JPH03810A - Nylon 66 yarn having high modulus of elasticity and production thereof - Google Patents

Nylon 66 yarn having high modulus of elasticity and production thereof

Info

Publication number
JPH03810A
JPH03810A JP13403789A JP13403789A JPH03810A JP H03810 A JPH03810 A JP H03810A JP 13403789 A JP13403789 A JP 13403789A JP 13403789 A JP13403789 A JP 13403789A JP H03810 A JPH03810 A JP H03810A
Authority
JP
Japan
Prior art keywords
nylon
polymer
fiber
elastic modulus
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13403789A
Other languages
Japanese (ja)
Other versions
JP2770421B2 (en
Inventor
Takeshi Tsuruno
鶴野 武
Kazuo Kurita
和夫 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1134037A priority Critical patent/JP2770421B2/en
Publication of JPH03810A publication Critical patent/JPH03810A/en
Application granted granted Critical
Publication of JP2770421B2 publication Critical patent/JP2770421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the title nylon 66 yarn useful for cord material of belt part of radial tire, having initial modulus of elasticity close to that of polyester, specific elongation at break, high modulus of elasticity, high strength and dimensional stability. CONSTITUTION:A low-molecular nylon 66 polymer having 2.3-2.9 relative viscosity in 10mg/ml polymer concentration at 20 deg.C in dissolving the polymer in 96% concentrated sulfonic acid solution is dried in vacuum, the polymer is subjected to melt spinning at >= the melting point of the polymer, extruded from a nozzle orifice at a shear rate r shown by the formula (Q is g/second amount delivered in single hole; D diameter cm of nozzle orifice; rho is specific gravity g/cm<3> of nylon 66) of <4X10<4>sec<-1>, cooled solidified, drawn at >=30X10<-3> birefringence, subjected to high-tension orientation at one stage or several stages at a temperature in a melting point peak of DSC melt curve to give the aimed nylon 66 yarn having >=70g/d initial modulus of elasticity, <=10% breaking elongation and <=3.0 dry heat shrinkage percentage at 160 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高弾性率ナイロン66繊維およびその製造方法
に関し、詳細には高弾性率・高強力であルト共に、寸法
安定性にも優れたナイロン66繊維およびその様なia
維を製造する為の方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high modulus nylon 66 fiber and a method for producing the same, and more specifically, the present invention relates to a high modulus nylon 66 fiber and a method for producing the same. Nylon 66 fiber and such ia
The present invention relates to a method for producing fibers.

[従来の技術] ナイロン66繊維は、工業的には、相対的粘度が4未満
のナイロン66を融点以上の温度で溶融紡糸し、熱延伸
および熱処理を行なうことによフて製造している。ナイ
ロン5aia維は他のポリアミド繊維に比べて、耐疲労
性や強度更にはゴムとの接着性等が優れていることから
タイヤコード用繊維または各種樹脂補強材として使用さ
れてきた。しかしながらナイロン66繊維は、他のポリ
アミド繊維に比べて若干(!れているとはいえ、産業用
に用いられる他の素材と比べると寸法安定性や初期弾性
率が低いという欠点を有し、タイヤコード用繊維として
は不十分である。例えば従来法で得られるナイロン66
繊維の物性値は、高強力タイプでも初期弾性率は40〜
60 g/d 、強度は6.0〜9.0g/d程度であ
る(産業用繊維資材ハンドブック二日本繊維機械学会、
昭和54年)。
[Prior Art] Nylon 66 fibers are industrially manufactured by melt-spinning nylon 66 having a relative viscosity of less than 4 at a temperature above its melting point, followed by hot drawing and heat treatment. Nylon 5aia fibers have been used as tire cord fibers or various resin reinforcing materials because they have superior fatigue resistance, strength, and adhesion to rubber compared to other polyamide fibers. However, although nylon 66 fibers are slightly lower than other polyamide fibers, they have the drawbacks of lower dimensional stability and lower initial elastic modulus than other materials used in industry. It is insufficient as a fiber for cords.For example, nylon 66 obtained by conventional methods
Regarding the physical properties of the fiber, the initial elastic modulus is 40~ even for high-strength type.
60 g/d, and the strength is about 6.0 to 9.0 g/d (Industrial Textile Materials Handbook 2, Japan Textile Machinery Society,
(Showa 54).

産業資材用ナイロン661a維としては、例えば特開昭
58−60012号、同58−174623号、同58
−208413号、同59−26517号、同60−8
13115号、同60−28537号、同60−104
546号。
Examples of nylon 661a fibers for industrial materials include JP-A-58-60012, JP-A-58-174623, and JP-A-58.
-208413, 59-26517, 60-8
No. 13115, No. 60-28537, No. 60-104
No. 546.

同81−34215号、同61−194214号等に数
多く知られており、特に特開昭58−208413号、
同59−26517号には初期弾性率が100 g/d
を超えるナイロン66繊維の製造方法が提案されている
。しかしながらこれらの技術においても、破断伸度や乾
熱収縮率の点では依然として不十分であり、タイヤコー
ド用繊維として要求される寸法安定性についてまで改良
されるには至りていない。
Many are known in JP-A No. 81-34215, No. 61-194214, etc., and in particular, JP-A No. 58-208413,
No. 59-26517 has an initial elastic modulus of 100 g/d.
A method for producing nylon 66 fiber has been proposed. However, even with these techniques, the elongation at break and dry heat shrinkage are still insufficient, and the dimensional stability required for fibers for tire cords has not been improved.

[発明が解決しようとする課題] 本発明はこうした技術的課題を解決する為になされたも
のであって、その目的は、高弾性率・高強度と共に、寸
法安定性にも優れたナイロン66繊維およびその様なナ
イロン66繊維を製造する寸法を提供することにある。
[Problems to be Solved by the Invention] The present invention was made to solve these technical problems, and its purpose is to create a nylon 66 fiber that has high elastic modulus, high strength, and excellent dimensional stability. and to provide dimensions for manufacturing such nylon 66 fibers.

[課題を解決する為の手段] 本発明に係る高弾性率ナイロン66Ifi維とは、下記
(a)〜(c)の要件を満足する点に要旨を有するもの
である。
[Means for Solving the Problems] The high modulus nylon 66Ifi fiber according to the present invention is characterized in that it satisfies the following requirements (a) to (c).

(a)初期弾性率≧70g/d (b)破断伸度≦10% (c) 1 a o℃乾熱収縮率≦3.0%また上記高
弾性率ナイロン66は破断強度が8.0g/d以上のも
のを含み、これは−層高強度であるゆ 一方上記の様な高弾性ナイロン66繊維は、96%濃硫
酸溶液中に重合体濃度が10 mg/mllとなる様に
溶解したときの20℃での相対粘度が2.3〜2.9で
ある低分子量ナイロン66ポリマーを真空乾燥処理した
後、該ポリマーの融点以上の温度で溶融紡糸し、下記(
1)式で表わされる剪断速度rが4X 10’sec 
”’未満となる様にノズルオリフィスから押出して冷却
固化し、該紡糸4条の複屈折率が30X10−3以上と
なる様に引取り、一旦巻取るかまたは巻取らないでDS
C溶解曲線における融点ピーク内温度での高張力延伸を
1段または数段行なうことによって得られる。
(a) Initial modulus of elasticity ≧70 g/d (b) Elongation at break ≦10% (c) 1 a °C dry heat shrinkage rate ≦3.0% Moreover, the above-mentioned high modulus nylon 66 has a breaking strength of 8.0 g/d. On the other hand, the high modulus nylon 66 fibers as described above, when dissolved in a 96% concentrated sulfuric acid solution at a polymer concentration of 10 mg/ml, have a high strength. A low molecular weight nylon 66 polymer having a relative viscosity of 2.3 to 2.9 at 20°C is vacuum-dried, and then melt-spun at a temperature above the melting point of the polymer to form the following (
1) The shear rate r expressed by the formula is 4X 10'sec
It is extruded from a nozzle orifice and cooled and solidified so that the birefringence of the four threads becomes less than 30x10-3, and the birefringence of the four spun threads is taken up to be 30X10-3 or more.
It is obtained by carrying out one or several stages of high-tension stretching at a temperature within the melting point peak in the C melting curve.

但し、Q:単孔吐出量(g/5ec) D=ノズルオリフィス直径 (cm) ρ:ナイロン66の比NIL (g/cm3)[作用コ ナイロン61Jl維の高性能化に対するこれまでの考え
方では、例えば特開昭59−26517号にも記述され
ている様に、繊維(ポリマー)の重合度は高ければ高い
ほど好ましいとされていた。
However, Q: single hole discharge rate (g/5ec) D = nozzle orifice diameter (cm) ρ: ratio of nylon 66 NIL (g/cm3) As described in JP-A No. 59-26517, it was believed that the higher the degree of polymerization of fibers (polymer), the better.

しかしながら本発明者らが、■ナイロン66ポリマーの
分子量、■高速紡糸時の配向結晶化、■延伸性の3つの
観点から研究を行なったところ、これまで用いられてい
るタイヤコードグレードの分子量では配向結晶化時の結
晶化が著しく進み、これらの未延伸糸では通常の延伸設
備を用いて延伸を行なっても高結晶化度の為に却って延
伸性が阻害されて高物性化の達成が困難であることを見
出した。即ちこれまでの高重合度のポリマーを用いて高
弾性率を達成するには、例えば特開昭58−20841
3号や同59−28517号等に示される様な、生産性
の伴わない特殊な延伸を行なうことが必須であることが
分かった。
However, the present inventors conducted research from the three viewpoints of (1) the molecular weight of nylon 66 polymer, (2) oriented crystallization during high-speed spinning, and (2) stretchability. Crystallization during crystallization progresses significantly, and even if these undrawn yarns are drawn using normal drawing equipment, the high degree of crystallinity actually hinders the drawability and makes it difficult to achieve high physical properties. I discovered something. That is, in order to achieve a high elastic modulus using conventional polymers with a high degree of polymerization, for example, Japanese Patent Application Laid-Open No. 58-20841
It has been found that it is essential to carry out special stretching that is not accompanied by productivity, as shown in No. 3 and No. 59-28517.

そこで本発明者らはこれまでの固定概念にとらわれるこ
となく、ナイロン66繊維の高性能化を達成すべく鋭意
研究を進めた。その結果、比較的低分子量のポリマーを
用い、このポリマーを溶融紡糸して適度に配向結晶化し
た未延伸糸を、融点近傍の掌囲気下で延伸を行なうこと
によって、高配向で且つ非晶性を残した高配向結晶化糸
が作成できること、および得られたナイロン66繊維は
高弾性率且つ高強度であり、寸法安定性にも優れている
ことを見出し、本発明を完成した。即ち本発明では、あ
る条件で測定したときの相対粘度が2.3〜2.9であ
るナイロン66ポリマーを用い、配向結晶化時の結晶化
度合いを抑制した未延伸糸を紡糸し、繊維を構成する高
分子鎖をできる限り高度にその繊維方向に延伸させるこ
と(即ち繊維の全延伸倍率をできる限り大きくすること
)によって、(a)初期弾性率≧70 g/d 、 (
b)破断伸度≦10%、(c)160℃乾熱収縮率≦3
゜0%の要件を満足し、更に好ましくは破断強度におい
ても8.0g/d以上の高弾性率ナイロン66iain
が実現できたのである。
Therefore, the present inventors, without being bound by conventional fixed concepts, conducted intensive research in order to achieve higher performance of nylon 66 fiber. As a result, by using a relatively low molecular weight polymer, melt-spinning this polymer to form an undrawn yarn that has been properly oriented and crystallized, and drawing it under an air surrounding the palm of your hand near its melting point, it is possible to create highly oriented and amorphous yarn. The present invention was completed based on the discovery that highly oriented crystallized threads with a high degree of elasticity can be produced, and that the obtained nylon 66 fibers have a high elastic modulus, high strength, and excellent dimensional stability. That is, in the present invention, a nylon 66 polymer having a relative viscosity of 2.3 to 2.9 when measured under certain conditions is used, and an undrawn yarn with a suppressed degree of crystallization during oriented crystallization is spun to form a fiber. By stretching the constituent polymer chains as highly as possible in the fiber direction (that is, increasing the total stretching ratio of the fiber as much as possible), (a) initial elastic modulus ≧70 g/d, (
b) Breaking elongation ≦10%, (c) 160°C dry heat shrinkage rate ≦3
High elastic modulus nylon 66iain that satisfies the requirement of 0% and more preferably has a breaking strength of 8.0 g/d or more.
was achieved.

本発明で使用されるナイロン66繊維とは、実質的には
ポリヘキサメチレンアジパミド単位を主構成要素とする
もの(95%モル以上)であるが、その他に共重合成分
やブレンドポリマーを含んでいてもよい。共重合し得る
他のポリアミド成分としては、例えばε−カプラミド、
ヘキサメチレンアジバカミド、ヘキサメチレンテレフタ
ラミド、ヘキサメチレンイソフタラミド等があり、ブレ
ンドし得るポリマーとしては上記共重合し得る成分をそ
れぞれ重合してなるポリマーがある。
The nylon 66 fiber used in the present invention is substantially composed of polyhexamethylene adipamide units as a main component (more than 95% mole), but does not contain other copolymer components or blend polymers. It's okay to stay. Examples of other polyamide components that can be copolymerized include ε-capramide,
Examples of such polymers include hexamethylene adibamide, hexamethylene terephthalamide, hexamethylene isophthalamide, and the like. Examples of polymers that can be blended include polymers obtained by polymerizing the above-mentioned copolymerizable components.

これ等のナイロン66ポリマーには必要に応じて艶消し
剤、B料、光安定剤、熱安定剤9酸化防止剤、帯電防止
剤、染色性向上剤或は接着性向上剤等を配合することが
でき、配合の如何によって本発明の特性に重大な悪影響
を与えるもの以外ならば全て利用できる。
These nylon 66 polymers may be blended with matting agents, B ingredients, light stabilizers, heat stabilizers 9, antioxidants, antistatic agents, dyeability improvers, adhesion improvers, etc. as necessary. All can be used as long as they do not have a serious adverse effect on the characteristics of the present invention depending on their formulation.

本発明のナイロン8BI11維を産業用途に用いる場合
は、熱、光、酸素等に対して十分な耐久性を付与する目
的で酸化防止剤を加えることが好ましい。酸化防止剤と
しては銅塩、例えば酢酸銅、塩化第一銅、塩化第二銅、
臭化第一銅、臭化第二銅、沃化第一銅、フタル酸銅、ス
テアリン酸銅。
When the nylon 8BI11 fiber of the present invention is used for industrial purposes, it is preferable to add an antioxidant for the purpose of imparting sufficient durability against heat, light, oxygen, etc. As antioxidants, copper salts such as copper acetate, cuprous chloride, cupric chloride,
Cuprous bromide, cupric bromide, cuprous iodide, copper phthalate, copper stearate.

および各種銅塩と有機化合物との錯塩、例えば8−オキ
シキノリン銅、2−メルカプトベンゾイミダゾールの銅
錯塩、好ましくは沃化第一銅、酢酸銅、2−メルカプト
ベンゾイミダゾールの沃化第一銅錯塩等や、アルカリま
たはアルカリ土類金属のハロゲン化物例えば沃化カリウ
ム、臭化カリウム、塩化カリウム、沃化ナトリウム、臭
化すI・リウム、塩化亜鉛、塩化カルシウム等や、有機
ハロゲン化物、例えばペンタヨードベンゼン、ヘキサブ
ロムベンゼン、テトラヨードテレフタル酸。
and complex salts of various copper salts and organic compounds, such as copper complex salts of 8-oxyquinoline copper and 2-mercaptobenzimidazole, preferably cuprous iodide complex salts of cuprous iodide, copper acetate, and 2-mercaptobenzimidazole. etc., alkali or alkaline earth metal halides such as potassium iodide, potassium bromide, potassium chloride, sodium iodide, I.lium bromide, zinc chloride, calcium chloride, etc., and organic halides such as pentaiodobenzene. , hexabromobenzene, tetraiodoterephthalic acid.

沃化メチレン、トリブチルエチルアンモニウムアイオダ
イド等や無機および有機リン化合物例えばビロリン酸ナ
トリウム、亜リン酸ナトリウム、トリフェニルホスフェ
イト、(9,10)−シバイドロー10− (3’ 、
5°−ジ−t−ブチル−4′−ヒドロキシベンジル)−
9−オキサーバーフォスファフェナンスレン−10−オ
キサイド等、およびフェノール系抗酸化剤例えばテキラ
キスー[メチレン−3−(3,5−ジ−t−ブチル−4
−ヒドロキシフェニル)プロピオネ−トコ−メタン、(
1,3,5,)−トリーメチル−(2,4,6,>−ト
リス(3,5−ジ−t−ブチル−4−ヒドロキシベンジ
ル)ベンゼン、  n −オクタデシル−3−(3゜5
−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピ
オネート、4−ヒドロキシ−3,5−ジ−t−ブチルベ
ンジルリン酸ジエチルエステル等や、アミン系抗酸化剤
例えばN、N’ −ジ−β−ナフチル−p−フェニレン
ジアミン、2−メルカプトベンゾイミダゾール、フェニ
ル−β−ナフチルアミン、 N、 Nジフェニル−p−
フ二二しンジアミン、ジフェニルアミンとアリルケトン
との縮合反応物、好ましくは沃化カリウム、2−メルカ
プトベンゾイミダゾール等がある。
Methylene iodide, tributylethylammonium iodide, etc., and inorganic and organic phosphorus compounds such as sodium birophosphate, sodium phosphite, triphenyl phosphate, (9,10)-sibidro 10-(3',
5°-di-t-butyl-4'-hydroxybenzyl)-
9-Oxabar phosphaphenanthrene-10-oxide etc., and phenolic antioxidants such as tequilaquis[methylene-3-(3,5-di-t-butyl-4
-hydroxyphenyl)propionate-co-methane, (
1,3,5,)-trimethyl-(2,4,6,>-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, n-octadecyl-3-(3゜5
-di-t-butyl-4-hydroxyphenyl)-propionate, 4-hydroxy-3,5-di-t-butylbenzyl phosphate diethyl ester, etc., and amine antioxidants such as N,N'-di-β -naphthyl-p-phenylenediamine, 2-mercaptobenzimidazole, phenyl-β-naphthylamine, N, N diphenyl-p-
Examples include phenyl diamine, a condensation reaction product of diphenylamine and allyl ketone, preferably potassium iodide, 2-mercaptobenzimidazole, and the like.

酸化防止剤は、ナイロン66ポリマーの重合工程中に投
入するか、あるいは一旦チツブ化したのちにチップにま
ぶして含有させることができる。
The antioxidant can be added during the polymerization process of the nylon 66 polymer, or once it has been made into chips, it can be sprinkled onto the chips.

酸化防止剤の含有量は、銅塩は銅として10〜300 
ppm 、好ましくは50〜200ppm、他の酸化防
止剤は0.01〜1%、好ましくは0.03〜O,S%
の範囲である。酸化防止剤は、通常銅塩と他の酸化防止
剤の1 fffi又は2f!1以上を組合せて使用する
ことが好ましい。
The content of antioxidant is 10 to 300% as copper for copper salt.
ppm, preferably 50-200 ppm, other antioxidants 0.01-1%, preferably 0.03-O,S%
is within the range of Antioxidants are usually 1 fffi or 2 f! of copper salts and other antioxidants. It is preferable to use one or more in combination.

本発明に係るナイロン66繊維の製造法および繊維の特
性について更に詳しく以下に述べる。
The method for producing nylon 66 fibers and the properties of the fibers according to the present invention will be described in more detail below.

本発明で用いるナイロン66ポリマーは、相対粘度(測
定法については後述する)が2.3〜2.9であること
が必要である。これは相対粘度が2.3未満で゛は、曳
糸性が悪くなり均一な未延伸糸が得られず、延伸糸の弾
性率は低下するからである。
The nylon 66 polymer used in the present invention needs to have a relative viscosity (measuring method will be described later) of 2.3 to 2.9. This is because if the relative viscosity is less than 2.3, the spinnability deteriorates, a uniform undrawn yarn cannot be obtained, and the elastic modulus of the drawn yarn decreases.

これに対し相対粘度が2.9を超えると高速紡糸時の配
向結晶化時の結晶化が顕著になり、比較的低配向度域で
結晶化が発現する。この結果、この高度結晶化が配向度
の向上を抑制し、目標とする配向度に到達できなかった
り、たとえ到達できたとしても、結晶化度が大きいため
に延伸性が低下し、延伸糸の弾性率や強度が低下し、破
断伸度は大きくなる。相対粘度が2.3以上、2.9以
下のナイロン66ポリマーは真空乾燥処理した後、ナイ
ロン66の融点よりも高い温度で溶融押出しされる。こ
の温度は融点よりも少なくとも20℃以上高いことが好
ましい。溶融押出方法としては特に限定するものではな
いが、エクストルーダー型押出機、ピストン型押出機、
2軸混練型押出機等の装置を用いる方法が例示される。
On the other hand, when the relative viscosity exceeds 2.9, crystallization during orientation crystallization during high-speed spinning becomes noticeable, and crystallization occurs in a relatively low degree of orientation region. As a result, this high degree of crystallization suppresses the improvement of the degree of orientation, and the target degree of orientation may not be achieved, or even if it is achieved, the drawability decreases due to the high degree of crystallinity, and the drawn yarn The elastic modulus and strength decrease, and the elongation at break increases. Nylon 66 polymer having a relative viscosity of 2.3 or more and 2.9 or less is vacuum dried and then melt extruded at a temperature higher than the melting point of nylon 66. Preferably, this temperature is at least 20° C. higher than the melting point. Melt extrusion methods are not particularly limited, but include extruder type extruders, piston type extruders,
A method using a device such as a twin-screw kneading extruder is exemplified.

押出機からノズルオリフィスを介して押出す条件として
は、剪断速度rを4 x 10’ 5ec−’未満とす
ることが必要である。即ちrが4X 10’5ec−1
以上となると、メルトフラクチャーが発生しやすくなり
高物性化が困難になる。
The conditions for extruding from the extruder through the nozzle orifice require that the shear rate r be less than 4 x 10'5ec-'. That is, r is 4X 10'5ec-1
If this is the case, melt fracture is likely to occur, making it difficult to improve the physical properties.

尚剪断速度rは下記の(I)式を用いて計算される 但し、Q:単孔吐出量(g/5ec) D:ノズルオリフィス直径 (cm) ρ:ナイロン66の比重(g/cm3)押出されたナイ
ロン66糸条は、冷却固化させて適量の油剤を付与した
後、糸条の複屈折率Δnが30X10−3以上、好まし
くは36X10−コ〜45X10−’となる様に引き取
られる。複屈折率Δnが30X10−3未満では、高速
紡糸特有の微細構造が顕著に発現しない領域となり、こ
れらの糸を延伸した場合強度は向上するが、伸度、収縮
率は大きく、弾性率の低い従来公知の性質の延伸糸にな
る。
The shear rate r is calculated using the following formula (I). However, Q: Single hole discharge rate (g/5ec) D: Nozzle orifice diameter (cm) ρ: Specific gravity of nylon 66 (g/cm3) Extrusion The nylon 66 yarn thus obtained is cooled and solidified, and an appropriate amount of oil is applied thereto, and then taken up so that the birefringence Δn of the yarn becomes 30X10-3 or more, preferably 36X10-45X10-'. If the birefringence Δn is less than 30X10-3, the fine structure peculiar to high-speed spinning will not be noticeable, and when these yarns are drawn, the strength will improve, but the elongation and shrinkage will be large, and the elastic modulus will be low. It becomes a drawn yarn with conventionally known properties.

この様にして得られた未延伸糸ナイロン66繊維は、第
1図に示すDSC融解曲線の融点ピーク内温度T1.〜
T、、、2領域内で高張力延伸される。尚図中T1は基
線から融解線が離れる温度、T、2は融点ピーク温度、
Tm3は未延伸糸の融解が完結する温度である。
The undrawn nylon 66 fiber thus obtained has a temperature T1 within the peak melting point of the DSC melting curve shown in FIG. ~
High tension stretching is carried out within the T, , 2 region. In the figure, T1 is the temperature at which the melting line departs from the base line, T,2 is the melting point peak temperature,
Tm3 is the temperature at which melting of the undrawn yarn is completed.

延伸温度がT、1未満であると、紡糸時に形成された微
細構造を再配列して分子鎖を引き揃えることが困難であ
り、強度を8 g/d以上、初期弾性率を70g/d以
上として乾熱収縮率を3%以下に保持することが不可能
になる。またTwa2を超える温度では、本発明に用い
るポリマーが比較的低分子量であるために糸が溶断しや
すく、延伸が不安定となる。
If the stretching temperature is less than T,1, it is difficult to rearrange the fine structure formed during spinning and align the molecular chains, and the strength is 8 g/d or more and the initial elastic modulus is 70 g/d or more. As a result, it becomes impossible to maintain the dry heat shrinkage rate below 3%. Furthermore, at temperatures exceeding Twa2, the polymer used in the present invention has a relatively low molecular weight, so the yarn is likely to melt and break, making the stretching unstable.

開用いる延伸ヒーターとしては、軸射ヒーター、セラミ
ックヒータ−1赤外線ヒーター、マイクロ波、レーザー
等が挙げられ加熱霊囲気としては特に限定されるもので
はないが、空気。
Examples of stretching heaters that can be used include axial radiation heaters, ceramic heaters, infrared heaters, microwaves, lasers, etc. The heating aether is not particularly limited, but air can be used.

N、、He、Ar等の雰囲気が例示され、またヒータ形
状は接触式、非接触式、ホットプレート、ホットローラ
ー、ホットビン等のいずれでも良い。
An atmosphere of N, He, Ar, etc. is exemplified, and the heater shape may be any of a contact type, a non-contact type, a hot plate, a hot roller, a hot bottle, etc.

次に本発明で特定する物性の測定方法等について述べる
Next, methods for measuring the physical properties specified in the present invention will be described.

(1)複屈折率(△n)の測定法 ニコン偏光顕微鏡POH型うイツ社ベレックコンベンセ
ータを用い、光源としてはスペクトル光源用起動装置(
東芝5LS−3−B型)を用いた(Na光源)。5〜6
mm長の繊維軸に対し45度の角度に切断した試料を、
切断面を上にして、スライドグラス上に載せる。該スラ
イドグラスを回転載物台にのせ、試料が偏光子に対して
45度になる様、回転載台を回転させて調節し、アナラ
イザーを挿入し暗視界とした後、コンペンセーターを3
0にして縞数を数える(n個)。コンペンセーターを右
ネジ方向にまわして試料が最初に一番暗くなる点のコン
ペンセーターの[a、コンペンセーター左ネジ方向にま
わして試料が最初に一番暗くなる点のコンペンセーター
の目盛すを測定した後(いずれも1/10目盛まで読む
)。コンペンセーターを30に戻してアナライザーをは
ずし、試料の直径dを測定し、下記の式に基づき複屈折
率(Δn)を算出する(測定数20個の平均値)。
(1) Measuring method of birefringence (△n) A Nikon polarized light microscope POH model Uitsu Berek convencator was used, and the light source was a spectral light source activation device (
Toshiba 5LS-3-B type) was used (Na light source). 5-6
A sample cut at an angle of 45 degrees to the fiber axis of mm length,
Place the cut side up on a glass slide. Place the slide glass on a rotating stage, adjust the rotating stage so that the sample is at a 45 degree angle to the polarizer, insert the analyzer, set the dark field, and turn the compensator on.
Set it to 0 and count the number of stripes (n pieces). Turn the compensator clockwise and measure the scale of the compensator at the point where the sample first becomes darkest. (read up to 1/10 scale in both cases). Return the compensator to 30, remove the analyzer, measure the diameter d of the sample, and calculate the birefringence (Δn) based on the following formula (average value of 20 measurements).

Δn = r’ / d r(レターデーション)冨nλ0+6 λO!589.3 mμ ε:ライツ社のコンペンセーターの説明書のC/100
00とiより求める 1=(a−b):コンベンセーターの読みの差(2)比
重 トルエンと四塩化炭素よりなる密度勾配管を作製し、3
0℃±0.1℃に調温された密度勾配管中に十分に脱泡
した試料を入れ、5時間放置後の密度勾配管中の試料位
置を、密度勾配管の目盛で読みとった値を、標準ガラス
フロートによる密度勾配管目盛〜比盟キャリブレイショ
ングラフから比重値に換算する。n■4で測定、比重イ
直は原則として小数点以下4桁まで読む。
Δn = r' / d r (retardation) depth nλ0+6 λO! 589.3 mμ ε: C/100 in Leitz compensator manual
1 determined from 00 and i = (a-b): Difference in convensator reading (2) Specific gravity A density gradient tube made of toluene and carbon tetrachloride is prepared, and 3
Place a sufficiently defoamed sample into a density gradient tube whose temperature is controlled to 0°C ± 0.1°C, and after leaving it for 5 hours, read the position of the sample in the density gradient tube on the scale of the density gradient tube. , Convert to specific gravity value from the density gradient tube scale to ratio calibration graph using a standard glass float. Measure with n■4, and as a general rule, read the specific gravity to 4 digits after the decimal point.

(3)!amの強伸度特性の測定法 繊維の引張強さ(強度)および破断伸度(伸度)は、J
IS−L−1013(1981) ノア、 5.1に準
じ、標準状態の試験室で、東洋ボールドウィン(株)製
の定速伸長形万能引張試験機TENS I LON  
tJTM−111を使用して単繊維の引張強さを測定し
た。
(3)! Measurement method of strength and elongation properties of am The tensile strength (strength) and elongation at break (elongation) of fibers are determined by
IS-L-1013 (1981) Noah, TENS I LON constant speed extension type universal tensile testing machine manufactured by Toyo Baldwin Co., Ltd. in a test room under standard conditions according to 5.1.
The tensile strength of single fibers was measured using tJTM-111.

但し、測定条件は、5Jf引張型ロードセルを用い、つ
かみ間隔20cm、引張速度20 cm/分(1分間当
たりつかみ間隔の100%の伸張速度)、記録紙の送り
速度50cm/分で試料を引張り、試料が切断した時の
荷!(gf)を測定し、次の式によって引張強さ(gf
/d)を算出して強度(g/d)とした。
However, the measurement conditions were as follows: Using a 5Jf tensile load cell, the sample was pulled at a gripping interval of 20cm, a pulling speed of 20cm/min (stretching speed of 100% of the gripping interval per minute), and a recording paper feeding speed of 50cm/min. The load when the sample is cut! (gf) is measured, and the tensile strength (gf
/d) was calculated and used as the strength (g/d).

また、試料が切断した時の伸度(%)を測定し、破断伸
度(%)とした。
In addition, the elongation (%) when the sample was cut was measured and defined as the elongation at break (%).

(4)繊維の初期引張弾性率の測定法 繊維の初期引張抵抗塵(初期引張弾性率)は、JIS−
L−1013(1981)の745゜1に準じた上記の
繊維の強度の測定法と同じ方法で試験をおこない、記録
紙上に荷重−伸長曲線を描きこの図よりJIS−L−1
013(1981)の7.5.1に記載の初期引張抵抗
度算出式より、初期引張抵抗塵(gf/d)を算出し、
初期引張弾性率 (g/d)とした。
(4) Measuring method of initial tensile modulus of fiber The initial tensile resistance dust (initial tensile modulus) of fiber is determined according to JIS-
The test was conducted using the same method as the above method for measuring fiber strength according to 745°1 of JIS-L-1013 (1981), and a load-elongation curve was drawn on the recording paper, and from this figure JIS-L-1
Calculate the initial tensile resistance dust (gf/d) from the initial tensile resistance calculation formula described in 7.5.1 of 013 (1981),
It was defined as the initial tensile modulus (g/d).

(5)相対粘度の測定法 96.3±0.1重量%試薬特級濃硫酸中に重合体濃度
が10 rag/1lflになるように試料を溶解させ
てサンプル溶液を調整し、20℃±0.05℃の温度で
氷落下秒数6〜7秒のオストワルド粘度計を用い、溶液
相対粘度を測定する。測定に際し、同一の粘度計を用い
、サンプル溶液を調整した時と同じ硫酸20m1の落下
時間To(秒)と、サンプル溶液20m1の落下時間T
□ (秒)の比より、相対粘度RVを下記の式を用いて
算出する。
(5) Relative viscosity measurement method 96.3 ± 0.1% by weight Reagent Prepare a sample solution by dissolving the sample in special grade concentrated sulfuric acid so that the polymer concentration is 10 rag/1fl, and incubate at 20°C ± 0. The relative viscosity of the solution is measured using an Ostwald viscometer at a temperature of 0.05°C and an ice fall time of 6 to 7 seconds. During the measurement, the same viscometer was used, and the falling time To (seconds) of 20 ml of sulfuric acid was the same as when preparing the sample solution, and the falling time T of 20 ml of the sample solution was measured.
From the ratio of □ (seconds), calculate the relative viscosity RV using the following formula.

RV = T t / T 。RV=Tt/T.

(6)乾熱収縮率の測定法 JIS−L−1017(1978)の5.7に準じて測
定を行った。
(6) Method of Measuring Dry Heat Shrinkage The measurement was performed according to 5.7 of JIS-L-1017 (1978).

(7)融点の測定法 理学電機(株)製高性能示差走査熱量計DSC−IOA
を用いた。試料を粉末状に細かく切り、5mgl1!秤
してアルミニウム製サンプルパンにつめサンプルクリン
パで試料をバックし、測定に供する。
(7) Melting point measurement method High performance differential scanning calorimeter DSC-IOA manufactured by Rigaku Denki Co., Ltd.
was used. Cut the sample into fine powder, 5mgl1! Weigh the sample, place it in an aluminum sample pan, back it up with a sample crimper, and use it for measurement.

測定は、アルゴンガス気流中でおこない定温度範囲:室
温〜300℃、昇温速度:20℃/1llin。
The measurement was carried out in an argon gas stream, with a constant temperature range: room temperature to 300°C, and a temperature increase rate of 20°C/1 lin.

測定レンジ: 5 meal/see、チw −1−ス
ピード=20 cm/winで測定し、チャート上の融
解ピーク温度を読みとり、試料の融点とした。
Measurement range: 5 meals/see, speed = 20 cm/win, and the melting peak temperature on the chart was read, which was taken as the melting point of the sample.

以下本発明を実施例によフて更に詳細に説明するが下記
実施例は本発明を限定する性質のものではなく、前・後
記の趣旨に徴して設計変更することはいずれも本発明の
技術的範囲に含まれるものである。
Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following Examples do not limit the present invention, and any design changes in accordance with the spirit of the above and below are within the technology of the present invention. It is within the scope of

[実施例] 実施例1 相対粘度が2.6のナイロン66ポリマーを、ノズルホ
ール数15ホールの紡糸口金を用いて295℃で常法に
従って溶融紡糸し、4500m/minの速度で引き取
った。
[Examples] Example 1 Nylon 66 polymer having a relative viscosity of 2.6 was melt-spun using a spinneret with 15 nozzle holes at 295° C. in accordance with a conventional method, and was drawn off at a speed of 4500 m/min.

得られた未延伸糸を非接触ヒータを用いて設定温度23
0℃で、2.19倍の延伸倍率で延伸した。
The obtained undrawn yarn was heated to a set temperature of 23 using a non-contact heater.
It was stretched at 0° C. and at a stretching ratio of 2.19 times.

尚未延伸糸供給速度は19 m/minとした。The undrawn yarn supply speed was 19 m/min.

得られた延伸系の繊維物性値は、引張強度=8.9 g
/11 、破断伸度=9.5%、初期弾性率二81.7
g/d 、乾熱収縮率;3.0%であった。
The obtained stretched fiber physical properties are as follows: tensile strength = 8.9 g
/11, elongation at break = 9.5%, initial elastic modulus 281.7
g/d, dry heat shrinkage rate: 3.0%.

実施例2 実施例1で得られた未延伸糸を、非接触ヒーターを用い
設定温度を245℃として2.11倍の延伸倍率で延伸
した。尚未延伸系供給速度は19 m/minとした。
Example 2 The undrawn yarn obtained in Example 1 was drawn at a draw ratio of 2.11 times using a non-contact heater at a set temperature of 245°C. The supply speed of the unstretched system was 19 m/min.

得られた延伸糸のlG維物性値は、引張強度:!1.1
 g/d 、破断伸度;8.8%、初期弾性率:96.
9g/d 、乾熱収縮率:2.6%であった。
The lG fiber physical property value of the obtained drawn yarn is tensile strength:! 1.1
g/d, elongation at break: 8.8%, initial elastic modulus: 96.
9 g/d, dry heat shrinkage rate: 2.6%.

実施例3 実施例1で得られた未延伸糸を、非接触ヒーターを用い
て2段延伸を行った。ヒータ設定温度はいずれも245
℃で、トータル延伸倍率2.16倍延伸を行った。尚未
延伸糸供給速度は、19m/winとした。
Example 3 The undrawn yarn obtained in Example 1 was drawn in two stages using a non-contact heater. The heater setting temperature is 245 in both cases.
Stretching was carried out at a total stretching ratio of 2.16 times. The undrawn yarn supply speed was 19 m/win.

得られた延伸糸の繊維物性値は、引張強度=9.4 g
/d 、破断伸度:8.6%、初期弾性率;91.8g
/d 、乾熱収縮率:2.5%であった。
The fiber physical properties of the obtained drawn yarn are tensile strength = 9.4 g
/d, elongation at break: 8.6%, initial elastic modulus: 91.8g
/d, dry heat shrinkage rate: 2.5%.

実施例4 実施例1で得られた未延伸糸を、非接触ヒーターを用い
て3段延伸を行った。ヒータ設定温度はいずれも245
℃で、トータル延伸倍率2.14倍延伸を行った。尚未
延伸糸供給速度は、19m/a+inとした。
Example 4 The undrawn yarn obtained in Example 1 was drawn in three stages using a non-contact heater. The heater setting temperature is 245 in both cases.
Stretching was carried out at a total stretching ratio of 2.14 times. The undrawn yarn supply speed was 19 m/a+in.

得られた延伸系のtan物性物性値引張強度;8.4 
g/d 、破断伸度:9.2%、初期弾性率:a9.1
g/d 、乾熱収縮率:2.4%であった。
Tan physical properties of the obtained stretched system Tensile strength: 8.4
g/d, elongation at break: 9.2%, initial elastic modulus: a9.1
g/d, dry heat shrinkage rate: 2.4%.

実施例5 実施例1で得られたのと同じポリマーを295℃にて、
ノズルホール数15ホールの紡糸口金を用いて常法に従
って溶融紡糸し、5500 m/minの速度で引取っ
た。
Example 5 The same polymer obtained in Example 1 was heated at 295°C.
Melt spinning was carried out in a conventional manner using a spinneret with 15 nozzle holes, and the fibers were drawn off at a speed of 5500 m/min.

得られた未延伸糸を、非接触ヒーターを用いて設定温度
245℃で、1.98倍の延伸倍率で延伸した。尚未延
伸糸供給速度は、19m/minとした。
The obtained undrawn yarn was drawn using a non-contact heater at a set temperature of 245° C. and a drawing ratio of 1.98 times. The undrawn yarn supply speed was 19 m/min.

得られた延伸糸の繊維物性値は、引張強度:8.4 g
/d 、破断伸度:8.8%、初期弾性率:91.9g
/d 、乾熱収縮率:2.4%であった。
The fiber physical properties of the obtained drawn yarn are as follows: tensile strength: 8.4 g
/d, elongation at break: 8.8%, initial elastic modulus: 91.9g
/d, dry heat shrinkage rate: 2.4%.

実施例6 実施例1で得られた未延伸糸を、非接触ヒーターを用い
て設定温度260℃で、2.19倍の延伸倍率で延伸し
た。尚未延伸糸供給速度は、19 m/winとした。
Example 6 The undrawn yarn obtained in Example 1 was drawn at a set temperature of 260° C. and a draw ratio of 2.19 times using a non-contact heater. The undrawn yarn supply speed was 19 m/win.

得られた延伸糸の1a維物性値は、引張強度=9.8g
/d、破断伸度:8.7%、初期弾性率ニア6.8g/
d 、乾熱収縮率:2.4%であった。
The 1a fiber physical property value of the obtained drawn yarn is tensile strength = 9.8 g
/d, elongation at break: 8.7%, initial elastic modulus near 6.8g/
d, dry heat shrinkage rate: 2.4%.

実施例7 相対粘度2.8のナイロン66ポリマーを295℃にて
、ノズルホール数15ホールの紡糸口金を用いて常法に
従って溶融紡糸し、4500 m/minの速度で引取
った。
Example 7 A nylon 66 polymer having a relative viscosity of 2.8 was melt-spun at 295° C. using a spinneret with 15 nozzle holes according to a conventional method, and drawn off at a speed of 4500 m/min.

得られた未延伸糸を、非接触ヒーターを用いて設定温度
245℃で、2.10倍の延伸倍率で延伸した。尚未延
伸糸供給速度は、19m/winとした。
The obtained undrawn yarn was drawn using a non-contact heater at a set temperature of 245°C and a drawing ratio of 2.10 times. The undrawn yarn supply speed was 19 m/win.

得られた延伸糸の繊維物性値は、引張強度−8,98/
d、破断伸度:8.6%、初期弾性率=88.0g/d
 、乾熱収縮率:2.7%であった。
The fiber physical properties of the obtained drawn yarn are tensile strength -8,98/
d, elongation at break: 8.6%, initial elastic modulus = 88.0 g/d
, dry heat shrinkage rate: 2.7%.

比較例1 実施例1で用いたのと同一のポリマーを295℃にて、
ノズルホール数15ホールの紡糸口金を用いて常法に従
うて溶融紡糸し、3500 m/m1nの速度で引取っ
た。
Comparative Example 1 The same polymer used in Example 1 was heated at 295°C.
Melt spinning was carried out using a spinneret with 15 nozzle holes according to a conventional method, and the fiber was drawn off at a speed of 3500 m/m1n.

得られた未延伸糸を、非接触ヒーターを用いて設定温度
245℃で、1.98倍の延伸倍率で延伸した。尚未延
伸糸供給速度は、19 m/minとした。
The obtained undrawn yarn was drawn using a non-contact heater at a set temperature of 245° C. and a drawing ratio of 1.98 times. The undrawn yarn supply speed was 19 m/min.

得られた延伸糸の繊維物性値は、引張強度:9.9g/
d、破断伸度:9.4%、初期弾性率;80.2g/d
 、乾熱収縮率=3.4%であった。
The fiber physical properties of the obtained drawn yarn are tensile strength: 9.9 g/
d, elongation at break: 9.4%, initial elastic modulus: 80.2 g/d
, dry heat shrinkage rate=3.4%.

比較例2 実施例1で得られた未延伸糸を、非接触ヒーターを用い
て設定温度185℃で、1.68倍の延伸倍率で延伸し
た。
Comparative Example 2 The undrawn yarn obtained in Example 1 was drawn using a non-contact heater at a set temperature of 185° C. and a drawing ratio of 1.68 times.

尚未延伸糸供給速度は、19m/ll1inとした。The undrawn yarn supply speed was 19 m/11 inch.

得られた延伸糸の繊維物性値は、引張強度;7、Og/
d、破断伸度: 12.8%、初期弾性率:58.4g
/d 、乾熱収縮率;5.2%であった。
The fiber properties of the obtained drawn yarn are tensile strength: 7, Og/
d, elongation at break: 12.8%, initial elastic modulus: 58.4g
/d, dry heat shrinkage rate: 5.2%.

比較例3 実施例1で得られた未延伸糸を、非接触ヒーターを用い
て設定温度265℃で延伸を試みたが、糸が溶断して延
伸出来なかった。
Comparative Example 3 An attempt was made to stretch the undrawn yarn obtained in Example 1 at a set temperature of 265° C. using a non-contact heater, but the yarn was fused and could not be stretched.

比較例4 相対粘度3.3のナイロン66チップを、295℃にて
ノズルホール数15ホールの紡糸口金を用いて常法に従
って溶融紡糸し、4500 m/winの速度で引取っ
た。
Comparative Example 4 Nylon 66 chips with a relative viscosity of 3.3 were melt-spun at 295° C. using a spinneret with 15 nozzle holes according to a conventional method, and the spinneret was taken off at a speed of 4500 m/win.

得られた未延伸糸を、非接触ヒーターを用いて設定温度
245℃で、2.00倍の延伸倍率で延伸した。
The obtained undrawn yarn was drawn using a non-contact heater at a set temperature of 245°C and a drawing ratio of 2.00 times.

尚未延伸糸供給速度は、19m/m1nとした。The undrawn yarn supply speed was 19 m/m1n.

得られた延伸糸の繊維物性値は、引張強度=7.7g/
d、破断伸度:9.4%、初期弾性率;7o、sg/d
 、乾熱収縮率:2.8%であった。
The fiber physical properties of the obtained drawn yarn are tensile strength = 7.7 g/
d, elongation at break: 9.4%, initial elastic modulus: 7o, sg/d
, dry heat shrinkage rate: 2.8%.

比較例5 相対粘度2.2のナイロン66ポリマーを、295℃に
てノズルホール数15ホールの紡糸口金を用いて常法に
従って溶融紡糸し、4500m/+inの速度で引取っ
たが、洩糸性が悪く安定な捲取りが不可能であった。
Comparative Example 5 Nylon 66 polymer having a relative viscosity of 2.2 was melt-spun at 295° C. using a spinneret with 15 nozzle holes according to a conventional method, and taken off at a speed of 4500 m/+in, but leakage properties were observed. This made stable winding impossible.

上記実施例1〜7および比較例1〜5の詳細なデータを
第1表に一括して示す。
Detailed data of Examples 1 to 7 and Comparative Examples 1 to 5 are collectively shown in Table 1.

[発明の効果] 本発明は以上の様に構成されており、本発明に係るナイ
ロン66繊維は、優れた強伸度8寸法安定性、および弾
性率を有しており、タイヤコード用素材およびベルト用
素材として最適である。特にポリエステルに近い初期弾
性率を有しており、従来不適とされていたラジアルタイ
ヤのベルト部のコート素材としての使用も可能と考えら
れる。
[Effects of the Invention] The present invention is configured as described above, and the nylon 66 fiber according to the present invention has excellent strength, elongation, 8 dimensional stability, and elastic modulus, and can be used as a tire cord material and Ideal as a material for belts. In particular, it has an initial elastic modulus close to that of polyester, and it is thought that it can be used as a coating material for the belt portion of radial tires, which was previously considered unsuitable.

但し、本発明の繊維の用途は上記に限られるものではな
く、汎用分野においても同様に用いられるのは勿論であ
る。
However, the use of the fiber of the present invention is not limited to the above, and it goes without saying that it can be used in general fields as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はナイロン66繊維のDSC融解曲線を示すグラ
フである。
FIG. 1 is a graph showing the DSC melting curve of nylon 66 fiber.

Claims (3)

【特許請求の範囲】[Claims] (1)下記(a)〜(c)の要件を満足することを特徴
とする高弾性率ナイロン66繊維。 (a)初期弾性率≧70g/d (b)破断伸度≦10% (c)160℃乾熱収縮率≦3.0%
(1) A high-modulus nylon 66 fiber that satisfies the following requirements (a) to (c). (a) Initial elastic modulus≧70g/d (b) Breaking elongation≦10% (c) 160°C dry heat shrinkage rate≦3.0%
(2)破断強度が8.0g/d以上である請求項(1)
に記載の高弾性率ナイロン66繊維。
(2) Claim (1) whose breaking strength is 8.0 g/d or more
The high modulus nylon 66 fiber described in .
(3)96%濃硫酸溶液中に重合体濃度が10mg/m
lとなる様に溶解したときの20℃での相対粘度が2.
3〜2.9である低分子量ナイロン66ポリマーを真空
乾燥処理した後、該ポリマーの融点以上の温度で溶融紡
糸し、下記( I )式で表わされる剪断速度rが4×1
0^4sec^−^1未満となる様にノズルオリフィス
から押出して冷却固化し、該紡糸々条の複屈折率が30
×10^−^3以上となる様に引取り、一旦巻取るかま
たは巻取らないでDSC溶解曲線における融点ピーク内
温度での高張力延伸を1段または数段行なうことによっ
て請求項(1)または(2)に記載の高弾性率ナイロン
66繊維を得ることを特徴とする高弾性率ナイロン66
繊維の製造方法。 r=(32Q/πD^3)×(1/ρ)・・・( I )
但し、Q:単孔吐出量(g/sec) D:ノズルオリフィス直径(cm) ρ:ナイロン66の比重(g/cm^3)
(3) Polymer concentration is 10 mg/m in 96% concentrated sulfuric acid solution
When dissolved so that the relative viscosity at 20°C is 2.
After vacuum drying a low molecular weight nylon 66 polymer having a molecular weight of 3 to 2.9, it is melt-spun at a temperature higher than the melting point of the polymer, and the shear rate r expressed by the following formula (I) is 4 x 1.
It is extruded from a nozzle orifice and cooled and solidified so that the birefringence of the spun strips is less than 0^4sec^-^1.
Claim (1): By taking off the film so as to obtain a temperature of ×10^-^3 or more, and performing one or several stages of high-tension stretching at a temperature within the peak melting point in the DSC melting curve, either by winding once or without winding. Or high elastic modulus nylon 66 characterized by obtaining the high elastic modulus nylon 66 fiber described in (2)
Fiber manufacturing method. r=(32Q/πD^3)×(1/ρ)...(I)
However, Q: Single hole discharge rate (g/sec) D: Nozzle orifice diameter (cm) ρ: Specific gravity of nylon 66 (g/cm^3)
JP1134037A 1989-05-25 1989-05-25 High modulus nylon 66 fiber and method for producing the same Expired - Fee Related JP2770421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134037A JP2770421B2 (en) 1989-05-25 1989-05-25 High modulus nylon 66 fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134037A JP2770421B2 (en) 1989-05-25 1989-05-25 High modulus nylon 66 fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03810A true JPH03810A (en) 1991-01-07
JP2770421B2 JP2770421B2 (en) 1998-07-02

Family

ID=15118894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134037A Expired - Fee Related JP2770421B2 (en) 1989-05-25 1989-05-25 High modulus nylon 66 fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2770421B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860012A (en) * 1981-10-06 1983-04-09 Toray Ind Inc Polyhexamethylene adipamide fiber and its preparation
JPS6350519A (en) * 1987-07-31 1988-03-03 Toray Ind Inc Polyhexamethylene adipamide fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860012A (en) * 1981-10-06 1983-04-09 Toray Ind Inc Polyhexamethylene adipamide fiber and its preparation
JPS6350519A (en) * 1987-07-31 1988-03-03 Toray Ind Inc Polyhexamethylene adipamide fiber

Also Published As

Publication number Publication date
JP2770421B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
JPH0355566B2 (en)
US5397527A (en) High modulus polyester yarn for tire cords and composites
US3585264A (en) Process for spinning polyamide filaments containing nucleating agents
EP0623179B2 (en) High modulus polyester yarn for tire cords and composites
AU7245991A (en) Improvements in/or relating to the production of nylon yarn
EP0251313B1 (en) Polyethylene terephthalate fibers having high strength and high modulus and process for producing the same
US3591565A (en) Polyamides containing alkali metal halide additives as void formation inhibitors
JP5087949B2 (en) Polyamide fiber
CA1233009A (en) High speed process for forming fully drawn polyester yarn
JPH0261109A (en) Polyester fiber
EP0295147B1 (en) High strength polyester yarn
JPH03810A (en) Nylon 66 yarn having high modulus of elasticity and production thereof
JP2001172821A (en) Production of polyoxymethylene fiber
JPS5831112A (en) Polyphenylene sulfide fiber
JPS62133108A (en) Production of polyamide yarn having high strength and high toughness
JPS5854018A (en) Polycapramide fiber and its production
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
KR100230899B1 (en) High elongation(p-phenylene terephthalamide)fiber
JPS60224809A (en) Polyamide fiber and its manufacture
KR101118849B1 (en) A technical polyester multi-filament yarn with high toughness and its manufacturing process
EP1520066A1 (en) A process for making stable polytrimethylene terephthalate packages
JPH0931748A (en) High-strength polyamide monofilament and its production
TW202300737A (en) Polyethylene yarn having improved post-processability and fabric including the same
JPH0440449B2 (en)
JPS63196711A (en) High-strength and high-elastic modulus polyester fiber and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees