A
Other languages
Japanese (ja)
Inventor
Takashi Miyamoto
隆司 宮本
Kenji Morinaga
健次 森永
Hiromichi Takebe
博倫 武部
Naoki Yoshihara
直樹 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP1218077A priority Critical patent/JPH0381972A/en
Publication of JPH0381972A publication Critical patent/JPH0381972A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To accomplish mass production of dense solid electrolyte in the form of thin film within a short time by placing calmly a slip consisting of specified components in a moisture-absorptive mold for a certain time, allowing to grow to a fillet having a specified thickness, and drying it and baking. CONSTITUTION:A slip is composed of fine powder of stabilized ZrO2, solvent, and deflocculating agent. For ex., ZrO2 consisting of particulate having particles size of 0.03mum obtained by turning 8mol% Y2O3 in solid solution and stabilizing is dissolved in distilled water, and thereto a deflocculating agent such as HCl is added. After this slip is poured in recesses 13, 13 provided in a plaster plate 10, it is put in a standstill for two sec. This standstill time is related to the fillet thickness formed, which can be determined through calculation. After elapse of a certain period of time required to generate fillet thickness, the plaster plate 10 is rotated to remove the slip in fluidifying. Then the fillet layer is dried and separated from the plaster plate 10, followed by baking at a temp. between 1000-1500 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固体電解質を用いる燃料電池の固体電解質の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a solid electrolyte for a fuel cell using a solid electrolyte.

(従来技術及び発明が解決しようとする課題)近時、第
14図に示すような固体電解質を用いた燃料電池の研究
開発がなされている。この燃料電池1は、ムライト質耐
熱性管体2a、2bの間にオーリング3a、 3bを介
して固体電解質4が配設されている。
(Prior Art and Problems to be Solved by the Invention) Recently, research and development of fuel cells using solid electrolytes as shown in FIG. 14 have been carried out. In this fuel cell 1, a solid electrolyte 4 is disposed between heat-resistant mullite tubes 2a and 2b via O-rings 3a and 3b.

この固体電解質4の一面側には水素H2を送る供給管5
aが臨んでおり、固体電解質4の他面側には酸素02を
供給する供給管5bが臨んでいる。固体電解質4の一面
側には多孔質のニッケル製極板からなるアノード6aが
設けられ、固体電解質4の他面側には同じく多孔質のニ
ッケル製極板からなるカソード6bが設けられている。
On one side of this solid electrolyte 4 is a supply pipe 5 for supplying hydrogen H2.
A is facing the other side of the solid electrolyte 4, and a supply pipe 5b for supplying oxygen 02 is facing the other side of the solid electrolyte 4. An anode 6a made of a porous nickel plate is provided on one side of the solid electrolyte 4, and a cathode 6b made of a porous nickel plate is provided on the other side of the solid electrolyte 4.

固体電解質4はY2O3で安定化された多孔質のZrO
2からなり、固体電解質4のアノード6a側に供給管5
aから水素H2が供給され、固体電解質4のカソード6
b側に供給管5bから酸素02が供給されると、固体電
解質4においてイオン反応が行なわれてアノード6a、
  カソード6b間に電圧が生じるのであるが一1燃料
ガスH2,02の漏洩があると、効率が悪くなるばかり
でなく、爆発のおそれがあるため、固体電解質2の膜厚
を200μm乃至300μmに設定する必要がある。と
ころが、膜厚を厚くするとイオン伝導の抵抗が大きくな
るため、固体電解質の膜厚の薄膜化と、多孔質膜の緻密
化とが望まれている。この固体電解質の製造方法として
電気化学的蒸着方法が提案されているが、この方法によ
ると薄膜化は可能であるが、ピンホール等の封孔が不完
全であると共に、燃料電池の固体電解質として充分なも
のを作成するにはきわめて時間がかかり、燃料電池を短
時間で大量生産出来ないという課題が残されている。
Solid electrolyte 4 is porous ZrO stabilized with Y2O3
2, and a supply pipe 5 is connected to the anode 6a side of the solid electrolyte 4.
Hydrogen H2 is supplied from a, and the cathode 6 of the solid electrolyte 4
When oxygen 02 is supplied to the b side from the supply pipe 5b, an ionic reaction occurs in the solid electrolyte 4, and the anode 6a,
Voltage is generated across the cathode 6b, but if fuel gas H2,02 leaks, it will not only reduce efficiency but also pose a risk of explosion, so the film thickness of the solid electrolyte 2 is set to 200 μm to 300 μm. There is a need to. However, as the film thickness increases, the resistance to ion conduction increases, so it is desired to reduce the film thickness of the solid electrolyte and to make the porous film denser. An electrochemical vapor deposition method has been proposed as a method for manufacturing this solid electrolyte, but although it is possible to form a thin film, it is incomplete in sealing pinholes, etc., and is not suitable for use as a solid electrolyte in fuel cells. It takes an extremely long time to create a sufficient number of fuel cells, and the problem remains that fuel cells cannot be mass-produced in a short period of time.

(発明の目的) 本発明は、上記の事情に鑑みてなされたものであり、従
来よりも更に緻密で薄膜化された燃料電遅池用固体電解
質を短時間に大量生産出来るようにすることを目的とす
る。
(Object of the Invention) The present invention has been made in view of the above circumstances, and aims to enable mass production of a solid electrolyte for fuel cell slow cells in a short time that is denser and thinner than conventional ones. purpose.

(課題を解決するための手段) 上記目的を達成するために、本発明にかかる燃料電遅池
用固体電解質の製造方法は、特許請求範囲のように構成
されていることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, a method for manufacturing a solid electrolyte for a fuel cell slow cell according to the present invention is characterized in that it is configured as claimed in the claims.

(作 用) 本発明の請求項1にかかる燃料電遅池用固体電解質の製
造方法によれば、吸湿性のある型内に固体電解質の原料
となるスリップを入れ、スリップが着肉可能な時間だけ
型を静止させると、スリップが型の底部に着肉される。
(Function) According to the method for manufacturing a solid electrolyte for a fuel cell delay cell according to claim 1 of the present invention, a slip serving as a raw material for the solid electrolyte is placed in a hygroscopic mold, and a time period during which the slip can be inked is placed. When the mold is held still, the slip is deposited on the bottom of the mold.

この型の静止時間と着肉層の厚さの二乗は比例関係にな
るので、所定の厚さの着肉層を形成する静止時間は、所
望の肉厚に基づいて算定できる。その後、型を回転させ
ると、流動状態のスリップは遠心力により型から飛散し
、型の底部には非常に肉厚の薄い平坦なスリップが残る
。スリップにはZrO2が含まれているので、この着肉
されたスリップを乾燥させて焼成すると、肉厚が薄くて
平坦且つ緻密な孔質性を有する燃料電遅池用固体電解質
を得ることが出来る。
Since the resting time of this type is proportional to the square of the thickness of the inked layer, the resting time for forming the inked layer of a predetermined thickness can be calculated based on the desired thickness. When the mold is then rotated, the fluidized slip is blown away from the mold by centrifugal force, leaving a very thin, flat slip at the bottom of the mold. Since the slip contains ZrO2, by drying and firing this inked slip, it is possible to obtain a solid electrolyte for a fuel cell delay cell that is thin, flat, and has dense porosity. .

本発明の請求項2にかかる燃料電遅池用固体電解質によ
れば、型内には3層のスリップの層が出来るが、第2の
スリップの静止時間は、第1のスリップの静止時間より
長いので、第2のスリップの着肉層は、第2のスリップ
の層の上下に積層される第1のスリップの着肉層より厚
くなる。この3層のスリップの乾燥体を焼成すると、外
表面が薄く中層が厚い固体電解質が形成される。
According to the solid electrolyte for a fuel cell delay cell according to claim 2 of the present invention, three slip layers are formed in the mold, and the resting time of the second slip is longer than the resting time of the first slip. Because of its length, the inking layers of the second slip are thicker than the inking layers of the first slip, which are laminated above and below the layers of the second slip. When this three-layer dried slip is fired, a solid electrolyte with a thin outer surface and a thick middle layer is formed.

(実施例) 以下、本発明の実施例にかかる燃料電遅池用固体電解質
の製造方法を図面を参照にして説明する。
(Example) Hereinafter, a method for manufacturing a solid electrolyte for a fuel cell slow cell according to an example of the present invention will be described with reference to the drawings.

第1図は、第1実施例にかかる固体電解質の製造方法を
示したものであり、10は吸湿性のある型としての石膏
板である。石膏板10は回転中心軸線11を中心に回転
可能とされている。石膏板10には回転中心軸線11に
直交する平面部12を有しており、平面部12には回転
中心軸線11を対称中心として固体電解質形状の凹所1
3.13が穿設されている。凹所13、13は均一な深
さの底部13a、 13aを有している。
FIG. 1 shows a method for manufacturing a solid electrolyte according to a first embodiment, and numeral 10 indicates a gypsum board as a hygroscopic mold. The gypsum board 10 is rotatable about a rotation center axis 11. The gypsum board 10 has a flat part 12 orthogonal to the rotation center axis 11, and the flat part 12 has a solid electrolyte-shaped recess 1 with the rotation center axis 11 as the center of symmetry.
3.13 is drilled. The recesses 13, 13 have bottoms 13a, 13a of uniform depth.

この凹所13a、 13a内には、石膏板10を静止さ
せた状態で、燃料電池の固体電解質を形成するためのス
リップ14を注入する。スリップ14の原料には、8m
o1%のY 20 aを固溶させて安定化させた粒径0
.03μmの微粒子からなるZrO2の粉末が用いられ
ている。ZrO2の溶媒としては蒸留水(pH5,8)
を用いるが、スリップの固形分の比率範囲は5体積%〜
25体積%とする0本実施例では、スリップの固形分の
蒸留水に対する比率は25体積%に設定している、解コ
ウ剤としてはポリアクリルアンモニウム塩系のセラモD
(商品名:第−工業製薬製)を用いる。尚、解コウ剤と
してはHc 1 、 CH3C0OH,NH4OHなど
の無機系電解質若しくはポリアクリル酸、ポリメタクリ
ル酸及びそのアンモニウム塩やナトリウム塩等のポリマ
ー系電解質を用いてもよい、この解コウ剤の′固形分に
対する添加範囲は0.1重量%〜0.5重量%で設定す
るが、本実施例では0.4重量%で設定している。
A slip 14 for forming the solid electrolyte of the fuel cell is injected into the recesses 13a, 13a while the gypsum board 10 is kept stationary. For the raw material of slip 14, 8 m
Particle size 0 stabilized by solid solution of o1% Y20a
.. ZrO2 powder consisting of fine particles of 0.3 μm is used. Distilled water (pH 5, 8) as a solvent for ZrO2
is used, but the solid content ratio range of the slip is 5% by volume ~
In this example, the ratio of the solid content of the slip to the distilled water is set to 25 volume %.
(Product name: Dai-Kogyo Seiyaku Co., Ltd.) is used. As the peptizer, inorganic electrolytes such as Hc 1 , CH3C0OH, and NH4OH, or polymer electrolytes such as polyacrylic acid, polymethacrylic acid, and their ammonium salts and sodium salts may be used. The range of addition to the solid content is set at 0.1% by weight to 0.5% by weight, but in this example it is set at 0.4% by weight.

凹所13.13内にスリップを注入後、2秒間(所定時
間)石膏板10を静止させると、スリップ14中の蒸留
水が凹所13.13の底部13a、 13aに吸収され
、スリップ14の固形分が凹所13.13の底部13a
、 13aに着肉される。
After injecting the slip into the recess 13.13, when the plaster board 10 is kept still for 2 seconds (predetermined time), the distilled water in the slip 14 is absorbed into the bottoms 13a, 13a of the recess 13.13, and the slip 14 is The solid content is at the bottom 13a of the recess 13.13.
, 13a is inked.

ここで、2秒間という値は焼成して得ようとする成形体
の膜厚から逆算したものである。即ち、スリップ14の
着肉層14aが焼成後収縮するときの収縮率を考慮して
着肉層14aの肉厚を決め、次にこの着肉層14aの膜
厚の2乗が石膏板10の静止時間に対して比例関係にあ
ることに基づいて静止時間を算定する0本実施例では1
20μmの成形体を得るために、2秒間静止させている
Here, the value of 2 seconds is calculated backward from the film thickness of the molded body to be obtained by firing. That is, the thickness of the ink layer 14a is determined by considering the shrinkage rate when the ink layer 14a of the slip 14 shrinks after firing, and then the square of the film thickness of the ink layer 14a is the thickness of the gypsum board 10. The rest time is calculated based on the fact that it is proportional to the rest time. In this embodiment, the rest time is 1.
In order to obtain a molded body of 20 μm, the mold was left at rest for 2 seconds.

スリップ14を注入して2秒経過後石膏板10を回転中
心軸線11を中心にして高速回転させると、凹所13、
13中の流動状態のスリップ14bは凹所13.13か
ら排泥される。凹所13.13からスリップ14bが排
泥されたら、石膏板10を停止させて着肉層14aを乾
燥させる。凹所13.13の底部に着肉されたスリップ
14の着肉層14aが乾燥したら、乾燥した着肉層14
aの成形体を凹所13.13から取り出して毎時300
度Cの温度勾配によって1000度Cまで加熱する。温
度が1000度Cに達したら、毎時100度Cの温度勾
配で1500度Cまで昇温する。その後1500度Cの
温度で成形体を2時間焼成すると、膜厚の薄い120 
μm (+−2%)のZrChのセル(燃料電池用の固
体電解質)が出来上がる。
Two seconds after injecting the slip 14, the gypsum board 10 is rotated at high speed around the rotation center axis 11, and the recesses 13,
The fluidized slip 14b in 13 is drained from the recess 13.13. Once the slip 14b has been drained from the recess 13.13, the gypsum board 10 is stopped and the ink layer 14a is dried. When the inking layer 14a of the slip 14 inked on the bottom of the recess 13.13 dries, the dried inking layer 14
The molded body a was taken out from the recess 13.13 and
Heat up to 1000 degrees C with a temperature gradient of degrees C. When the temperature reaches 1000 degrees Celsius, the temperature is increased to 1500 degrees Celsius with a temperature gradient of 100 degrees Celsius per hour. After that, the molded body was baked at a temperature of 1500 degrees Celsius for 2 hours, resulting in a thin film of 120
A ZrCh cell (solid electrolyte for fuel cells) of μm (+-2%) is completed.

尚、安定化されたZrO2の膜厚は50μm乃至200
μmで設定しても良い。
The stabilized ZrO2 film thickness is between 50 μm and 200 μm.
It may be set in μm.

第13図はこのようなZrO2のセルの電圧、電流特性
を示したグラフであり、燃料電池の端子間電圧は最高1
ボルト強となった。又、電流密度は端子間電圧が250
ミリボルトのとき、はぼ1500mA/cm2となった
。尚、本実施例に用いた石膏板10は一対の凹所13.
13を有しているが、第2図に示すように、回転中心軸
線11を中心とする凹所13を1箇所形成したものでも
良いのは勿論である。
Figure 13 is a graph showing the voltage and current characteristics of such a ZrO2 cell, and the voltage between the terminals of the fuel cell is at most 1
Bolt became strong. Also, the current density is 250 volts between the terminals.
At millivolts, it was approximately 1500mA/cm2. Note that the gypsum board 10 used in this example has a pair of recesses 13.
13, but it is of course possible to form one recess 13 centered on the rotation center axis 11, as shown in FIG.

本発明の第2実施例にかかる燃料電池用の固体電解質の
製造方法は、固体電解質を3層に形成するもので、この
実施例では2種類のスリップを用いる。
A method for producing a solid electrolyte for a fuel cell according to a second embodiment of the present invention is to form a solid electrolyte in three layers, and in this embodiment, two types of slips are used.

第1のスリップは、8mo1%のY2O3により安定化
させた粒径0.02μmのzrO2粉末を、溶媒として
の蒸留水に固形分比率15体積%の割合で溶解させ、更
に、固形分比0.3重量%のポリアクリル酸アンモニウ
ム塩からなる解コウ剤を溶解させたものを用いる。第2
のスリップは第1実施例のスリップと同様なものを用い
る。
The first slip was made by dissolving zrO2 powder with a particle size of 0.02 μm stabilized with 8 mo1% Y2O3 in distilled water as a solvent at a solid content ratio of 15 volume%, and further with a solid content ratio of 0.02 μm. A dissolving agent containing 3% by weight of polyacrylic acid ammonium salt is used. Second
The slip used is the same as the slip used in the first embodiment.

第1実施例において用いられた石膏板10の凹所13、
13内に第1のスリップを注いだ後、着肉させようとす
る着肉層の厚さ20μmに基づいて算定した静止時間で
ある2秒間、石膏板10を静止させる。第1のスリップ
を凹所13.13の底部に着肉させたら、石膏板10を
回転させて凹所13,13から流動状態の第1のスリッ
プを排泥する。第1のスリップの排泥後、石膏板10を
停止して第1のスリップの着肉層を乾燥させる。
A recess 13 in the plaster board 10 used in the first embodiment,
After pouring the first slip into the plasterboard 13, the gypsum board 10 is allowed to stand still for 2 seconds, which is the resting time calculated based on the thickness of the inked layer to be attached, 20 μm. Once the first slip is deposited on the bottom of the recesses 13.13, the plasterboard 10 is rotated to drain the fluidized first slip from the recesses 13,13. After draining the first slip, the gypsum board 10 is stopped and the ink layer of the first slip is dried.

第1のスリップの着肉層の乾燥後、再び石膏板lOの凹
所13.13内に第2のスリップを注ぎ込み、石膏板1
0を8秒間静止させて第1のスリップの着肉層上に第2
のスリップの着肉層を形成する。これによって、第1の
スリップの着肉層より層の厚い着肉層が形成される。次
に、石膏板10を回転させて第2のスリップの流動部分
を排泥し、乾燥させる。
After the adhesive layer of the first slip has dried, the second slip is again poured into the recesses 13.13 of the plaster board 10, and the plaster board 1
0 for 8 seconds and apply the second slip onto the inking layer of the first slip.
form the inking layer of the slip. This forms an inked layer that is thicker than the inked layer of the first slip. Next, the gypsum board 10 is rotated to drain the flowing portion of the second slip and dry it.

その後、更に、凹所13.13内に第1のスリ゛ツブを
注ぎ込んで石膏板10を2秒間静止させ、第2のスリッ
プの着肉層上に三番目の着肉層を形成する1着肉層の形
成後、石膏板10を再び回転させて凹所13.13から
流動状態の第1のスリップを再び排泥する。
Thereafter, the first slip is further poured into the recess 13.13, the plaster board 10 is held still for 2 seconds, and the first slip is poured to form a third filler layer on the filler layer of the second slip. After the formation of the flesh layer, the plasterboard 10 is rotated again to drain the fluidized first slip from the recesses 13.13 again.

流動状態の第1のスリップを排泥したら、この第1、第
2のスリップが3層に形成された成形体を乾燥させる。
After the fluidized first slip is drained, the molded body in which the first and second slips are formed in three layers is dried.

成形体の乾燥後この成形体を凹所13.13から取り出
して焼成する。
After drying the molded body, it is removed from the recess 13.13 and fired.

成形体の焼成では、1000度Cまで毎時300度Cの
温度勾配で昇温する。1000度Cから1500度Cの
間は毎時120度Cで昇温し、その後2時間1500度
Cで焼成すると、外側の層が20μm内側の層が140
μmの三層の成形体が出来上がる。
In firing the compact, the temperature is raised to 1000 degrees Celsius with a temperature gradient of 300 degrees Celsius per hour. The temperature is raised at 120 degrees C per hour between 1000 degrees C and 1500 degrees C, and then baked at 1500 degrees C for 2 hours, the outer layer is 20 μm and the inner layer is 140 μm.
A three-layer molded product of μm size is completed.

次に、本発明の実験結果を説明する。Next, experimental results of the present invention will be explained.

本発明の実験方法においては、スリップの原料としてY
2O3を8mo1%固溶させて安定化したZr○2粉末
を使用した。溶媒として蒸留水(pl(5,8)を用い
た。解コウ剤としてはポリアクリルアンモニウム塩系の
セラモD−134(商品名:第−工業製薬製)を用い、
所定濃度(5,15,25体積%Zr○2)に調整した
。スリップの特性は解コウ剤添加量による粘性の変化及
び着肉速度により評価した。
In the experimental method of the present invention, Y
Zr○2 powder stabilized by dissolving 8 mo1% of 2O3 in solid solution was used. Distilled water (pl(5,8)) was used as a solvent. As a peptizer, polyacrylammonium salt-based Ceramo D-134 (trade name: Dai-Kogyo Seiyaku Co., Ltd.) was used.
It was adjusted to a predetermined concentration (5, 15, 25 volume % Zr○2). The slip characteristics were evaluated based on the change in viscosity depending on the amount of peptizer added and the deposition rate.

固体電解質のための成形体の焼結性は各焼成温度(10
00〜1500度C)におけるかさ密度により調べた。
The sinterability of the molded body for solid electrolyte is determined at each firing temperature (10
It was investigated by bulk density at 00 to 1500 degrees Celsius.

又、燃料電池を試作し電圧−電流特性によって評価した
In addition, a prototype fuel cell was manufactured and evaluated based on voltage-current characteristics.

実験ではスリップを型に注いで型に着肉した後スリップ
を排泥するスリップキャスト法を用いた。
In the experiment, a slip casting method was used in which slip was poured into a mold, ink was applied to the mold, and then the slip was drained.

このスリップキャスト法により成形体の成形後、成形体
を焼成することにより緻密な焼結体を得る場合、スリッ
プ中の粒子の分散性はスリップの粘性により目安として
知ることが出来る。
When a compact sintered body is obtained by firing the compact after forming the compact by this slip casting method, the dispersibility of particles in the slip can be determined by the viscosity of the slip.

第10図はスリップの粘性と解コウ剤0)添加量の関係
を示している。この図に示すように解コウ剤が無添加で
もスリップの粘性は100mPa−5以下と低い。これ
はZrO2中に含まれる不純物塩素が分散に寄与してい
るためであると考えられる。解コウ剤を添加してゆくと
何れのスリップにおいても粒子の凝集により粘性は一旦
上昇し、一定量以上の解コウ剤を添加するとZrO2粒
子の分散によって再び粘性が低下する。
FIG. 10 shows the relationship between slip viscosity and the amount of peptizer added. As shown in this figure, the viscosity of the slip is as low as 100 mPa-5 or less even when no peptizer is added. This is considered to be because impurity chlorine contained in ZrO2 contributes to dispersion. As the peptizer is added, the viscosity increases once due to the agglomeration of particles in any slip, and when a certain amount or more of the peptizer is added, the viscosity decreases again due to the dispersion of the ZrO2 particles.

解コウ剤の主成分であるポリアクリル酸アンモニウム塩
(−CH−CH2−C00NL )。は、(−CH−C
H2−COONI(a) 。−(−C)l−CH2−C
OO−) 十nNH4”という式によってスリップ中に
解離し、粒子に吸着する。これにより粒子は静電立体的
な反発力により安定化される。しかし、この解コウ剤の
添加量がZrO2の粒子に対して不足するときはポリマ
ー系イオン(−CH−CH2−COO−) 7による架
は橋凝集が起こる。
Polyacrylic acid ammonium salt (-CH-CH2-C00NL), which is the main component of defusing agents. is (-CH-C
H2-COONI(a). -(-C)l-CH2-C
It dissociates during slipping and adsorbs to the particles according to the formula ``OO-) 10nNH4''.As a result, the particles are stabilized by electrostatic steric repulsion.However, if the amount of this peptizer added is When there is a shortage of the polymer ion (-CH-CH2-COO-) 7, bridge aggregation occurs.

尚、攪拌時間の増加に伴いスリップ中のZrO2粒子は
徐々にほぐれていく。このため、粘性低下のために最小
限必要な解コウ剤添加量ではスリップの粘性は低下した
。そこで、次に述べる着肉層厚の測定には、第10図に
示した粘性の極小値のときよりも過剰量の解コウ剤を添
加したスリップを使用した。
Incidentally, as the stirring time increases, the ZrO2 particles in the slip gradually loosen. Therefore, the viscosity of the slip decreased with the minimum amount of peptizer added to reduce the viscosity. Therefore, in the measurement of the deposited layer thickness described below, a slip to which an excess amount of peptizer was added than when the viscosity was at the minimum value shown in FIG. 10 was used.

第11a図は石膏型に対して一方向(重力方向)にスリ
ップを着肉させた時の着肉時間(1)と着肉厚層(L)
及び着肉層厚の2乗(L2)との関係を示している。こ
の図からスリップ濃度が高いほど着肉時間に対する着肉
層厚増加の割合が大きいことがわかる。又、第11b図
に示すように、スリップの安定性がよいときにはL2と
tの間には比例関係が成立つので、この図をもとにして
膜作成時の膜厚制御を行なう。
Figure 11a shows the deposition time (1) and the thickness of the deposited layer (L) when the slip is deposited in one direction (direction of gravity) on the plaster mold.
and the square of the deposited layer thickness (L2). From this figure, it can be seen that the higher the slip concentration, the greater the ratio of the increase in the thickness of the deposited layer to the depositing time. Further, as shown in FIG. 11b, when the slip stability is good, a proportional relationship is established between L2 and t, so film thickness control during film formation is performed based on this diagram.

第12図には焼結温度と試料の焼結の関係が示されてい
る。解コウ剤を添加したスリップにより作成した試料は
焼結性が最もよく、焼結温度1100度Cのかさ密度は
5.5g/m2(相対密度85%)であり、1500度
Cにおいては5.85g/m2(98%)に達している
FIG. 12 shows the relationship between the sintering temperature and the sintering of the sample. The sample prepared by slip with peptizer added has the best sinterability, with a bulk density of 5.5 g/m2 (relative density 85%) at a sintering temperature of 1100 degrees C, and a bulk density of 5.5 g/m2 at 1500 degrees C. It reached 85g/m2 (98%).

解コウ剤無添加の場合、スリップ中のZr02粒子の粒
度分布が広く、成形体中に粗粒部が存在していたため、
焼結性が劣っていたと考えられる。
When no peptizer was added, the particle size distribution of the Zr02 particles in the slip was wide, and coarse particles were present in the compact.
It is thought that the sinterability was poor.

以上の結果より、最も焼結性にすぐれていた解コウ剤を
添加した25体積%スリップを用いて燃料電池用Zr○
2セルの試作を行なった。
Based on the above results, Zr○ for fuel cells was prepared using 25% by volume slip added with peptizer, which had the best sinterability.
We made a prototype of 2 cells.

第3図乃至第9図はその成形プロセスを示す。3 to 9 show the molding process.

成形体の作製は、以下のプロセスに従い行なった。The molded body was produced according to the following process.

■スリップの横流れを防止するために、ワセリンを塗布
した25M X 25m!1のウレタン製の型枠20を
石膏板21上に載せ、型枠20内にスリップ21を注ぐ
(第3図)。
■25M x 25m coated with Vaseline to prevent slippage from flowing sideways! A mold 20 made of urethane No. 1 is placed on a plaster board 21, and a slip 21 is poured into the mold 20 (FIG. 3).

■第11a、llb図に示した着肉データをもとに所定
時間石膏型を静止させてスリップ21を石膏型21に着
肉させて着肉層21aを形成後(第4図参照)、余分の
スリップ21bを排泥する(第5図参照)。
■Based on the inking data shown in Figures 11a and 11b, the plaster mold is kept stationary for a predetermined period of time and the slip 21 is applied to the plaster mold 21 to form the inked layer 21a (see Figure 4). The slip 21b is drained (see Fig. 5).

■次に、膜部とする部位をシリコン製ゴム22によリマ
スキングし、膜の補強部を鋳込む(第6図乃至第8図参
照)。
(2) Next, the area that will become the membrane part is remasked with silicone rubber 22, and the reinforcing part of the membrane is cast (see FIGS. 6 to 8).

■乾燥後に、成形体23を枠より取り外す(第9図参照
)。
(2) After drying, remove the molded body 23 from the frame (see Figure 9).

■このようにして作製した成形体23を1500度Cで
焼成することによりZrO2セルを作製した。
(2) The molded body 23 thus produced was fired at 1500 degrees C to produce a ZrO2 cell.

第13図は、作製したZrO2セルの電圧−電流特性を
示している。
FIG. 13 shows the voltage-current characteristics of the manufactured ZrO2 cell.

電圧−電流特性の測定の際には、カソードとしてLas
、5Sre、 JnO3を用い、アノードにはN1p(
90重量%) +8mo1%Zr02(10重量%)サ
ーメットのペーストを膜の両側に塗布し、800度Cに
て焼付け、1000度Cにおいて測定を行なった。尚、
図中には比較のためテープキャスティング法によるAr
gonne研究所の結果をあわせて示す、これらの図か
らもわかるように、膜厚は約140μmであり、充分緻
密化しているために、電圧−電流特性もArgonne
国立研究所の結果と同様に優れている。
When measuring voltage-current characteristics, use Laser as a cathode.
, 5Sre, JnO3, and N1p (
A paste of +8 mo1% Zr02 (10 wt%) cermet was applied to both sides of the membrane, baked at 800 degrees Celsius, and measured at 1000 degrees Celsius. still,
In the figure, for comparison, Ar
As can be seen from these figures, which also show the results from the Argonne Institute, the film thickness is approximately 140 μm and is sufficiently dense, so that the voltage-current characteristics are similar to those of the Argonne Institute.
The results are as good as those from national laboratories.

以上のようにスリップキャスト法により膜を作製する場
合、膜自体を独立に取り出すことは困難であるが、補強
部を取り付けることにより緻密な膜の作製が可能である
ことが明らかになった。又、焼成後の膜についてラッピ
ングを行なうことにより、更に膜厚を薄くすることが出
来る。
As described above, when a membrane is produced by the slip casting method, it is difficult to take out the membrane itself independently, but it has become clear that a dense membrane can be produced by attaching reinforcing parts. Further, by lapping the film after firing, the film thickness can be further reduced.

(発明の効果) 以上説明したように、本発明にかかる燃料電池用固体電
解素子の製造方法によれば、燃料電池に用いる固体電解
質の膜厚を従来よりも薄膜化出来、しかも多孔質である
固体電解質の緻密化を達成することが出来ると共に、燃
料電遅池用固体電解質を従来よりも容易に生産できるの
で、大量生産が可能となる。
(Effects of the Invention) As explained above, according to the method for manufacturing a solid electrolyte element for a fuel cell according to the present invention, the film thickness of the solid electrolyte used in a fuel cell can be made thinner than before, and moreover, it is porous. Since the solid electrolyte can be made denser and the solid electrolyte for fuel cell slow cells can be produced more easily than before, mass production becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例にかかる燃料電遅池用固体電解
質の製造方法に用いる石膏板の概略説明図、第2図は第
1図の石膏板の変形例を示す概略説明図、第3図乃至第
9図は本発明の実験説明図であって、第3図は型内にス
リップを注ぐ状態の説明図、第4図は型内にスリップを
着肉させた状態の説明図、第5図は型内のスリップを排
泥する状態の説明図、第6図は型の底部に着肉された着
肉層にシリコンゴムを載せてマスキングした状態の説明
図、第7図、第8図は第6図の型内に膜の補強部を鋳込
む状態の説明図、 第9図は実験により得られた成形体の説明図、第10図
はスリップの粘性と解コウ剤の添加量の関係を示すグラ
フ、 第11a図、第11b図は型内に着肉する静止時間と着
肉層の厚さとの関係を示すグラフ、 第12図はスリップを焼成して得られた成形体の焼結性
を示すグラフ、 第13図は実験にかかるZrO2セルの電圧−電流特性
を表わすグラフ、 第14図は従来の燃料電遅池用固体電解質を示す説明図
である。 IO・・・石膏板 11・・・回転中心軸線 13・・・凹所 14・・・スリップ 14a・・・着肉層 第 図 第 図 1ム 第 7 図 第 図 第 図 Zr02Bダず劣る′解コウ斉19更量LビL2(Pm
2) 第12図 ゛還轄私床(0C) 第13図 電胤蓼曵/mA cm’ 第 4 図
FIG. 1 is a schematic explanatory diagram of a gypsum board used in the method for manufacturing a solid electrolyte for a fuel cell delay cell according to an embodiment of the present invention, and FIG. 2 is a schematic explanatory diagram showing a modification of the gypsum board in FIG. 3 to 9 are explanatory diagrams of experiments of the present invention, in which FIG. 3 is an explanatory diagram of a state in which slip is poured into a mold, FIG. 4 is an explanatory diagram of a state in which slip is inked in a mold, Fig. 5 is an explanatory diagram of the state in which the slip inside the mold is removed, Fig. 6 is an explanatory diagram of the state in which silicone rubber is placed on the ink layer applied to the bottom of the mold and masked, Fig. 7, Figure 8 is an explanatory diagram of the reinforcing part of the membrane being cast into the mold shown in Figure 6, Figure 9 is an explanatory diagram of the molded body obtained in the experiment, and Figure 10 is the viscosity of the slip and the addition of peptizer. Graphs showing the relationship between amounts; Figures 11a and 11b are graphs showing the relationship between the resting time for inking in the mold and the thickness of the inking layer; Figure 12 is a molded body obtained by firing the slip. FIG. 13 is a graph showing the voltage-current characteristics of the ZrO2 cell used in the experiment. FIG. 14 is an explanatory diagram showing a conventional solid electrolyte for a fuel cell slow cell. IO... Gypsum board 11... Rotation center axis 13... Recess 14... Slip 14a... Filling layer Figure 1 Figure 7 Figure Figure Figure Zr02B Das inferior solution Kou Qi 19 more L Bi L2 (Pm
2) Figure 12: Private bed (0C) Figure 13: Electric power supply/mA cm' Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)吸湿性のある型内に、安定化したZrO_2の微
粒子粉末と溶媒と解コウ剤とからなる固体電解質形成用
のスリップを注ぎ、前記型を所望の着肉層の厚さに基づ
いて算定した静止時間静止させて前記スリップの一部を
前記型の底部に着肉させた後に、前記型から流動状態の
スリップを排泥して前記着肉部位のスリップを乾燥させ
、この乾燥済みのスリップを前記型内から取り出し、取
り出した乾燥済みのスリップを焼成することを特徴とす
る燃料電池用固体電解質の製造方法。
(1) A solid electrolyte forming slip consisting of stabilized ZrO_2 fine powder, a solvent, and a peptizer is poured into a hygroscopic mold, and the mold is molded based on the desired thickness of the inking layer. After allowing a part of the slip to adhere to the bottom of the mold by allowing it to stand still for the calculated resting time, the fluidized slip is drained from the mold to dry the slip in the inked area, and the dried A method for producing a solid electrolyte for a fuel cell, comprising taking out a slip from the mold and firing the taken out dried slip.
(2)請求項1の燃料電遅池用固体電解質の製造方法に
於て、前記型内に第1のスリップを注いだ後、所望の着
肉層の厚さに基づいて算定した静止時間前記型を静止さ
せて第1のスリップの一部を前記型の底部に着肉させ、
その後、前記型から流動状態の第1のスリップを排泥す
ると共に、前記第1のスリップの着肉層を乾燥させ、再
び前記型内に第2のスリップを注ぎ込み、前記型を前記
第1のスリップの静止時間より長い時間静止させて前記
第1のスリップの着肉層上に第2のスリップを着肉させ
、その後流動状態の第2のスリップを排泥すると共に、
第2のスリップの着肉層を乾燥させ、更に、前記型内に
前記第1のスリップを注ぎ込んで前記第1のスリップの
静止時間だけ一旦静止させ、前記第1のスリップを前記
第2のスリップの着肉層上に着肉後、前記型から流動状
態の第1のスリップを再び排泥し、この第1、第2のス
リップの着肉層が3層に形成された成形体を乾燥させた
後に、この成形体を前記型から取り出して焼成すること
を特徴とする燃料電池用固体電解質の製造方法。
(2) In the method for producing a solid electrolyte for a fuel cell delay cell according to claim 1, after pouring the first slip into the mold, the resting time is calculated based on the desired thickness of the deposited layer. keeping the mold stationary and depositing a portion of the first slip on the bottom of the mold;
Thereafter, the fluidized first slip is drained from the mold, the inking layer of the first slip is dried, and the second slip is again poured into the mold, and the mold is replaced with the first slip. A second slip is inked on the inked layer of the first slip by letting it stand still for a time longer than the resting time of the slip, and then the second slip in a fluid state is drained, and
The inking layer of the second slip is dried, and the first slip is poured into the mold and is allowed to stand still for a period of time during which the first slip is held still, and the first slip is replaced with the second slip. After inking on the inked layer, the first slip in a fluid state is drained from the mold again, and the molded body in which three inked layers of the first and second slips are formed is dried. A method for producing a solid electrolyte for a fuel cell, which comprises the step of taking out the molded body from the mold and firing the molded body.
JP1218077A 1989-08-24 1989-08-24 Manufacture of solid electrolyte for fuel cell Pending JPH0381972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218077A JPH0381972A (en) 1989-08-24 1989-08-24 Manufacture of solid electrolyte for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218077A JPH0381972A (en) 1989-08-24 1989-08-24 Manufacture of solid electrolyte for fuel cell

Publications (1)

Publication Number Publication Date
JPH0381972A true JPH0381972A (en) 1991-04-08

Family

ID=16714279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218077A Pending JPH0381972A (en) 1989-08-24 1989-08-24 Manufacture of solid electrolyte for fuel cell

Country Status (1)

Country Link
JP (1) JPH0381972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010862A1 (en) * 1990-12-10 1992-06-25 Yuasa Battery Co., Ltd. Method for manufacturing solid-state electrolytic fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010862A1 (en) * 1990-12-10 1992-06-25 Yuasa Battery Co., Ltd. Method for manufacturing solid-state electrolytic fuel cell
US5290323A (en) * 1990-12-10 1994-03-01 Yuasa Corporation Manufacturing method for solid-electrolyte fuel cell

Similar Documents

Publication Publication Date Title
Cheng et al. Elevated‐temperature 3D printing of hybrid solid‐state electrolyte for Li‐ion batteries
Roberts et al. 3D lithium ion batteries—from fundamentals to fabrication
Besra et al. A review on fundamentals and applications of electrophoretic deposition (EPD)
Arthur et al. Three-dimensional electrodes and battery architectures
US20140023849A1 (en) Method for producing a three-dimensional structure and three-dimensional structure
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
Swinkels Lithium‐Chlorine Battery
Gurauskis et al. Self-supported ceramic substrates with directional porosity by mold freeze casting
JPH0381972A (en) Manufacture of solid electrolyte for fuel cell
RU2368983C1 (en) High-temperature electrochemical element with electrophoretically deposited hard electrolyte and method of its manufacturing
Moritz et al. Electrophoretic deposition applied to ceramic dental crowns and bridges
Gordeeva et al. Uniform arrays of gold nanoelectrodes with tuneable recess depth
Ferrari et al. Thermogelation of Al2O3/Y-TZP films produced by electrophoretic co-deposition
KR102305332B1 (en) Surface coated ceramic solid electrolyte and manufacturing method thereof
JPH03101065A (en) Solid electrolyte for fuel cell and manufacture thereof
Shang et al. Template-based synthesis of nanorod or nanowire arrays
JPH02501666A (en) Stable anode made of cerium oxy compound for molten salt electrolysis acquisition and method for producing the same
Fan et al. Facile fabrication of ordered anodized aluminum oxide membranes with controlled pore size by improved hard anodization
JPS63500481A (en) Porous electrode and its manufacturing method
US11819806B1 (en) Methods for manufacturing a solid state ionic conductive membrane on a macro porous support scaffold
Birss et al. The Lead Anode in Alkaline Solutions: II. The Mechanism of Film Formation
JPH0456070A (en) Manufacture of solid electrolytic fuel battery tube cell
JPH06283179A (en) Manufacture of electrolytic film for solid electrolytic fuel cell
JPS6049564B2 (en) Slip forming method for articles
Kim et al. Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts