JPH0381909A - Material for ledox reaction pole of electrochemical element - Google Patents

Material for ledox reaction pole of electrochemical element

Info

Publication number
JPH0381909A
JPH0381909A JP1218817A JP21881789A JPH0381909A JP H0381909 A JPH0381909 A JP H0381909A JP 1218817 A JP1218817 A JP 1218817A JP 21881789 A JP21881789 A JP 21881789A JP H0381909 A JPH0381909 A JP H0381909A
Authority
JP
Japan
Prior art keywords
redox
reactive material
ion
reaction electrode
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1218817A
Other languages
Japanese (ja)
Inventor
Teruo Yamashita
山下 暉夫
Soji Tsuchiya
土屋 宗次
Noboru Koyama
昇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1218817A priority Critical patent/JPH0381909A/en
Publication of JPH0381909A publication Critical patent/JPH0381909A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enable a quick response by mixing a redox reactive material with ion conductive high molecules. CONSTITUTION:A redox reactive material is mixed with anion conductive high molecules, and thereby due to the function of ion conductive high molecules reaction is rendered speedily. Even in the case that the redox reactive material is made of such as Prussian blue liable to pass ions relatively, it facilitates the passing of ions. It is preferable that as the redox reactive material one of transition metal oxide inorganic material and high molecule organic material is selected. Further it is preferable that as the ion conductive high molecules one of high molecule - metallic salt hybrid material and polycation - polyanion compound is selected.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、電気化学素子のレドックス反応極用材料に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a material for a redox reaction electrode of an electrochemical device.

従来の技術 レドックス活性点をもつレドックス反応性材料として、
既に多くの材料が知られている。例えば、WO3s プ
ルシアンブルー、ポリアニリン等が例示される。これら
は、電池、エレクトロクロミック素子、センサー コン
デンサー等のレドックス反応極用材料に用いられている
Conventional technologyAs a redox-reactive material with redox active sites,
Many materials are already known. For example, WO3s Prussian blue, polyaniline, etc. are exemplified. These are used as materials for redox reaction electrodes in batteries, electrochromic devices, sensors, capacitors, etc.

発明が解決しようとする課題 上記レドックス反応極用材料を使う電池ではエネルギー
密度の改善が、エレクトロクロミック素子では応答性の
改善が、あるいは、センサーでは感度の改善が強く望壕
れている。レドックス反応極において酸化還元反応がよ
り速やかに進行すれば、上記要望が満たせることになる
ので、これに沿って新規な反応極用材料を開発すべく研
究が進められている。しかし、期待に沿うような材料は
なかなか得られない。
Problems to be Solved by the Invention There is a strong desire to improve the energy density of batteries that use the above redox reaction electrode materials, the responsiveness of electrochromic devices, and the sensitivity of sensors. If the oxidation-reduction reaction progresses more rapidly in the redox reaction electrode, the above requirements can be met, and research is being conducted to develop new materials for the reaction electrode in line with this. However, it is difficult to obtain materials that meet expectations.

この発明は、上記事情に鑑み、反応がより速やかに進行
する電気化学素子のレドックス反応極用材料を提供する
ことを課題とする。
In view of the above circumstances, it is an object of the present invention to provide a material for a redox reaction electrode of an electrochemical device in which a reaction proceeds more quickly.

課題を解決するための手段 前記課題を解決するため、請求項1〜3の発明は、以下
のような構成をとるようにしている。
Means for Solving the Problems In order to solve the problems described above, the inventions of claims 1 to 3 have the following configurations.

請求項1のレドックス反応極用材料は、レドックス反応
性材料とイオン導電性高分子を複合化するようにしてな
る材料である。
The redox reaction electrode material according to claim 1 is a material formed by combining a redox-reactive material and an ion-conductive polymer.

請求項1のレドックス反応極用材料では、レドックス反
応性材料として、例えば、請求項2記載のレドックス反
応極用材料のように、遷移金属酸化物系無機材料や高分
子系有機材料が用いられる。
In the redox reaction electrode material according to claim 1, for example, a transition metal oxide-based inorganic material or a polymer-based organic material is used as the redox-reactive material, as in the redox reaction electrode material according to claim 2.

レドックス反応性材料を、より具体的に挙げれば、WO
2,MoO3,TiO2等の遷移金属酸化物やプルシア
ンブルー等を始めとする無機材料、あるいは、ポリアニ
リン、ポリチオフェン、ポリピロール、ポリアセチレン
、ポリパラフェニレン等の各種の導電性高分子や、スチ
リル類似化合物、ビオロゲン誘導体等を始めとする有機
材料等がある。もちろん、これらの材料に限らないこと
はいう1でもない。
More specifically, redox-reactive materials include WO
2. Inorganic materials such as transition metal oxides such as MoO3 and TiO2 and Prussian blue, various conductive polymers such as polyaniline, polythiophene, polypyrrole, polyacetylene, and polyparaphenylene, styryl-like compounds, and viologen. There are organic materials such as derivatives, etc. Of course, it is not limited to these materials.

請求項1または2のレドックス反応極用材料では、イオ
ン導電性高分子として、例えば、請求項3記載の発明の
ように、高分子−金属塩ハイブリッド体やポリカチオン
−ポリアニオン複合体を用いるようにしている。
In the redox reaction electrode material according to claim 1 or 2, for example, as in the invention according to claim 3, a polymer-metal salt hybrid or a polycation-polyanion complex is used as the ion-conductive polymer. ing.

イオン導電性高分子を、より具体的に挙げれば、ポリエ
チレンオキシド、ポリエチレンオキシド−LiCIO4
系化合物、易重合性リン酸エステルマクロマー−アルカ
リ金属塩系などの高分子−金属塩ハイブリッド体あるい
は、ポリカチオン−ポリアニオン複合体等がある。もち
ろん、これらの・・材料に限らないことはいう壕でもな
い。
More specific examples of ion conductive polymers include polyethylene oxide, polyethylene oxide-LiCIO4
Examples include polymer-metal salt hybrids such as easily polymerizable phosphate ester macromer-alkali metal salt systems, and polycation-polyanion complexes. Of course, it is not limited to these materials.

レドックス反応性材料とイオン導電性高分子の複合化は
、例えば、イオン導電性高分子薄膜とレドックス反応性
材料を積層化したり、イオン導電性高分子とレドックス
反応性材料であるポリアニリンを渾然一体化したりする
こと等でなされる。
Composites of redox-reactive materials and ion-conductive polymers include, for example, laminating ion-conductive polymer thin films and redox-reactive materials, or harmoniously integrating ion-conducting polymers and polyaniline, which is a redox-reactive material. This is done by doing things like

作    用 この発明のレドックス反応性材料で酸化反応が起こる場
合、レドックス活性点がカチオンとなり、その対イオン
としてのアニオンがイオン導電性高分子を通って速やか
にレドックス活性点の近くにくるようになる。
Function When an oxidation reaction occurs in the redox-reactive material of the present invention, the redox active site becomes a cation, and the anion as a counter ion quickly comes close to the redox active site through the ionically conductive polymer. .

また、この発明のレドックス反応性材料で還元反応が起
こる場合、レドックス活性点がアニオンとなり、その対
イオンとしてのカチオンが、やはり酸化反応の場合と同
様、イオン導電性高分子を通って速やかにレドックス活
性点の近くにくるようになる。
In addition, when a reduction reaction occurs with the redox-reactive material of this invention, the redox active site becomes an anion, and the cation as a counter ion quickly undergoes redox through the ion-conductive polymer, as in the case of an oxidation reaction. It comes close to the active point.

このように、この発明のレドックス反応極用材料では、
イオン導電性高分子の働きにより反応がより速やかに進
行するようになるのである。
In this way, in the redox reaction electrode material of this invention,
The action of the ion-conductive polymer allows the reaction to proceed more quickly.

捷た、レドックス反応性材料が、例えば、プルシアンブ
ルーのように比較的イオンを通し易いような場合でも、
イオン導電性高分子を複合させることにより、より対イ
オンが通り易くなる。
Even if the redox-reactive material is relatively permeable to ions, such as Prussian blue,
By combining an ion conductive polymer, counter ions can pass through more easily.

実施例 続いて、この発明の詳細な説明する。Example Next, the present invention will be explained in detail.

一実施例1− 電極基材表面に予めイオン導電性高分子であるポリエチ
レンオキシド薄膜を形成して訃いてから、レドックス反
応性材料であるポリアニリン薄膜を形成しレドックス反
応極用材料を得た。
Example 1 - A thin film of polyethylene oxide, which is an ion-conductive polymer, was previously formed on the surface of an electrode base material, and then a thin film of polyaniline, which is a redox-reactive material, was formed to obtain a material for a redox reaction electrode.

薄膜の形成は電解重合法を用いて行うようにした。ポリ
エチレンオキシド薄膜形成の場合、ポリエチレンオキシ
ドのモノマーおよび/またはオリゴマーと支持電解質を
含む水溶液を用いて電解重合させ、ポリアニリン薄膜形
成の場合、ポリアニリンのモノマー訃よび/またはオリ
ゴマーと支持電解質を含む水溶液を用いて電解重合させ
るようにした。
The thin film was formed using an electrolytic polymerization method. In the case of forming a polyethylene oxide thin film, electropolymerization is performed using an aqueous solution containing a polyethylene oxide monomer and/or oligomer and a supporting electrolyte, and in the case of forming a polyaniline thin film, an aqueous solution containing a polyaniline monomer and/or oligomer and a supporting electrolyte is used. Then, electrolytic polymerization was carried out.

上のことから分かるように、この実施例のレドックス反
応極用材料では、イオン導電性高分子薄膜とレドックス
反応性材料薄膜が積層されることにより複合化されてい
る。
As can be seen from the above, the redox reaction electrode material of this example is made into a composite material by laminating an ion-conductive polymer thin film and a redox-reactive material thin film.

一実施例2− 電極基材表面にイオン導電性高分子であるポリエチレン
オキシドとレドックス反応性材料であるポリアニリンが
渾然と混じり合った状態の薄膜を形成しレドックス反応
極用材料を得た。
Example 2 - A thin film in which polyethylene oxide, which is an ion-conductive polymer, and polyaniline, which is a redox-reactive material, are thoroughly mixed was formed on the surface of an electrode base material to obtain a material for a redox-reactive electrode.

この場合、薄膜の形成を電解重合法を用いて行うように
した。この場合には、ポリエチレンオキシドのモノマー
訃よび/またはオリゴマー、ポリアニリンのモノマー訃
よび/またはオリゴマー訃よび、支持電解質を含む水溶
液を用いて電解重合させるようにした。
In this case, the thin film was formed using an electrolytic polymerization method. In this case, electrolytic polymerization was carried out using an aqueous solution containing a polyethylene oxide monomer and/or oligomer, a polyaniline monomer and/or oligomer, and a supporting electrolyte.

上のことから分かるように、この実施例のレドックス反
応極用材料では、イオン導電性高分子とレドックス反応
性材料が渾然と混じり合った状態となることにより複合
化されている。
As can be seen from the above, in the redox reaction electrode material of this example, the ion-conductive polymer and the redox-reactive material are mixed harmoniously into a composite.

実施例1および実施例2のレドックス反応極用材料を使
ってエレクトロクロミック素子を作製し、その応答速度
を調べた。比較のために、実施例に釦いてイオン導電性
高分子を用いない他は同様にしてエレクトロクロミック
素子を作製し、その応答速度を調べた。
Electrochromic devices were produced using the redox reaction electrode materials of Examples 1 and 2, and their response speeds were investigated. For comparison, an electrochromic device was prepared in the same manner as in the example except that the ion conductive polymer was not used, and its response speed was investigated.

そして、実施例と比較例の応答速度を比べた結果、この
発明の実施例のレドックス反応極用材料ヲ使ったエレク
トロクロミック素子の方が、約30%程度、応答性が向
上していた。
As a result of comparing the response speed of the example and the comparative example, it was found that the electrochromic element using the redox reaction electrode material of the example of the present invention had improved response by about 30%.

この発明は上記実施例に限らない。例えば、複合化がレ
ドックス反応性材料とイオン導電性高分子の一方を芯と
し、他方をこの芯を包む鞘とすることでなされていても
よい。また、この発明のレドックス反応極用材料は、電
池やセンサー コンデンサー等のエレクトロクロミック
素子以外の電気化学素子に用いることができることはい
う壕でもない。
This invention is not limited to the above embodiments. For example, the composite may be made by using one of the redox-reactive material and the ion-conductive polymer as a core, and using the other as a sheath surrounding the core. Further, it is not implied that the redox reaction electrode material of the present invention can be used for electrochemical devices other than electrochromic devices such as batteries, sensors, and capacitors.

発明の効果 以上に述べたように、この発明の電気化学素子のレドッ
クス反応極用材料を用いた場合、反応が速やかに進行す
るため、応答速度の速いエレクトロクロミック素子、エ
ネルギー密度の高い電池、あるいは、感度が優れたセン
サ等が実現できるようになる。
Effects of the Invention As mentioned above, when the material for the redox reaction electrode of an electrochemical device of the present invention is used, the reaction proceeds quickly, so it can be used for electrochromic devices with fast response speed, batteries with high energy density, or , sensors with excellent sensitivity can be realized.

Claims (3)

【特許請求の範囲】[Claims] (1)レドックス反応性材料とイオン導電性高分子が複
合されてなる電気化学素子のレドックス反応極用材料。
(1) A material for a redox reaction electrode of an electrochemical device, which is a composite of a redox-reactive material and an ion-conductive polymer.
(2)レドックス反応性材料が、遷移金属酸化物系無機
材料および高分子系有機材料のうちから選ばれている請
求項1記載の電気化学素子のレドックス反応極用材料。
(2) The material for a redox reaction electrode of an electrochemical device according to claim 1, wherein the redox-reactive material is selected from transition metal oxide-based inorganic materials and polymer-based organic materials.
(3)イオン導電性高分子が、高分子−金属塩ハイブリ
ッド体およびポリカチオン−ポリアニオン複合体のうち
から選ばれている請求項1または2記載の電気化学素子
のレドックス反応極用材料。
(3) The material for a redox reaction electrode of an electrochemical device according to claim 1 or 2, wherein the ionically conductive polymer is selected from a polymer-metal salt hybrid and a polycation-polyanion complex.
JP1218817A 1989-08-25 1989-08-25 Material for ledox reaction pole of electrochemical element Pending JPH0381909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218817A JPH0381909A (en) 1989-08-25 1989-08-25 Material for ledox reaction pole of electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218817A JPH0381909A (en) 1989-08-25 1989-08-25 Material for ledox reaction pole of electrochemical element

Publications (1)

Publication Number Publication Date
JPH0381909A true JPH0381909A (en) 1991-04-08

Family

ID=16725812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218817A Pending JPH0381909A (en) 1989-08-25 1989-08-25 Material for ledox reaction pole of electrochemical element

Country Status (1)

Country Link
JP (1) JPH0381909A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010733A2 (en) * 1998-12-17 2000-06-21 Samsung General Chemicals Co., Ltd. Polymer composition for coatings with high refractivity conductivity and transparency
JP2012063525A (en) * 2010-09-15 2012-03-29 Sekisui Plastics Co Ltd Composite particle, and manufacturing method and use of the same
CN103613759A (en) * 2013-12-06 2014-03-05 东华大学 Preparation method of MoO3/polyaniline coaxial nano heterojunction
WO2017111004A1 (en) * 2015-12-25 2017-06-29 国立研究開発法人産業技術総合研究所 Deformation sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010733A2 (en) * 1998-12-17 2000-06-21 Samsung General Chemicals Co., Ltd. Polymer composition for coatings with high refractivity conductivity and transparency
EP1010733A3 (en) * 1998-12-17 2002-07-03 Cheil Industries Inc. Polymer composition for coatings with high refractivity conductivity and transparency
JP2012063525A (en) * 2010-09-15 2012-03-29 Sekisui Plastics Co Ltd Composite particle, and manufacturing method and use of the same
CN103613759A (en) * 2013-12-06 2014-03-05 东华大学 Preparation method of MoO3/polyaniline coaxial nano heterojunction
WO2017111004A1 (en) * 2015-12-25 2017-06-29 国立研究開発法人産業技術総合研究所 Deformation sensor
CN108369085A (en) * 2015-12-25 2018-08-03 国立研究开发法人产业技术综合研究所 Deformation-sensor
JPWO2017111004A1 (en) * 2015-12-25 2018-10-18 国立研究開発法人産業技術総合研究所 Deformation sensor
US10788307B2 (en) 2015-12-25 2020-09-29 National Institute Of Advanced Industrial Science And Technology Deformation sensor comprising an ion-conductive polymer layer

Similar Documents

Publication Publication Date Title
Sekhon Conductivity behaviour of polymer gel electrolytes: Role of polymer
CN1934212B (en) Gel polymer electrolyte containing ionic liquid and electrochromic device using the same
Dong et al. Chloride chemical sensor based on an organic conducting polypyrrole polymer
Kumar et al. Ionic liquid mediated magnesium ion conduction in poly (ethylene oxide) based polymer electrolyte
Rajendran et al. Li-ion conduction of plasticized PVA solid polymer electrolytes complexed with various lithium salts
Liu et al. Enhanced electrochromic performance of composite films by combination of polyoxometalate with poly (3, 4-ethylenedioxythiophene)
Pande et al. Octa-viologen substituted polyhedral oligomeric silsesquioxane exhibiting outstanding electrochromic performances
Rozman et al. Electrochromic cell with hydrogel-stabilized water-based electrolyte using electrodeposition as a fast color changing mechanism
Ebadi et al. Electroactive actuator based on polyurethane nanofibers coated with polypyrrole through electrochemical polymerization: a competent method for developing artificial muscles
Davey et al. Synthesis, characterisation and ion transport studies on polypyrrole/polyvinylphosphate conducting polymer materials
Eren Improved performance and stability of solid state electrochromic devices with eco-friendly chitosan-based electrolytes
RU2524963C1 (en) Electroconductive adhesive for electrochromic devices
JPH0381909A (en) Material for ledox reaction pole of electrochemical element
Inaba et al. Electrochromic display device of tungsten trioxide and prussian blue films using polymer gel electrolyte of methacrylate
Reiter et al. The electrochemical redox processes in PMMA gel electrolytes—behaviour of transition metal complexes
Sata et al. Properties of composite membranes from ion exchange membranes and conducting polymers. III. Changes in acid transport
Pearson et al. Coated-wire and composite ion-selective electrodes based on doped poly (pyrrole)
Żukowska et al. Effect of gel composition on the conductivity of proton-conducting gel polymeric electrolytes doped with H3PO4
Mendoza et al. Effect of different acid and lithium salt used in polyethylene glycol–titanium oxide based solvent-free electrolytes on electrochromic performance of WO3 thin films
De Azevedo et al. Preparation and characterization of conducting polymer/silver hexacyanoferrate nanocomposite
Huguenin et al. Using the quadratic logistic equation to analyze intercalation of lithium ions in layer-by-layer V2O5 films
JPS6249333A (en) Electrochromic display element
Kunitskaya et al. Dielectric Behavior of Solid Polymer Electrolyte Films Formed by Double Hydrophilic Block Copolymers
Al-Betar et al. Influence of counterion charge on the electrochemistry and impedance of polypyrrole
Tseng et al. Ion transport across the film of poly (5, 6-dimethoxyindole-2-carboxylic acid) in relation to its electrochromic switching: An electrochemical quartz crystal microbalance study