JPH0381283B2 - - Google Patents

Info

Publication number
JPH0381283B2
JPH0381283B2 JP5818887A JP5818887A JPH0381283B2 JP H0381283 B2 JPH0381283 B2 JP H0381283B2 JP 5818887 A JP5818887 A JP 5818887A JP 5818887 A JP5818887 A JP 5818887A JP H0381283 B2 JPH0381283 B2 JP H0381283B2
Authority
JP
Japan
Prior art keywords
temperature
resistance
thin film
substrate
thermometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5818887A
Other languages
Japanese (ja)
Other versions
JPS63224201A (en
Inventor
Takashi Yotsuya
Soichi Ogawa
Katsumi Takiguchi
Masaaki Yoshitake
Shozo Tamaoki
Hiroshi Aoki
Tadashi Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Original Assignee
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture filed Critical Osaka Prefecture
Priority to JP5818887A priority Critical patent/JPS63224201A/en
Publication of JPS63224201A publication Critical patent/JPS63224201A/en
Publication of JPH0381283B2 publication Critical patent/JPH0381283B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、極低温下で磁場に感応しない温度計
用の測温抵抗体に関する。 従来の技術及びその問題点 近年極低温技術の研究が急ピツチで進められて
おり、特に極低温下での超電動磁石を利用した機
器類及び操作方法(例えば、加速器、磁気浮上列
車、電磁推進船、MRI、SOR等)及び極低温条
件における各種物性についての研究が精力的に進
められている。このように極低温と高磁場とが共
存する場においては、磁場の影響を受けることな
く、温度を正確に測定する必要があるが、現在の
ところ、満足すべき程度の精度を備えた温度計
は、存在しない。一般に、このタイプの極低温用
温度計としては、以下の様な特性を備えているこ
とが必要である。: (イ) 磁場による擾乱が小さい。 (ロ) 感度が高い。 (ハ) サーマルサイクルに対する安定性に優れてい
る。 (ニ) 測温領域が広い。 (ホ) 熱伝導率が高い材料により構成されている。 (ヘ) 熱容量が小さい。 現在使用されている極低温用温度計には、バル
ク型温度計として、Ge抵抗温度計、カーボン温
度計、白金温度計等;熱電対型温度計として、金
−鉄熱電対、銅−コンスタンタン熱電対;薄膜型
温度計として、Ni−Cr島状膜温度計、アモーフ
アス−Si膜温度計、Ge膜温度計;等がある。し
かしながら、これら既存の温度計は、上記(イ)〜(ヘ)
に示す特性のいずれかに優れている場合にも、他
の要件が著しく劣つており、実用上満足すべきも
のとは言い難い。 問題点を解決するための手段 本発明者は、上記の如き従来技術の問題点に鑑
みて種々研究を重ねた結果、基板上に特定組成の
窒化ジルコニウム薄膜を形成させる場合には、こ
れが前記(イ)〜(ヘ)の要件をバランス良く充足するこ
とを見出した。即ち、本発明は、基板上に厚さ
500〜5000Åの窒化ジルコニウム薄膜を備え、該
窒化ジルコニウム薄膜中の窒素含有量が50〜70%
であることを特徴とする極低温下で磁場に感応し
ない温度計用測温抵抗体に係るものである。 本発明にかかる測温抵抗体は、通常次の様にし
て製造される。但し、本発明測温抵抗体の製造方
法は、この方法に限定されるものではない。 先ず、ガラス、サフアイア、シリコンウエハー
等からなる基板を常法に従つてに洗浄する。基板
としてシリコンウエハーを使用する場合には、予
め加熱酸化条件下に電気絶縁を保ち得る程度の厚
さのSiO2層を表面に形成させておく。次いで、
該基板上にスパツタリング法によりZr−N薄膜
を形成させる。第1図に使用されるマグネトロン
スパツタリング装置の一例を示す。基板1をセツ
トしたスパツタリング装置3を油拡散ポンプ5及
びロータリポンプ7により1×10-5トール以上、
より好ましくは5×10-7トール程度まで排気した
後、ライン9からArを導入して内圧を6×10-3
トール程度とし、Zrターゲツト11の表面浄化
のために、Zrターゲツト11と基板1との間の
シヤツター(図示せず)を閉じて、プレスパツタ
リングを行なう。次いで、スパツタリング装置3
の内部を油拡散ポンプ5及びロータリポンプ7に
より再度上記と同様の減圧度となるまで排気した
後、ライン13からのN2と必要ならばライン9
からのArとを導入する。N2の分圧は0.4〜6×
10-3トール程度であり、必要に応じArで希釈し
て、全圧を6×10-3トール程度とすることが好ま
しい。但し、この圧力条件は、使用する装置の他
のパラメーターによつても、変動し得るので、必
ずしも限定的なものではない。この状態でヒータ
15により基板1の温度を100〜500℃程度、より
好ましくは約300℃程度に加熱保持しつつ、厚さ
500〜5000μm程度で且つ窒素含有量(原子比)
が50〜70%程度の窒化ジルコニウム薄膜が形成さ
れるまで、スパツタリング操作を行なう。窒素含
有量が50%未満の場合には、得られる抵抗体が正
の温度抵抗係数を持つか、或いは負の抵抗係数を
持つたとしても、その値は小さく、低温用の温度
計としては使用し難い。また、窒素含有量が60%
(測定制度±10%)を上回るZr−N系材料を得る
ことは、実際上困難である。 次いで、常法に従つて、真空蒸着法により、電
極を形成すると、本発明の測温抵抗体が得られ
る。電極材料としては、公知のものがいずれも使
用でき、Ag、Cr、Au、Cu、Al、Nb、V、In等
が例示される。 尚、第1図において、17は液体N2トラツプ、
19は電源をそれぞれ示す。 上記の如き操作により作成される本発明測温抵
抗体の一例を第2図に示す。該測温抵抗体は、基
板1上に窒化ジルコニウム薄膜21及び電極23
を備えている。 スパツタリング操作時のスパツタリング装置内
全圧(N2分圧+Ar分圧)を6×10-3トールとし
た場合のN2分圧PN(横軸)と薄膜中の窒素および
ジルコニウムの原子比A.C.(縦軸)との関係の一
例を第3図に示す。N2分圧が0.4〜6×10-3トー
ルの範囲において、窒素の原子比が50〜70%の範
囲内にあることが明らかである。但し、前述の如
く、この圧力条件は、使用するスパツタリング装
置によつて変動する場合がある。 発明の効果 本発明によれば、高磁場の存在下での極低温用
温度計に要求される前記(イ)〜(ヘ)なる全ての特性を
バランス良く備えた測温用抵抗体が得られる。 実施例 以下に実施例及び比較例を示し、本願発明の特
徴とするところをより一層明らかにする。 実施例 1 第4図に本発明による測温抵抗体のサーマルサ
イクルに体する安定性試験の結果を示す。各曲線
に対応する測温抵抗体の製造条件及び諸元は、以
下の通りである。 曲線1…N2分圧:3×10-3トール、サフアイア
基板温度:300℃、窒化ジルコニウム薄膜:の
厚さ:2000Å、電極:Ag/Cr 曲線2…N2分圧:2.7×10-3トール、その他は曲
線1の測温抵抗体に同じ 曲線2…N2分圧:3.3×10-3トール、その他は曲
線1の測温抵抗体に同じ 試験は、2Kと300Kの間で2回のサーマルサイ
クルを繰返して行なつたが、第4図から明らかな
様に、抵抗特性に実質的な変化は、認められなか
つた。 比較例 1 スパツタリング操作時の基板温度を常温とする
以外は実施例1と同様にして、測温用抵抗体を作
成した後、実施例1と同様にして、サーマルサイ
クルに対する安定性試験に供した。結果を第5図
に示す。 曲線4は、第1回目のサーマルサイクルの結果
であり、曲線5は、第2回目のサーマルサイクル
の結果である。第5図から、スパツタリング操作
時の基板温度を常温として得られた本比較例の測
温用抵抗体は、サーマルサイクルに対する安定性
に欠けていることが明らかである。 実施例 2 実施例1の曲線1(第4図)に示すものと同様
のZr−N測温用抵抗体を液体窒素に浸漬し、次
いで空気中に取出して室温まで上昇させるという
サーマルサイクルに供した。液体窒素温度
(77K)における50回のサーマルサイクル毎の抵
抗値を第6図に示す。抵抗変動は、温度に換算し
て0.07K以下であることが明らかである。 実施例 3 実施例1の曲線3(第4図)に示すものと同様
のZr−N測温用抵抗体を使用して、4.2Kにおけ
る磁場による抵抗(測ち測定温度)への影響を調
べた。結果は、第7図に示す通りである。 磁場方向と測定電流方向とを平行にすると、6
テスラの高磁場においても、4/1000K以下の変動
しか生じていない。これは、従来磁場による影響
が少ないとされているカーボン抵抗温度計に比し
て、僅か1/10〜1/100程度に過ぎない。 実施例 4 実施例1の曲線3(第4図)に示すものと同様
のZr−N測温用抵抗体を使用して、いろいろの
温度での感度(1/R・dR/dT)を測定した。
ppm/Kで表わした感度を第1表に示す。 尚、第1表には、白金薄膜温度計(白金と略
記)及びカーボン抵抗温度計(Cと略記)につい
ての結果を併せて示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a resistance temperature detector for a thermometer that is not sensitive to magnetic fields at extremely low temperatures. Conventional technologies and their problems In recent years, research on cryogenic technology has been progressing at a rapid pace. Research on various physical properties under extremely low temperature conditions (ships, MRI, SOR, etc.) is being actively pursued. In such a field where extremely low temperatures and high magnetic fields coexist, it is necessary to accurately measure temperature without being affected by the magnetic field, but currently there are no thermometers with a satisfactory degree of accuracy. does not exist. Generally, this type of cryogenic thermometer must have the following characteristics. : (a) Disturbance caused by the magnetic field is small. (b) High sensitivity. (c) Excellent stability against thermal cycles. (d) Wide temperature measurement area. (e) Constructed from a material with high thermal conductivity. (f) It has a small heat capacity. Cryogenic thermometers currently in use include bulk type thermometers such as Ge resistance thermometers, carbon thermometers, platinum thermometers, etc.; thermocouple type thermometers such as gold-iron thermocouples and copper-constantan thermocouples. As thin film thermometers, there are Ni-Cr island film thermometers, amorphous-Si film thermometers, Ge film thermometers, etc. However, these existing thermometers are
Even if the material is excellent in any of the characteristics shown in the following, the other requirements are markedly inferior, and it is difficult to say that it is practically satisfactory. Means for Solving the Problems The present inventor has conducted various studies in view of the problems of the prior art as described above, and has found that when forming a zirconium nitride thin film of a specific composition on a substrate, the above ( It has been found that requirements (a) to (f) are satisfied in a well-balanced manner. That is, the present invention provides a method for forming a thickness on a substrate.
Equipped with a zirconium nitride thin film of 500 to 5000 Å, and the nitrogen content in the zirconium nitride thin film is 50 to 70%.
The present invention relates to a resistance thermometer for thermometers that is not sensitive to magnetic fields at extremely low temperatures. The temperature measuring resistor according to the present invention is usually manufactured as follows. However, the method for manufacturing the temperature measuring resistor of the present invention is not limited to this method. First, a substrate made of glass, sapphire, silicon wafer, etc. is cleaned according to a conventional method. When a silicon wafer is used as a substrate, a SiO 2 layer is formed on the surface in advance to a thickness sufficient to maintain electrical insulation under heating oxidation conditions. Then,
A Zr--N thin film is formed on the substrate by sputtering. FIG. 1 shows an example of a magnetron sputtering device used. The sputtering device 3 with the substrate 1 set thereon is heated to a temperature of 1×10 -5 torr or more using an oil diffusion pump 5 and a rotary pump 7.
More preferably, after exhausting to about 5×10 -7 Torr, Ar is introduced from line 9 to reduce the internal pressure to 6×10 -3
To clean the surface of the Zr target 11, a shutter (not shown) between the Zr target 11 and the substrate 1 is closed, and pre-sputtering is performed. Next, sputtering device 3
After evacuating the inside of the unit using the oil diffusion pump 5 and the rotary pump 7 until the same degree of pressure reduction as above is achieved, N 2 from the line 13 and, if necessary, the line 9
Introducing Ar from The partial pressure of N2 is 0.4~6×
The total pressure is preferably about 10 -3 Torr, and the total pressure is preferably about 6×10 -3 Torr by diluting with Ar if necessary. However, this pressure condition is not necessarily limited as it may vary depending on other parameters of the apparatus used. In this state, while heating and maintaining the temperature of the substrate 1 at about 100 to 500 degrees Celsius, preferably about 300 degrees Celsius, using the heater 15,
Approximately 500 to 5000 μm and nitrogen content (atomic ratio)
The sputtering operation is performed until a thin film of zirconium nitride with a thickness of about 50 to 70% is formed. If the nitrogen content is less than 50%, the obtained resistor has a positive temperature resistance coefficient, or even if it has a negative resistance coefficient, its value is small and it cannot be used as a thermometer for low temperatures. It's difficult. Also, the nitrogen content is 60%
(Measurement accuracy ±10%) It is actually difficult to obtain a Zr-N based material. Next, electrodes are formed by vacuum evaporation according to a conventional method to obtain the temperature measuring resistor of the present invention. As the electrode material, any known material can be used, and examples include Ag, Cr, Au, Cu, Al, Nb, V, and In. In addition, in Fig. 1, 17 is a liquid N2 trap,
Reference numeral 19 indicates a power source. FIG. 2 shows an example of the temperature measuring resistor of the present invention produced by the above-described operations. The temperature sensing resistor includes a zirconium nitride thin film 21 and an electrode 23 on a substrate 1.
It is equipped with N2 partial pressure P N (horizontal axis) and atomic ratio AC of nitrogen and zirconium in the thin film when the total pressure ( N2 partial pressure + Ar partial pressure) in the sputtering equipment during sputtering operation is 6 × 10 -3 Torr (vertical axis) is shown in FIG. It is clear that for N2 partial pressures in the range of 0.4 to 6 x 10-3 Torr, the atomic ratio of nitrogen is in the range of 50 to 70%. However, as mentioned above, this pressure condition may vary depending on the sputtering device used. Effects of the Invention According to the present invention, it is possible to obtain a temperature measuring resistor that has all of the above-mentioned characteristics (a) to (f) in a well-balanced manner required for a cryogenic thermometer in the presence of a high magnetic field. . Examples Examples and comparative examples are shown below to further clarify the characteristics of the present invention. Example 1 FIG. 4 shows the results of a stability test of the resistance temperature detector according to the present invention under thermal cycling. The manufacturing conditions and specifications of the resistance temperature detector corresponding to each curve are as follows. Curve 1... N2 partial pressure: 3×10 -3 Torr, Saphire substrate temperature: 300℃, Zirconium nitride thin film: thickness: 2000Å, electrode: Ag/Cr Curve 2... N2 partial pressure: 2.7×10 -3 Curve 2...N 2 Partial pressure: 3.3 x 10 -3 Torr, otherwise the same as the resistance temperature detector of curve 1 Tested twice between 2K and 300K As is clear from FIG. 4, no substantial change was observed in the resistance characteristics. Comparative Example 1 A temperature measuring resistor was prepared in the same manner as in Example 1 except that the substrate temperature during the sputtering operation was kept at room temperature, and then subjected to a stability test against thermal cycles in the same manner as in Example 1. . The results are shown in Figure 5. Curve 4 is the result of the first thermal cycle, and curve 5 is the result of the second thermal cycle. From FIG. 5, it is clear that the temperature measuring resistor of this comparative example, which was obtained with the substrate temperature at room temperature during the sputtering operation, lacks stability against thermal cycles. Example 2 A Zr-N temperature measuring resistor similar to that shown in curve 1 (Figure 4) of Example 1 was subjected to a thermal cycle in which it was immersed in liquid nitrogen, then taken out into the air and allowed to rise to room temperature. did. Figure 6 shows the resistance values after 50 thermal cycles at liquid nitrogen temperature (77K). It is clear that the resistance variation is less than 0.07K when converted to temperature. Example 3 Using a Zr-N temperature measuring resistor similar to that shown in curve 3 (Figure 4) of Example 1, the influence of the magnetic field on the resistance (measured temperature) at 4.2K was investigated. Ta. The results are shown in FIG. If the direction of the magnetic field and the direction of the measurement current are made parallel, 6
Even in Tesla's high magnetic field, fluctuations of less than 4/1000K occur. This is only about 1/10 to 1/100 of the conventional carbon resistance thermometer, which is said to be less affected by magnetic fields. Example 4 Using a Zr-N temperature measuring resistor similar to that shown in curve 3 of Example 1 (Figure 4), the sensitivity (1/R・dR/dT) was measured at various temperatures. did.
The sensitivity expressed in ppm/K is shown in Table 1. Table 1 also shows the results for a platinum thin film thermometer (abbreviated as platinum) and a carbon resistance thermometer (abbreviated as C).

【表】 第1表に示す結果から、本発明測温抵抗体が、
広い温度領域において平均した良好な測定精度を
発揮することが明らかである。
[Table] From the results shown in Table 1, it can be seen that the resistance temperature detector of the present invention
It is clear that good average measurement accuracy is exhibited over a wide temperature range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明測温抵抗体の製造方法の一例
を示す概略図、第2図は、本発明測温抵抗体の一
例を示す平面図、第3図は、スパツタリング操作
時のN2分圧(横軸)と得られた薄膜中の窒素お
よびジルコニウムの原子比(縦軸)との関係を示
すグラフ、第4図は、本発明測温抵抗体のサーマ
ルサイクルに対する安定性を示すグラフ、第5図
は、比較例による測温抵抗体のサーマルサイクル
に対する安定性を示すグラフ、第6図は、本発明
による測温抵抗体のサーマルサイクルに対する安
定性を示す第2のグラフ、第7図は、本発明測温
抵抗体に対する磁場の影響を示すグラフである。 1……基板、3……スパツタリング装置、5…
…油拡散ポンプ、7……ロータリポンプ、11…
…ターゲツト、15……ヒータ、19……電源、
21……窒化ジルコニウム薄膜、23……電極。
FIG. 1 is a schematic diagram showing an example of a method for manufacturing a temperature measuring resistor of the present invention, FIG. 2 is a plan view showing an example of a temperature measuring resistor of the present invention, and FIG. A graph showing the relationship between the partial pressure (horizontal axis) and the atomic ratio of nitrogen and zirconium in the obtained thin film (vertical axis). FIG. 4 is a graph showing the stability of the resistance temperature detector of the present invention against thermal cycles. , FIG. 5 is a graph showing the stability against thermal cycles of the resistance bulb according to the comparative example, FIG. 6 is a second graph showing the stability against thermal cycles of the resistance temperature sensor according to the present invention, and FIG. The figure is a graph showing the influence of a magnetic field on the resistance temperature detector of the present invention. 1...Substrate, 3...Sputtering device, 5...
...Oil diffusion pump, 7...Rotary pump, 11...
...Target, 15...Heater, 19...Power supply,
21... Zirconium nitride thin film, 23... Electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に厚さ500〜5000Åの窒化ジルコニウ
ム薄膜を備え、該窒化ジルコニウム薄膜中の窒素
含有量が50〜70%であることを特徴とする極低温
下で磁場に感応しない温度計用測温抵抗体。
1. Temperature measurement for a thermometer that is insensitive to magnetic fields at extremely low temperatures, comprising a zirconium nitride thin film with a thickness of 500 to 5000 Å on a substrate, and characterized in that the nitrogen content in the zirconium nitride thin film is 50 to 70%. resistor.
JP5818887A 1987-03-12 1987-03-12 Temperature measuring resistor for thermometer not sensitive to magnetic field under cryogenic conditions Granted JPS63224201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5818887A JPS63224201A (en) 1987-03-12 1987-03-12 Temperature measuring resistor for thermometer not sensitive to magnetic field under cryogenic conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5818887A JPS63224201A (en) 1987-03-12 1987-03-12 Temperature measuring resistor for thermometer not sensitive to magnetic field under cryogenic conditions

Publications (2)

Publication Number Publication Date
JPS63224201A JPS63224201A (en) 1988-09-19
JPH0381283B2 true JPH0381283B2 (en) 1991-12-27

Family

ID=13077043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5818887A Granted JPS63224201A (en) 1987-03-12 1987-03-12 Temperature measuring resistor for thermometer not sensitive to magnetic field under cryogenic conditions

Country Status (1)

Country Link
JP (1) JPS63224201A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367285A (en) * 1993-02-26 1994-11-22 Lake Shore Cryotronics, Inc. Metal oxy-nitride resistance films and methods of making the same
JP4500988B2 (en) * 2003-02-28 2010-07-14 国立大学法人 名古屋工業大学 Low magnetoresistance transition metal cluster aggregate and method for producing the same

Also Published As

Publication number Publication date
JPS63224201A (en) 1988-09-19

Similar Documents

Publication Publication Date Title
Denlinger et al. Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K
Zawilski et al. Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples
Riddle et al. Platinum resistance thermometry
HU190960B (en) Method and measuring apparatus for determining the coefficient of thermal conduction and heat capacty
Yotsuya et al. New type cryogenic thermometer using sputtered Zr‐N films
Dannenberg et al. Resistivity, thermopower and the correlation to infrared active vibrations of Mn1. 56Co0. 96Ni0. 48O4 spinel films sputtered in an oxygen partial pressure series
Wood et al. An investigation of the stability of thermistors
JPH07134110A (en) Combination type semiconductor gas sensitive element
Revaz et al. Si-N membrane-based microcalorimetry: Heat capacity and thermal conductivity of thin films
Sundeen et al. Thermal sensor properties of cermet resistor films on silicon substrates
Star et al. Toward simple powers of T in the Kondo effect: III. Transport properties and specific heat of Pd-Cr and Pt-Cr alloys
Berry Effect of Pt oxidation on Pt resistance thermometry
US3472074A (en) Maximum thermometer for surface temperature measurements
Zink et al. Thin film microcalorimeter for heat capacity measurements in high magnetic fields
Bjerkaas et al. Electronic thermal conductivity of superconducting thin films of indium-manganese alloys
Kopp et al. Carbon resistors as low temperature thermometers
JPH0381283B2 (en)
CN205642668U (en) SMD temperature sensor
US5775811A (en) Temperature sensor system using a micro-crystalline semiconductor thin film
Challoner et al. A radial heat-flow apparatus for liquid thermal conductivity determinations
CN114910183A (en) Atomic layer thermopile heat flow sensor and preparation method
JP3300110B2 (en) Gas detector
JP2001110606A (en) Resistance bulb for thermometer unaffected by magnetic field under very low temperature
Seki et al. Characteristics of germanium thin film thermometers for use at low temperatures
Onodera et al. An Adiabatic Calorimeter for Heat Capacity Measurements in the Temperature Range from 80 to 550 K. Heat Capacities of α-Alumina (Sapphire) and Anhydrous Magnesium Acetate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term