JPH0381773A - Method for roughing surface of electrophotographic sensitive body - Google Patents

Method for roughing surface of electrophotographic sensitive body

Info

Publication number
JPH0381773A
JPH0381773A JP21977089A JP21977089A JPH0381773A JP H0381773 A JPH0381773 A JP H0381773A JP 21977089 A JP21977089 A JP 21977089A JP 21977089 A JP21977089 A JP 21977089A JP H0381773 A JPH0381773 A JP H0381773A
Authority
JP
Japan
Prior art keywords
photoreceptor
abrasive
film thickness
cleaning blade
photosensitive body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21977089A
Other languages
Japanese (ja)
Inventor
Shunkai Sako
酒匂 春海
Kiyoshi Sakai
酒井 清志
Teigo Sakakibara
悌互 榊原
Shoji Amamiya
昇司 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21977089A priority Critical patent/JPH0381773A/en
Publication of JPH0381773A publication Critical patent/JPH0381773A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly rough the surface of a photosensitive body, to reduce the disordered part of film thickness which occurs at the coating time of the photosensitive body and to make the film thickness uniform by properly using grinding materials whose grinding grain size is different according to the part of the photosensitive body. CONSTITUTION:The surface of the photosensitive body 1 is roughed by moving the film-like grinding materials 2 and 2' in a direction shown by an arrow 6 from feeding rollers 3 and 3' to take-up rollers 5 and 5' through presser rollers made of rubber 4 and 4' and making it rub on the surface of the photosensitive body 1 at the positions of the rollers 4 and 4'. for example, the cleaning blade abutting part of the photosensitive body is roughed by using the grinding material having the large grain size (9mum, for example), first, and using the grinding material having the small grain size (0.5 mum, for example), next. Simultaneously, the disordered part of the film thickness on the end part thereof is roughed by using the grinding material having the larger grain size (80mum, for example), first and using the grinding material having the small grain size (1 mum, for example), next.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真感光体の表面粗面化法に関し、より詳
しくは、クリーニング性及び画像特性の良好な電子写真
感光体を得るための電子写真感光体の表面粗面化法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for surface roughening of an electrophotographic photoreceptor, and more specifically, to a method for roughening the surface of an electrophotographic photoreceptor, and more particularly, to a method for roughening the surface of an electrophotographic photoreceptor, and more specifically, to obtain an electrophotographic photoreceptor with good cleaning properties and image characteristics. This invention relates to a method for roughening the surface of a photographic photoreceptor.

〔従来の技術〕[Conventional technology]

一般に電子写真プロセスにおいては、電子写真感光体に
対して少なくとも帯電、像露光、現像、転写及びクリー
ニングの各工程からなるサイクルを繰り返して行ってい
る。特に、転写工程後の、感光体上の残存トナーを除去
するクリーニング工程は常に鮮明なコピー画像を得るた
めに重要な工程である。
Generally, in an electrophotographic process, a cycle consisting of at least the steps of charging, image exposure, development, transfer, and cleaning is repeatedly performed on an electrophotographic photoreceptor. In particular, the cleaning process for removing residual toner on the photoreceptor after the transfer process is an important process in order to always obtain clear copy images.

このクリーニングの方法として、通常次の二通りの方法
が用いられている。その第一は、クリーニングブレード
と称するゴム性の板形状部材を感光体上に圧接して感光
体とクリーニングブレードとの間の隙間を無くし、トナ
ーのすり抜けを防止して残存トナーをかき取る方法であ
る。第2図はそのようなりリーニングブレードを利用す
るクリーニング装置の典型的な例を示す概要断面図であ
り、クリーニング装置7を矢印Aの方向に回転する円筒
状の感光体8に近接して配置し、該クリーニング装置に
取り付・けられているクリーニングブレード9の一方の
端部の一つのエツジを感光体8の表面に、図示のように
感光体の回転方向に対してカウンター方向で、又は不図
示の順方向で圧接させて残存トナーをかき取る(クリー
ニング性はカウンタ一方向の方が優れていることが知ら
れている)。その第二は、ファーブラシのローラを感光
体表面に接するように回転させて残存トナーを拭き取る
か、又は叩き落とす方法である。これらの二通りの方法
のうち、ゴムブレードの方が安価であり、設計も容易で
あるため、現在ではクリーニングブレードを用いるクリ
ーニングが主流を占めている。特に天然色カラー現像を
行う場合には、マゼンタ、シアン、イエローの3原色、
あるいは、更にブラックを含めた4色を重ねることによ
って天然色を出しているので、トナーの使用量が通常の
1色現像よりはるかに多く、そのためゴムブレードを感
光体に圧接するクリーニング方法を用いることが最適で
ある。
The following two methods are generally used for this cleaning. The first method is to press a rubber plate-shaped member called a cleaning blade onto the photoconductor to eliminate the gap between the photoconductor and the cleaning blade, thereby preventing toner from slipping through and scraping off the remaining toner. be. FIG. 2 is a schematic cross-sectional view showing a typical example of a cleaning device using such a leaning blade, in which the cleaning device 7 is arranged close to a cylindrical photoreceptor 8 rotating in the direction of arrow A. , one edge of one end of the cleaning blade 9 attached to the cleaning device is applied to the surface of the photoreceptor 8, either in a counter direction to the rotational direction of the photoreceptor as shown in the figure, or in a direction opposite to the direction of rotation of the photoreceptor. The remaining toner is scraped off by applying pressure in the forward direction shown in the figure (it is known that cleaning performance is better in one direction of the counter). The second method is to wipe or knock off the remaining toner by rotating the roller of the fur brush so that it comes into contact with the surface of the photoreceptor. Of these two methods, since the rubber blade is cheaper and easier to design, cleaning using a cleaning blade is currently the mainstream. Especially when performing natural color development, the three primary colors of magenta, cyan, and yellow,
Alternatively, since natural colors are produced by layering four colors including black, the amount of toner used is much greater than in normal one-color development, so a cleaning method that presses a rubber blade against the photoreceptor is used. is optimal.

しかしながら、優れたクリーニング性を示すクリーニン
グブレードには、感光体との摩擦力が大きいため、クリ
ーニングブレードの反転が起こりやすいという欠点があ
った。このクリーニングブレードの反転は、第2図に示
したカウンタ一方向のクリーニングブレード9aが9b
で示すように感光体の移動方向、即ちカウンタ一方向と
は反対の方向に反ってしまう現象である。
However, the cleaning blade that exhibits excellent cleaning properties has a drawback in that the cleaning blade tends to flip over because of the large frictional force with the photoreceptor. This reversal of the cleaning blade means that the counter one direction cleaning blade 9a shown in FIG.
As shown in , this is a phenomenon in which the photoreceptor warps in the direction of movement of the photoreceptor, that is, in the opposite direction to the counter direction.

このクリーニングブレードが反転する現象は、感光体の
長寿命化のために感光体表面を硬く、即ち削れ難くした
場合には更に生じ易くなる。又、画質向上のためにトナ
ーの粒径が均一化されて微小なトナーが除去されている
場合には、トナーがクリーニングブレードと感光体表面
との間の隙間に入ることによって引き起こされる潤滑性
が薄れるので、クリーニングブレードの反転がより一層
生じやすくなる。
This phenomenon of the cleaning blade turning over becomes more likely to occur when the surface of the photoreceptor is made hard, that is, less likely to be scraped, in order to extend the life of the photoreceptor. In addition, when toner particle size is made uniform and minute toner particles are removed to improve image quality, the lubricity caused by toner entering the gap between the cleaning blade and the photoreceptor surface is reduced. As it becomes thinner, the cleaning blade is more likely to turn over.

また、天然色カラー現像を行う場合には、1枚の画像を
出すのにマゼンタ、シアン、イエローの3色、あるいは
ブラックを含めた41色のトナーを用いて3回あるいは
4回の現像を行うため、クリーニングブレードにかかる
負荷が大きくなり、それでクリーニングブレードの反転
や、更にはエツジ部の欠損が生じやすくなる。
In addition, when performing natural color development, development is performed three or four times using toners of 41 colors, including magenta, cyan, and yellow, or black, to produce one image. As a result, the load applied to the cleaning blade increases, making it more likely that the cleaning blade will be reversed or that the edge portion will be damaged.

また、感光体の表面層が有機物からなる場合には、無機
物表面に比べて、クリーニングブレードと感光体表面と
の摩擦抵抗が増大し、特にクリーニングブレードの反転
やエツジ部の欠損が発生し易くなる。
Additionally, when the surface layer of the photoreceptor is made of organic matter, the frictional resistance between the cleaning blade and the photoreceptor surface increases compared to an inorganic surface, making it particularly likely that the cleaning blade will flip over and the edges will be damaged. .

そこで本件出願人は先に、特願昭62−256769号
において、感光体表面をあらかじめ粗面にしておくこと
によって画質の低下を招かずに、クリーニングブレード
の反転、ブレードエツジ部の欠損等によるクリーニング
不良を防止する方法を提案した。感光体表面の粗面化状
態はJIS規格BO601で定義される10点平均粗さ
(Rz)の測定法で表してその最大値、平均値及び最小
値がいずれも好ましくは0.3〜5.0μmの範囲内に
あり、更に好ましくは0.3〜2.0μmの範囲内にあ
る。その最大値が5.0μmよりも大きい場合には画像
欠陥としてスジ状のものが画像に表われやすくなる。ま
た最小値が0.3μmよりも小さい場合には部分的にク
リーニングブレードと感光体表面との摩擦がほとんど緩
和されず、また感光体表面を粗面にした効果が認められ
ない。上記の最大値、平均値及び最小値が0.3〜5.
0μmの範囲内にあれば、感光体表面とクリーニングブ
レードとの接触面積を減少させ、また、トナー中に僅か
に含まれている微小粒径のもの(はぼ5μm以下)や、
使用により削り取られた感光体表面の削り粉(はぼ1μ
m以下)が感光体表面とクリーニングブレードとの間の
隙間に適度にもぐり込むことによって生じる潤滑性を持
たせ易くするので、クリーニングブレードの反転等によ
るクリーニング不良を防止することができる。
Therefore, in Japanese Patent Application No. 62-256769, the applicant previously proposed that the surface of the photoreceptor be roughened in advance so as to avoid deterioration in image quality by cleaning the cleaning blade by inverting the cleaning blade, chipping the blade edge, etc. We proposed a method to prevent defects. The roughening state of the photoreceptor surface is expressed by the 10-point average roughness (Rz) measurement method defined by JIS standard BO601, and the maximum value, average value, and minimum value are all preferably 0.3 to 5. It is within the range of 0 μm, more preferably within the range of 0.3 to 2.0 μm. When the maximum value is larger than 5.0 μm, streak-like defects tend to appear in the image. Further, when the minimum value is smaller than 0.3 μm, the friction between the cleaning blade and the photoreceptor surface is hardly alleviated in some areas, and the effect of roughening the photoreceptor surface is not recognized. The above maximum value, average value and minimum value are 0.3 to 5.
If it is within the range of 0 μm, the contact area between the photoreceptor surface and the cleaning blade will be reduced, and if the particle size is small (approximately 5 μm or less) contained in the toner,
The shavings from the surface of the photoconductor (about 1μ
m or less) easily penetrates into the gap between the photoreceptor surface and the cleaning blade to provide lubricity, thereby making it possible to prevent cleaning failures due to inversion of the cleaning blade, etc.

一方、感光体表面を粗面化する方法としては、特開昭5
3−92133号公報や特開昭57−94772号公報
に記載されているようにブラシや研磨材を用いたりした
サンドブラスト法などによる機械的な研磨の方法、特開
昭53−92133号公報に記載されているように塗工
時の乾燥条件等で表面をゆず版状にする方法や溶剤にさ
らす方法、さらには特開昭52−26226号公報に記
載されているように表面層にあらかじめ粉体粒子を添加
して塗工し粗面化する方法等がある。このうち機械的に
研磨する方法はクリーニングブレードと感光体表面との
間の潤滑性を増加させるという点で最も好ましい。
On the other hand, as a method for roughening the surface of a photoreceptor, there is
A mechanical polishing method such as a sandblasting method using a brush or an abrasive material as described in JP-A No. 3-92133 and JP-A-57-94772; As described in JP-A No. 52-26226, the surface layer can be coated with powder in advance, as described in Japanese Patent Laid-Open No. 52-26226. There are methods such as adding particles and coating to roughen the surface. Among these methods, the mechanical polishing method is the most preferred in that it increases the lubricity between the cleaning blade and the surface of the photoreceptor.

それは機械で研磨することによって発生する感光体表面
の削り粉がそのまま潤滑剤として作用するためである。
This is because the shavings on the surface of the photoreceptor generated by mechanical polishing act as a lubricant.

また、機械的研磨のうち、フィルム状研磨材を用いる方
法が更に好ましい。その理由は、サンドブラスト法等の
場合には、研磨材が有機電子写真感光体に埋め込まれ易
く、ピンホールの原因となったり、電子写真特性を劣化
させたりするのに対して、フィルム状研磨材の場合には
、この埋め込みがほとんど無いためである。
Further, among mechanical polishing methods, a method using a film-like abrasive material is more preferable. The reason for this is that in the case of sandblasting, etc., the abrasive material is easily embedded in the organic electrophotographic photoreceptor, causing pinholes and deteriorating the electrophotographic properties, whereas film-like abrasive material This is because in the case of , there is almost no embedding.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、感光体表面を研磨材で圧接研磨して粗面
化する従来の機械的研磨法では、研磨材の圧接状態、圧
接圧、研磨速度の違いにより同一感光体上でもその粗面
化状態にむらが生じてしまい、粗面化状態を制御するこ
とは非常に困難であり、粗面化状態の浅い所では、クリ
ーニングブレードと感光体との間の摩擦が緩和されずに
クリーニングブレードの反転やエツジ部の欠損が生じた
り、また、粗面化状態の深い所では、画像上の傷模様と
して画像欠陥が発生するなどの欠点があった。
However, in the conventional mechanical polishing method, in which the surface of a photoreceptor is polished by pressure contact with an abrasive material to make the surface rough, the roughening state may vary even on the same photoreceptor due to differences in the contact state of the abrasive material, the contact pressure, and the polishing speed. This causes unevenness and it is very difficult to control the roughened state. In areas where the roughened surface is shallow, the friction between the cleaning blade and the photoreceptor is not alleviated, causing the cleaning blade to reverse or There were drawbacks such as loss of edges, and image defects as scratch patterns on the image in deep roughened areas.

また、有機感光層を基体上に塗布した際、基体の端部に
膜厚のみだれ(通常50μm程度の凸)が生じ、このみ
だれは、電子写真プロセスに組み込んで使用した際にト
ナーの融着を引き起こし、画像欠陥を招くので感光層塗
工後乾燥前にみだれ部を溶剤により剥離する工程を設け
ることが通例になっている。しかしこの剥離を行うと、
未乾燥感光層や溶剤の液ハネ、および溶剤による塗膜の
変質が生じる場合が有り、感光体製造の収率を下げる原
因となっていた。
Furthermore, when an organic photosensitive layer is coated on a substrate, a sag in the film thickness (usually a convexity of about 50 μm) occurs at the edge of the substrate, and this sag occurs when the toner is fused when used in an electrophotographic process. Since this causes image defects, it is customary to provide a step of peeling off the sagging areas with a solvent after coating the photosensitive layer and before drying. However, when this peeling is performed,
In some cases, the undried photosensitive layer, the solvent splashes, and the coating film is deteriorated by the solvent, which causes a decrease in the yield of photoreceptor production.

本発明の目的は、クリーニングブレードの反転やエツジ
部の欠損等によるクリーニング不良及び画像上の傷模様
を防止することのできる電子写真感光体の表面粗面化処
理法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a surface roughening treatment method for an electrophotographic photoreceptor that can prevent cleaning failures and scratch patterns on images due to reversal of the cleaning blade, loss of edges, and the like.

本発明の他の目的は、このクリーニング不良を防止する
ために行う電子写真感光体の表面粗面化を所定の範囲内
に均一に行うことのできる、表面粗面化法を提供するこ
とにある。
Another object of the present invention is to provide a surface roughening method that can uniformly roughen the surface of an electrophotographic photoreceptor within a predetermined range in order to prevent this cleaning failure. .

本発明の更なる目的は、感光体塗工時に生じる膜厚のみ
だれ部を削減、均一化することのできる電子写真感光体
の表面粗面化処理法を提供することである。
A further object of the present invention is to provide a surface roughening treatment method for an electrophotographic photoreceptor that can reduce and make uniform the film thickness sag that occurs when coating the photoreceptor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、感光体表面の粗面化について鋭意検討を
重ねた結果、フィルム状研磨材を用いて電子写真感光体
の表面を粗面化する方法において、該感光体の部位に応
じて2種類以上の研磨粒子径の異なる研磨材を使い分け
て該感光体の表面処理を行うことによって、JIS規格
BO601で定義される10点平均粗さ(Rz)の測定
法で表してその最大値、平均値及び最小値(本明細書に
おいては、これらをそれぞれ最大面粗さ、平均面粗さ及
び最小面粗さと言う)がいずれも0.3〜5.0μmの
範囲内に入る均一な粗面状態が得られ、クリーニング不
良が防止できるとともに、更に、感光体の塗工時に発生
する膜厚のみだれの削除、均一化をも可能にしたもので
ある。
As a result of intensive studies on roughening the surface of a photoreceptor, the present inventors have developed a method for roughening the surface of an electrophotographic photoreceptor using a film-like abrasive material, which is suitable for different parts of the photoreceptor. By performing the surface treatment of the photoreceptor using two or more types of abrasives with different abrasive particle sizes, the maximum value expressed by the 10-point average roughness (Rz) measurement method defined in JIS standard BO601, A uniform rough surface whose average value and minimum value (in this specification, these are referred to as maximum surface roughness, average surface roughness, and minimum surface roughness, respectively) are all within the range of 0.3 to 5.0 μm. This makes it possible to prevent poor cleaning, and also to eliminate the sagging of the film thickness that occurs when coating the photoreceptor and to make it uniform.

即ち、本発明は、フィルム状研磨材を用いて電子写真感
光体の表面を粗面化する方法において、該感光体の部位
に応じて2種類以上の研磨粒子径の異なる研磨材を使い
分けて該感光体の表面処理を行うことを特徴とする電子
写真感光体の表面粗面化処理法である。
That is, the present invention provides a method for roughening the surface of an electrophotographic photoreceptor using a film-like abrasive, in which two or more types of abrasives having different abrasive particle sizes are selectively used depending on the part of the photoreceptor. This is a surface roughening treatment method for an electrophotographic photoreceptor, which is characterized by performing surface treatment on the photoreceptor.

フィルム状研磨材を用いて電子写真感光体の表面を粗面
化する方法において、クリーニングブレードと当接する
感光体表面の粗面化は、研磨粒子径が0.1μm未満だ
と粗面化の効果が出す、また5060μmより大きいと
感光体に傷が入り画像欠陥となるため、研磨粒子径が0
.1μmから50.0μmのもので粗面化し、約50μ
mちり上がっている感光体のみだれ部(画像域外)は、
より大きな研磨粒子径の研磨材を用いないと削り取るの
に時間がかかるため、大きめな研磨粒子径の研磨材で粗
面化するというのが本発明の特徴である。この感光体の
それぞれの部位の粗面化が終了した後、それぞれ研磨粒
子径の細かい研磨材で粗面化すると粗面化面が均一化さ
れるため、この粗面化工程を加えることが好ましい。
In a method of roughening the surface of an electrophotographic photoreceptor using a film-like abrasive, the surface of the photoreceptor that comes into contact with the cleaning blade has a roughening effect when the abrasive particle diameter is less than 0.1 μm. If the diameter is larger than 5060 μm, the photoreceptor will be scratched and image defects will occur.
.. Roughened from 1μm to 50.0μm, approximately 50μm
m The sagging part of the photoreceptor (outside the image area) where dust has risen,
It is a feature of the present invention that the surface is roughened using an abrasive material with a larger abrasive particle diameter, since it takes time to scrape off unless an abrasive material with a larger abrasive particle diameter is used. After the surface roughening of each part of the photoreceptor is completed, it is preferable to add this surface roughening step because the roughened surface will be made uniform by roughening each part with an abrasive having a fine abrasive particle size. .

本発明の表面粗面化法の実施に当たっては、例えば第1
図に示すように、フィルム状研磨材2、送り出しローラ
ー3、弾性押さえローラー4及び巻き取りローラー5か
らなる研磨系、及びフィルム状研磨材2′、送り出しロ
ーラー3′、弾性押さえローラー4′及び巻き取りロー
ラー5′からなる研磨系の2組あるいはそれ以上のフィ
ルム状研磨材による研磨系を用いる。このフィルム状研
磨材2 (2’ )は送り出しローラー3 (3’ )
から、電子写真感光体lに圧接しているゴム型押さえロ
ーラー4 (4’ )を経由させて巻き取りローラー5
 (5’ )へ矢印6(6′)の方向に移動させられこ
の際にフィルム状研磨材2 (2’ )は押さえローラ
ー4 (4’ )の位置で電子写真感光体lの表面を摺
擦する。本発明において用いられるフィルム状研磨材は
全てその粒子径が異なり、電子写真感光体1のそれぞれ
の部位に応じてそれぞれ研磨粒子径の適した研磨材が研
磨する。
In carrying out the surface roughening method of the present invention, for example, the first
As shown in the figure, a polishing system consisting of a film-like abrasive material 2, a delivery roller 3, an elastic pressure roller 4, and a take-up roller 5, a film-like abrasive material 2', a delivery roller 3', an elastic pressure roller 4', and a winding system are shown. A polishing system consisting of two or more sets of film-like abrasive material is used, including a polishing system consisting of a take-off roller 5'. This film-like abrasive material 2 (2') is transferred to the feed roller 3 (3')
From there, the winding roller 5
(5') in the direction of arrow 6 (6'), and at this time, the film-like abrasive material 2 (2') slides against the surface of the electrophotographic photoreceptor l at the position of the presser roller 4 (4'). do. The film-like abrasives used in the present invention all have different particle diameters, and an abrasive material with an appropriate abrasive particle diameter polishes each part of the electrophotographic photoreceptor 1.

本発明の実施に用いるフィルム状研磨材としては酸化ア
ルミニウム、シリコンカーバイド、酸化クローム、ダイ
ヤモンド等の微粒子をポリエステル等のフィルムに塗布
・固定したものがある。
Film-like abrasives used in the practice of the present invention include those in which fine particles of aluminum oxide, silicon carbide, chromium oxide, diamond, etc. are coated and fixed on a film of polyester or the like.

本発明の表面粗面化法によって処理される電子写真感光
体は、第3図に示すように、導電性支持体10上に有機
感光層11が積層されたものであり、この感光層11は
好ましくは電荷発生層12と電荷輸送層13に機能分離
された積層型感光層である。
The electrophotographic photoreceptor treated by the surface roughening method of the present invention has an organic photosensitive layer 11 laminated on a conductive support 10, as shown in FIG. Preferably, it is a laminated photosensitive layer in which a charge generation layer 12 and a charge transport layer 13 are functionally separated.

導電性支持体10として、アルミニウム、アルミニウム
合金、ステンレスなどの金属、導電性物質を単独又は適
当なバインダーと共に塗布して導電層を設けた金属、あ
るいは導電処理したプラスチックや紙などをドラム状又
はシート状に底形したものなど、従来公知のいずれのも
のも用いることができる。
The conductive support 10 may be a drum-shaped or sheet metal such as aluminum, aluminum alloy, or stainless steel, or a metal coated with a conductive substance alone or with an appropriate binder to provide a conductive layer, or a conductive-treated plastic or paper. Any conventionally known type can be used, such as one with a shaped bottom.

電荷発生層12は、アゾ顔料、キノン顔料、キノシアニ
ン顔料、ペリレン顔料、インジゴ顔料、フタロシアニン
顔料などの電荷発生物質を、ポリビニルブチラール、ポ
リスチレン、アクリル樹脂、ポリエステル、ポリ酢酸ビ
ニル、ポリカーボネートなどの結着性樹脂に分散含有さ
せて形成することができ、また、真空蒸着装置によって
蒸着膜として形成することもできる。好ましい膜厚は0
.01〜3μmである。
The charge generation layer 12 contains a charge generation substance such as an azo pigment, a quinone pigment, a quinocyanine pigment, a perylene pigment, an indigo pigment, or a phthalocyanine pigment, and a binding agent such as polyvinyl butyral, polystyrene, acrylic resin, polyester, polyvinyl acetate, or polycarbonate. It can be formed by being dispersed in a resin, or it can also be formed as a vapor deposited film using a vacuum evaporation device. The preferred film thickness is 0
.. 01-3 μm.

電荷輸送層13はスチリル系化合物、ヒドラゾン系化合
物、トリアリールアミン系化合物、カルバゾール系化合
物、オキサゾール系化合物、ピラゾリン系化合物などの
電荷輸送物質を、ボリアリレート、ポリスチレン、アク
リル樹脂、ポリエステル、ポリカーボネートなどの結着
剤樹脂に分散含有させて形成することができる。好まし
い膜厚は10〜301、tmである。また、感光層11
の構成として電荷発生層12を電荷輸送層13の上に形
成してもよく、さらには感光層11は前述の電荷発生物
質と電荷輸送物質とを同一層に含有させた単一層型であ
ってもよい。
The charge transport layer 13 contains a charge transport material such as a styryl compound, a hydrazone compound, a triarylamine compound, a carbazole compound, an oxazole compound, or a pyrazoline compound, or a charge transport material such as a polyarylate, polystyrene, acrylic resin, polyester, or polycarbonate. It can be formed by being dispersed in a binder resin. The preferred film thickness is 10-301, tm. In addition, the photosensitive layer 11
As a structure, the charge generation layer 12 may be formed on the charge transport layer 13, and furthermore, the photosensitive layer 11 may be a single layer type in which the charge generation substance and the charge transport substance described above are contained in the same layer. Good too.

さらに、導電性支持体10と感光層11との間には、接
着性及びバリヤー性を向上させるために下引き層などの
中間層を設けてもよい。
Furthermore, an intermediate layer such as an undercoat layer may be provided between the conductive support 10 and the photosensitive layer 11 in order to improve adhesiveness and barrier properties.

本発明の方法で表面粗面化された電子写真感光体は、感
光体に対してカウンタ一方向に当接されたゴムブレード
によるクリーニング手段を有する電子写真プロセスに用
いられる。
The electrophotographic photoreceptor whose surface has been roughened by the method of the present invention is used in an electrophotographic process having a cleaning means using a rubber blade brought into contact with the photoreceptor in one counter direction.

〈実施例1〉 80φX 360 m mのアルミニウムシリンダーを
支持体とし、これに可溶性ナイロン(6−66−610
−12四元ナイロン共重合体)の5%メタノール溶液を
浸漬塗布して1μm厚の下引き層を設けた。
<Example 1> An aluminum cylinder of 80φ x 360 mm was used as a support, and soluble nylon (6-66-610
A 1 μm thick undercoat layer was provided by dip coating a 5% methanol solution of -12 quaternary nylon copolymer).

次に下記構造式 のジアスアゾ顔料10部(重量部、以下同様)、ポリビ
ニルブチラール(ブチラール化度68%、数平均分子量
20000) 5部及びシクロヘキサノン50部をlφ
ガラスピーズを用いたサンドミルで20時間分散した。
Next, 10 parts (parts by weight, the same shall apply hereinafter) of a diazo pigment with the following structural formula, 5 parts of polyvinyl butyral (degree of butyralization 68%, number average molecular weight 20,000), and 50 parts of cyclohexanone were added to lφ
Dispersion was carried out for 20 hours using a sand mill using glass beads.

この分散液にメチルエチルケトン70〜120(適宜)
部を加え、下引層上に塗布して膜厚0.1μmの電荷発
生層を形成した。
Add 70 to 120 methyl ethyl ketone (as appropriate) to this dispersion.
A charge generating layer having a thickness of 0.1 .mu.m was formed by coating the undercoat layer on the undercoat layer.

次に、ビスフェノール2型ポリカーボネート(粘度平均
分子量30000) 10部及び下記構造式 のヒドラゾン化合物lO部をモノクロルベンゼン65部
中に溶解し、この溶液を上記電荷発生層上に浸漬塗布し
て18μm厚の電荷輸送層を形成した。これ等各層形成
時には充分乾燥を行った。この感光体の平均面粗さは0
.0μmであった。また、この感光体の収率は97%で
あった。
Next, 10 parts of bisphenol type 2 polycarbonate (viscosity average molecular weight 30,000) and 10 parts of a hydrazone compound having the following structural formula were dissolved in 65 parts of monochlorobenzene, and this solution was dip-coated onto the charge generation layer to form a 18 μm thick layer. A charge transport layer was formed. When forming these layers, sufficient drying was performed. The average surface roughness of this photoreceptor is 0
.. It was 0 μm. Further, the yield of this photoreceptor was 97%.

さて、上記方法で作製した感光体を、第1図に示す装置
を用いてクリーニングブレード当接部位に対しては、初
め研磨粒子径9.0μmの研磨材にて、次に研磨粒子径
0.5μmの研磨材にて粗面化する一方、同時に、膜厚
のみだれ部位に対しては、初め研磨粒子径80.0μm
の研磨材にて、次に研磨粒子径1.0μmの研磨材にて
粗面化を行ったところ、この感光体の表面平均面粗さ(
Rz)は1.0μmであり、最小・最大面粗さはそれぞ
れ0.8μm・1.2μmであり、更に膜厚ムラは3.
8μmの凸であった。また粗面化工程の収率は100%
であった。そしてこの感光体を帯電、像露光、現像、転
写およびゴムブレードによるクリーニング(線圧11g
/cm)を有する電子写真装置(NP−3525、キャ
ノン製)に組み入れて、繰り返し画像出し評価を行った
ところ、lO万枚まで何ら問題が発生しなかった。これ
を実施例1としてその結果を表1に示す。
Now, using the apparatus shown in FIG. 1, the photoreceptor produced by the above method was first coated with an abrasive material having an abrasive particle size of 9.0 μm, and then with an abrasive material having an abrasive particle size of 0 μm. While roughening the surface with a 5 μm abrasive, at the same time, for areas where the film thickness deteriorates, the initial abrasive particle size is 80.0 μm.
The average surface roughness of this photoreceptor was
Rz) is 1.0 μm, the minimum and maximum surface roughness are 0.8 μm and 1.2 μm, respectively, and the film thickness unevenness is 3.
The convexity was 8 μm. In addition, the yield of the surface roughening process is 100%.
Met. Then, this photoreceptor is charged, image exposed, developed, transferred, and cleaned with a rubber blade (linear pressure: 11 g).
/cm) and was incorporated into an electrophotographic device (NP-3525, manufactured by Canon) and repeated image output evaluations were performed, and no problems occurred until 10,000 copies were printed. This is Example 1 and the results are shown in Table 1.

〈実施例2〉 実施例1と同様にして塗工した感光体において、クリー
ニングブレード当接部位に対して、初め研磨粒子径12
,0μmの研磨材にて研磨する一方、膜厚のみだれ部位
に対しては初め研磨粒子径70.0μmの研磨材にて共
に同時に粗面化を行い、次に研磨粒子径0.3μmの研
磨材にて両部位を粗面化したところ、この感光体の表面
平均面粗さ(Rz)は1.1μmであり、最小・最大面
粗さはそれぞれ0.8μm・1.4μmであり、更に膜
厚ムラは5.0μmの凸であった。また粗面化工程の収
率は100%であった。この感光体を実施例1と同様の
電子写真装置に組み入れて繰り返し画像出し評価を行っ
たところ、lO万枚まで何ら問題が発生しなかった。こ
れを実施例2としてその結果を表1に示す。
<Example 2> In a photoconductor coated in the same manner as in Example 1, abrasive particles with a diameter of 12
, 0 μm abrasive material, while areas where the film thickness deteriorated were first roughened with a 70.0 μm abrasive particle diameter, and then polished with a 0.3 μm abrasive particle diameter. When both parts were roughened with a material, the average surface roughness (Rz) of this photoreceptor was 1.1 μm, and the minimum and maximum surface roughness were 0.8 μm and 1.4 μm, respectively. The film thickness unevenness was a convexity of 5.0 μm. Moreover, the yield of the surface roughening step was 100%. When this photoreceptor was incorporated into the same electrophotographic apparatus as in Example 1 and image output evaluation was repeated, no problems occurred until 10,000 copies were printed. This is referred to as Example 2 and the results are shown in Table 1.

〈実施例3〉 実施例1と同様にして塗工した感光体において、クリー
ニングブレードの当接部位に対して、初め研磨粒子径8
.0μmの研磨材にて、次に研磨粒子径0.3μmの研
磨材にて粗面化する一方、同時に、膜厚のみだれ部位に
対しては、研磨粒子径45.0μmの研磨材にてのみ粗
面化したところ、この感光体の表面平均面粗さ(Rz)
は1.2μmであり、最小・最大面粗さはそれぞれ0.
9μms1.4μmであり、更に膜厚ムラは6.5μm
の凸であった。また粗面化工程の収率は100%であっ
た。この感光体を実施例1と同様の電子写真装置に組み
入れて繰り返し画像出し評価を行ったところ、10万枚
まで何ら問題が発生しなかった。これを実施例3として
その結果を表1に示す。
<Example 3> In a photoconductor coated in the same manner as in Example 1, an abrasive particle with a diameter of 8 was initially applied to the contact area of the cleaning blade.
.. The surface is roughened with an abrasive of 0 μm and then with an abrasive with an abrasive particle size of 0.3 μm, while at the same time, for areas where the film thickness is degraded, only an abrasive with an abrasive particle size of 45.0 μm is used. When the surface was roughened, the surface average surface roughness (Rz) of this photoreceptor was
is 1.2 μm, and the minimum and maximum surface roughness are each 0.
9μms 1.4μm, and the film thickness unevenness is 6.5μm
It was a convex part. Moreover, the yield of the surface roughening step was 100%. When this photoreceptor was incorporated into the same electrophotographic apparatus as in Example 1 and image output evaluation was repeated, no problems occurred up to 100,000 copies. This is referred to as Example 3 and the results are shown in Table 1.

〈実施例4〉 実施例1と同様にして塗工した感光体において、クリー
ニングブレードの当接部位に対して、研磨粒子径3.0
μmの研磨材にてのみ粗面化する一方、同時に膜厚のみ
だれ部位に対しては研磨粒子径80.0μmの研磨材に
てのみ粗面化したところ、この感光体の表面平均面粗さ
(Rz)は1.4μm1最小・最大面粗さはそれぞれ0
.7μm−1,7μmであり、更に膜厚ムラは4.9μ
mの凸であった。また粗面化工程の収率は100%であ
った。そしてこの感光体を実施例1と同様の電子写真装
置に組み入れて繰り返し画像出し評価を行ったところ、
10万枚まで何ら問題が発生しなかった。これを実施例
4としてその結果を表1に示す。
<Example 4> In a photoreceptor coated in the same manner as in Example 1, an abrasive particle diameter of 3.0 was applied to the contact area of the cleaning blade.
The surface of this photoreceptor was roughened only with an abrasive of 80.0 μm in diameter, while at the same time, the area where the film thickness deteriorated was roughened only with an abrasive with an abrasive particle size of 80.0 μm. (Rz) is 1.4 μm 1 Minimum and maximum surface roughness are each 0
.. 7μm-1.7μm, and the film thickness unevenness is 4.9μm.
It was a convex shape of m. Moreover, the yield of the surface roughening step was 100%. Then, this photoreceptor was incorporated into an electrophotographic device similar to that in Example 1, and image output evaluation was repeatedly performed.
No problems occurred up to 100,000 sheets. This is referred to as Example 4 and the results are shown in Table 1.

〈比較例1〉 実施例1において感光体を研磨しない以外は同様の装置
、実験を行ったところ、繰り返し画像出し10万枚程で
クリーニングブレードの反転が起こり、装置が作動しな
くなった。これを比較例1としてその結果を表1に示す
<Comparative Example 1> When an experiment was conducted using the same apparatus as in Example 1 except that the photoreceptor was not polished, the cleaning blade reversed after about 100,000 images were repeatedly produced, and the apparatus stopped working. This was used as Comparative Example 1 and the results are shown in Table 1.

〈比較例2〉 実施例1と同様にして塗工した感光体において、クリー
ニングブレード当接部位に対してのみ、初め研磨粒子径
9.0μmの研磨材にて、次に研磨粒子径0.5μmの
研磨材にて粗面化を行ったところ、この感光体の表面平
均面粗さ(Rz)は1.0μmであり、最小・最大面粗
さはそれぞれ0.8μm・1.2μmであったが膜厚の
みだれ部位は粗面化していないため52.3μmの凸の
ままであった。ただし粗面化工程の収率は100%であ
った。この感光体を実施例1と同様の電子写真装置に組
み入れて繰り返し画像出し評価を行ったところ、2万枚
すぎから膜厚のみだれ部にトナーの融着が起こり始め、
3万枚位には画像欠陥として表われるようになった。こ
れを比較例2としてその結果を表1に示す。
<Comparative Example 2> In a photoconductor coated in the same manner as in Example 1, only the area in contact with the cleaning blade was first coated with an abrasive having an abrasive particle diameter of 9.0 μm, and then an abrasive material having an abrasive particle diameter of 0.5 μm was applied. When the surface was roughened using an abrasive, the average surface roughness (Rz) of this photoreceptor was 1.0 μm, and the minimum and maximum surface roughness were 0.8 μm and 1.2 μm, respectively. However, the area where the film thickness decreased remained a convex portion of 52.3 μm because the surface was not roughened. However, the yield of the surface roughening step was 100%. When this photoreceptor was installed in the same electrophotographic apparatus as in Example 1 and image output evaluation was repeatedly performed, it was found that after 20,000 copies, toner fusion began to occur at the sagging part of the film thickness.
Image defects began to appear after around 30,000 copies. This was treated as Comparative Example 2 and the results are shown in Table 1.

〈比較例3〉 実施例1と同様にして塗工した感光体において、感光層
塗工後乾燥前に膜厚のみだれている部位を溶剤により剥
離する工程を設けた。この感光体をクリーニングブレー
ド当接部位に対してのみ、初め研磨粒子径9.0μmの
研磨材にて、次に研磨粒子径0.5μmの研磨材にて粗
面化を行ったところ、この感光体の表面平均面粗さ(R
z)は1.0μm1最小・最大面粗さはそれぞれ0.8
μm−1,2μmであり、更に膜厚ムラは5.5μmで
あった。ただし、粗面化工程の収率は100%ではある
もののその前の膜厚みだれの剥離工程により、感光体塗
工の収率は88%と下がった。これを比較例3として、
その結果を表1に示す。
<Comparative Example 3> In a photoreceptor coated in the same manner as in Example 1, after coating the photosensitive layer and before drying, a step of peeling off the portion where the film thickness was reduced using a solvent was provided. The surface of this photoreceptor was roughened only at the area in contact with the cleaning blade, first with an abrasive with an abrasive particle size of 9.0 μm, and then with an abrasive with an abrasive particle size of 0.5 μm. Body surface average surface roughness (R
z) is 1.0μm1 The minimum and maximum surface roughness are each 0.8
μm-1.2 μm, and the film thickness unevenness was 5.5 μm. However, although the yield of the surface roughening step was 100%, the yield of photoreceptor coating was lowered to 88% due to the step of peeling off the film thickness before that. Using this as comparative example 3,
The results are shown in Table 1.

以上、実施例1〜4及び比較例1〜3かられかるように
、感光体の部位に応じて2種類以上の研磨粒子径の異な
る研磨材を使い分けて該感光体の表面処理を行うことに
より、均一な粗面化ができ、クリーニングブレードと感
光体表面との間の潤滑持続性が向上するとともに、感光
体塗工時の膜厚ムラを、感光体製造収率を下げることな
く削減、削除できることがわかる。
As can be seen from Examples 1 to 4 and Comparative Examples 1 to 3, the surface treatment of the photoreceptor is carried out by selectively using two or more types of abrasives with different abrasive particle diameters depending on the part of the photoreceptor. , the surface can be uniformly roughened, the lubrication duration between the cleaning blade and the photoconductor surface is improved, and the uneven film thickness during photoconductor coating can be reduced or eliminated without reducing the photoconductor manufacturing yield. I know what I can do.

〔発明の効果〕〔Effect of the invention〕

以上説明して来たように、本発明によれば均一な粗面化
を収率を下げずに出来、すぐれた、クリーニング不良の
ない画像を得ることができる。
As explained above, according to the present invention, it is possible to uniformly roughen the surface without reducing the yield, and it is possible to obtain an excellent image without any cleaning defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の表面粗面化法に用いることのできる装
置の模式的断面図である。 第2図はクリーニングブレードを利用するクリーニング
装置の作用を説明するためのその概要断面図である。 第3図は本発明の表面粗面化法によって処理される電子
写真感光体の一例を示す断面図である。 弔 図
FIG. 1 is a schematic cross-sectional view of an apparatus that can be used in the surface roughening method of the present invention. FIG. 2 is a schematic cross-sectional view for explaining the operation of a cleaning device using a cleaning blade. FIG. 3 is a sectional view showing an example of an electrophotographic photoreceptor treated by the surface roughening method of the present invention. Funeral map

Claims (1)

【特許請求の範囲】[Claims] フィルム状研磨材を用いて電子写真感光体の表面を粗面
化する方法において、該感光体の部位に応じて2種類以
上の研磨粒子径の異なる研磨材を使い分けることを特徴
とする電子写真感光体の表面粗面化法。
An electrophotographic photosensitive method for roughening the surface of an electrophotographic photoreceptor using a film-like abrasive material, characterized in that two or more types of abrasive materials having different abrasive particle sizes are used depending on the part of the photoreceptor. Body surface roughening method.
JP21977089A 1989-08-25 1989-08-25 Method for roughing surface of electrophotographic sensitive body Pending JPH0381773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21977089A JPH0381773A (en) 1989-08-25 1989-08-25 Method for roughing surface of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21977089A JPH0381773A (en) 1989-08-25 1989-08-25 Method for roughing surface of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0381773A true JPH0381773A (en) 1991-04-08

Family

ID=16740735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21977089A Pending JPH0381773A (en) 1989-08-25 1989-08-25 Method for roughing surface of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0381773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086319A (en) * 2005-09-21 2007-04-05 Canon Inc Electrophotographic photoreceptor, method for manufacturing the same, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086319A (en) * 2005-09-21 2007-04-05 Canon Inc Electrophotographic photoreceptor, method for manufacturing the same, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
US4663259A (en) Electrophotographic photosensitive member and image forming process using the same
US5148639A (en) Surface roughening method for organic electrophotographic photosensitive member
JPS6330850A (en) Electrophotographic sensitive body
JPH02150850A (en) Surface roughening method for electrophotographic sensitive body
JPH02139566A (en) Process for roughening surface of organic electrophotographic sensitive body
JP2009031499A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2007086319A (en) Electrophotographic photoreceptor, method for manufacturing the same, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor
JPH0350551A (en) Surface roughening method for electrophotographic sensitive body
JPH0381773A (en) Method for roughing surface of electrophotographic sensitive body
JPH0320768A (en) Cleaning method for electrophotographic photosensitive body
JP2749882B2 (en) Electrophotographic photoreceptor surface roughening treatment method
JP2008076435A (en) Electrophotographic apparatus
JP2006194932A (en) Electrophotographic photoreceptor, electrophotographic image forming method, electrophotographic image forming apparatus and process cartridge
JP2702252B2 (en) Surface roughening method for organic electrophotographic photoreceptor
JPH02105161A (en) Manufacture of electrophotographic sensitive body
JPH02210356A (en) Surface roughening method for organic electrophotographic sensitive body
JPH0792697A (en) Electrophotographic photoreceptor and its production
JPH02139564A (en) Process for roughening surface of organic electrophotographic sensitive body
JPH03184053A (en) Surface roughening method for organic electrophotographic sensitive body
JPH02129647A (en) Surface roughening device for organic electrophotographic sensitive body
JPH0341455A (en) Surface roughening treatment of electrophotographic sensitive body
JPH02139565A (en) Process for roughening surface of organic electrophotographic sensitive body
JPH0310277A (en) Surface treatment of electrophotographic sensitive body
JPH0797218B2 (en) Method for dry surface roughening treatment of organic electrophotographic photoreceptor
JPH0310276A (en) Surface processing device for electrophotographic photosensitive body